

Figure S1, related to Figure 1. S-phase clastogen sensitivity of $rad50^{hook}$ at different temperatures. Cell survival on plates containing the indicated concentrations of MMS, CPT or HU. 5-fold serial cell dilutions were spotted and plates were incubated at 30°C, 23°C or 37°C. Allele names refer to the following mutations: rad50-C1G (C687G), rad50-46 (S685R Y688E), rad50-47 (L689R), rad50-48 (S685R Y688R), rad50-64 (S685E Y688R), mre11-3 (H125L D126V). The $mec1\Delta$ strain also contained $sml1\Delta$.

Figure S3, related to Figure 3. Mre11 complex integrity in *rad50^{hook}* mutants.

Mre11 complex integrity in wild-type and *rad50^{hook}* assessed by co-immuno-precipitation with Rad50 or Mre11 antibodies (Rad50-IP or Mre11-IP) and western blot (anti-Rad50, anti-Mre11 or anti-Xrs2). Pre-immune antibodies (PI) were included as negative controls.

Short (2 hours) HO-induction

Genotype	imprecise	NHEJ events
WT	0/40	accurate
rad50∆	10/33 (30.3%)	Δ ACA (7), Δ CAG (1), Δ GC (1) Δ CGCAACAG (1)
rad50-46	12/60 (20%)	ΔACA (7), ΔAC (2), ΔGCA (1), mut (2)
rad50-47	5/33 (15.2%)	ΔΑCΑ (3), ΔΑ (1), ΔC (1)
rad50-48	2/33 (6.1%)	ΔΑCΑ (2)

В

Persistent HO-induction

achotype	Total							
WT	42	+CA	A (30), +CAA	A (2), +ACA (1)	, +AA (1), ΔA (3	B), ΔC (2),	ΔACA (1),ΔGT	A (1), ΔGCAACAC (1)
rad50∆	28	ΔΑΟ	CA (4), ΔCA	(16),ΔA (2), ΔA	AG (1), ΔCAAC	AG (1), ΔA	ACAGTAT (2),	none (2)
rad50-46	82	+CA	A (1), +A (1),	ΔΑCΑ (70), Δ	AC (2), ΔGC (2)	, ΔA (1), <i>I</i>	ΔC (1), ΔGCAA	C (1), others (1), mut (2)
rad50-47	45	+CA	A (4), +AC (2	2), ΔACA (22), <i>1</i>	ΔΑС (1), ΔGC (1), ΔA (5)	, ΔCAACAG (2)	, mut (5), ΔACA+mut (2)
rad50-48	42	+C/	A (9), +ACA	(2), +AC (9), Δ	ACA (9), ΔGCA	. (1), ΔGC	(2), ΔC (4), ΔA	(4), none (2)
rad50S	30	+C/	A (9), +ACA	(2), ΔACA (9),	ΔGCA (1), ΔCA	\G (1), ΔG	iC (1), ΔCA (1),	ΔC (1),
		ΔΑΟ	GTATAATTT	TATAAACC (1),	+CA+ΔC (1), r	nut (3)		
Genotype	Тс	otal	Insertion	Deletions	P-Mutation	Others	>4nt change	
WT	Ζ	12	34 (81%)	8 (19%)	0	0	1 (2%)	
rad50∆	2	28	0	26 (93%)	0	2 (7%)	3 (11%)	
rad50-46	8	32	2 (4%)	77 (94%)	2 (2%)	3 (4%)	1 (1%)	
rad50-47	2	15	6 (13%)	31 (69%)	5 (11%)	2 (4%)	2 (4%)	
rad50-48	2	12	20 (48%)	20 (48%)	0	2 (4%)	0	
rad50S	3	30	11 (37%)	15 (50%)	3 (10%)	1 (3%)	1 (3%)	

Figure S4, related to Figure 3. NHEJ repair junctions of survivor colonies.

A. NHEJ events upon short HO-induction (2 hours) of survivors shown in Figure 3D. Numbers of imprecise NHEJ events versus total numbers of NHEJ junctions sequenced are given. Imprecise NHEJ events were either deletions (Δ) or point mutations (mut) and are listed. No error prone NHEJ events were found among wild-type survivors. **B.** NHEJ events of survivors (Figure 3E) following persistent HO-induction. The top panel lists all mutational events, either insertions (+), deletions (Δ) or point mutations (mut). "None" indicates that the HO-site was unaltered. The lower panel summarizes the frequency of the categorized events for each genotype. P-Mutation, point mutation; Others, no or more complex mutations of the HO-site (insertion and deletions >4 nt in size).

A

Figure S5, related to Figure 5. Meiotic DSB formation at the HIS4-LEU2 meiotic hotspot. A. Cells were cultivated for 0, 4 and 8 hours in sporulation medium and meiotic DSB formation was assessed by Southern blot with a hotspot-specific probe. The genotypes from left to right are: WT, rad50S, rad50-46, rad50-47, rad50-48, sae 2Δ , rad50 Δ sae 2Δ , rad50-46 sae 2Δ , rad50-47 sae2Δ, rad50-48 sae2Δ. Quantification of the DSB fragments (6 and 3.7 kb bands) as a fraction of total signal intensity per lane is given on bottom of the southern blot. B. In return-togrowth assays, recombination intermediate formed in meiosis are resolved by the mitotic DSB repair apparatus. Diploids of the indicated genotypes containing the his4-B/his4-X heteroalleles were incubated for 0, 4, 8 and 24 hours (h) in sporulation media (SPM) and plated on media without and with histidine. The percentage of surviving cells was calculated by the ratio of colonies formed on media with histidine versus the total number of cells plated (graph on the left) and the recombination frequency as numbers of colonies formed on media without versus on media with histidine (graph in the middle). The graph on the right shows the fold of meiotic recombination induction for each time point as a ratio to the recombination frequency at t=0 (normalized as 1). Error bars denote standard deviation from at least three independent experiments.

MMS (%)

Figure S6, related to Figure 7. Suppression of *rad50-46* **MMS survival by intragenic suppressors.** Extended spot test of Figure 7B. Plates without or with the indicated concentrations of MMS were incubated at 23°C, 30°C or 37°C. Suppressors were tested in context of *rad50-46* allele or in context of the wild-type hook domain as indicated.

P1685 18731

Figure S7, related to Figure 7. Intragenic suppressors mitigate rad50-46 telomere and meiotic defects to various extents. A. Graphs depicting the probabilities of Rad50 WT, Rad50-N607Y and Rad50-N873I residues 500-1000 to assume a coiled coil structure (three graphs on the top) or to form coiled coil dimers (graph on bottom). Probabilities were calculated with the programs "Coil" and "MultiCoil" using a window width of 28. B. Telomere lengths of *rad50-46* without and with suppressor mutants monitored by Southern blot of freshly dissected spores after 30 generations of growth. The strains labeled on top with "*rad50-46*" contain both the *rad50-46* hook allele and the indicated suppressor mutations, whereas the last four strains on the right contain only the suppressor mutations in context of a wild-type hook. **C.** Analysis of suppression of *rad50-46* meiotic defect by the various suppressor mutants. Top: W303+ *rad50*Δ/Δ diploids containing either an empty or *Ycp50-rad50* plasmid of the indicated genotypes were sporulated in liquid culture for 48 hours and for each culture the percentage of tetrad formation (by microscopy) and spore viability (by tetrad dissection) was determined. Bottom: Same cultures as above were incubated in sporulation media (SPM) for 8 hours and meiotic DSB formation at the *THR4* locus was assessed by southern blot. A band of 6.0 kb corresponding to the unresected meiotic DSB fragment was evident after 8 hours in sporulation media in *sae2*Δ/Δ and *rad50*Δ/Δ *Yp50-rad50-46* control strains, and to similar levels in cells containing the *Yp50-rad50-46-K700Q* plasmid, but not *Yp50-rad50-46-K700Q V285A*. Resolution of this blot was to low to unambiguously conclude if the meiotic DSB fragment might be also present at lower levels in other genotypes.

Table S1, related to Experimental Procedures. S. cerevisiae strains used in this study

Strains were in the following yeast background: **W303**⁺ (*trp1-1 leu2-3,112 ura3-1 can1-100 ade2-1 his3-11,15 RAD5*), **DBY745** (*leu2-3,112 lys5 ura3-52 adel-100*) or **SK1** background (*ho::LYS2 lys2 his4::LEU2 arg4 ura3 leu2::hisG*) and only differences from this genotype are listed. Following abbreviations are used: *GAL-TEV* (*GAL-NLS-myc9-TEV-NLS::TRP1*); *KAN* (*KanMX4*); W303⁺ (W303 *RAD5*). *URA3* counterselected on 5-FOA is indicated with *ura3*. An asterisk (*) indicates homoalleles in diploid strains.

Strain ID	Genotype	Backgrour	nd/Source
JPY708	MATa WT	W303	Lab Stock
JPY1450	MATα rad50Δ::KAN	W303	Lab Stock
JPY2874	MATa rad50-46::HYG FLAG-RAD53::LEU2	W303	this study
JPY4448	MATa rad50-47::HYG FLAG-RAD53	W303	this study
JPY4620	MATa rad50-48::HYG FLAG-RAD53	W303	this study
JPY4406	MATa rad50-64::HYG FLAG-RAD53	W303	this study
JPY4479	MATa rad50-C1G::HYG FLAG-RAD53	W303	this study
JPY2879	MATa rad50-C2A::HYG FLAG-RAD53	W303	this study
JPY3663	MATa mre11-3::URA3	W303	Lab Stock
JPY2252	MATa sae2 <i>1</i> ::KAN FLAG-RAD53	W303	Lab Stock
	MATa-inc leu2-SFA1 ade3::GAL-HO	W303	Aguilera
	MATa-inc rad50∆::??? leu2-SFA1 ade3::GAL-HO	W303+	Aguilera
JPY5463	MATa-inc rad50-46::HYG leu2-SFA1 ade3::GAL-HO	W303+	this study
JPY5465	MATa-inc rad50-47::HYG leu2-SFA1 ade3::GAL-HO	W303+	this study
JPY5467	MATa-inc rad50-48::HYG leu2-SFA1 ade3::GAL-HO	W303+	this study
JPY2422	MATa/a rad50////ade2/IScel LEU-TetR/- URA3-tetO112/-	W303+	this study
	GAL-TEV::TRP1		
JPY2422	MATa/a RAD50/A ade2An/ade2-IScel ura3-tetO112/- GAL-TEV::TRP1	W303+	this study
JPY3832	MATa/a rad50-46::HYG/1 ade21/n/ade2-IScel URA3-tetO112/- GAL-	W303+	this study
	TEV::TRP1		
JPY5125	MATa/a rad50-47::HYG/A ade2An/ade2-IScel URA3-tetO112/- GAL-	W303+	this study
	TEV::TRP1		
JPY5127	MATa/a rad50-48::HYG/A ade2An/ade2-IScel URA3-tetO112/- GAL-	W303+	this study
	TEV::TRP1		
JPY3765	MATα RAD50::HYG Δho Δhml::ADE1Δhmr::ADE1 ade3::Gal-HO	DBY745	this study
JPY3763	MATα rad50-46::HYG Δho Δhml::ADE1Δhmr::ADE1 ade3::Gal-HO	DBY745	this study
JPY4641	MATα rad50-47::HYG Δho Δhml::ADE1Δhmr::ADE1 ade3::Gal-HO	DBY745	this study
JPY4610	MATα rad50-48::HYG Δho Δhml::ADE1Δhmr::ADE1 ade3::Gal-HO	DBY745	this study
JPY1887	MATα rad50Δ mec1ΔTRP1 sml1ΔHIS3	W303+	this study
JPY1953	MATa rad501 mec11HYG sml11HIS3 sae21 FLAG-RAD53::LEU2	W303+	this study
JPY3872	MATa mec1 ΔHYG sml1 ΔHIS3 FLAG-RAD53::LEU2	W303+	this study
JPY3873	MATa mec1_HYG sml1_HIS3 sae2_KAN FLAG-RAD53::URA3	W303+	this study
JPY3848	MATa rad50-46::HYG mec1ΔHYG sml1ΔHIS3 FLAG-RAD53::URA3	W303+	this study
	GAL-TEV::TRP1		
JPY3853	MATa rad50-46::HYG mec1ΔHYG sml1ΔHIS3 sae2ΔKAN FLAG-	W303+	this study
	RAD53::LEU2		
JPY5555	MAT? rad50-47::HYG mec1∆HYG sml1∆HIS3 FLAG-RAD53	W303+	this study
JPY5557	MAT? rad50-47::HYG mec1ΔHYG sml1ΔHIS3 sae2ΔKAN FLAG-	W303+	this study
	RAD53::URA3		
JPY5488	MATa rad50-48::HYG mec1 AHYG sml1 AHIS3 FLAG-RAD53::LEU2	W303+	this study
JPY5492	MATa rad50-48::HYG mec1 /HYG sml1 /HIS3 sae2 /KAN FLAG-	W303+	this study
	RAD53::LEU2		
JPY5496	MATa rad50-C1G::HYG mec1	W303+	this study
JPY5498	MATa rad50-C1G::HYG mec1 AHYG sml1 AHIS3 sae2 AKAN FLAG-	W303+	this study
	RAD53::LEU2		
JPY4926	MATa/a RAD50::HYG/RAD50 FLAG-RAD53::URA3/FLAG-	W303+	this study

	RAD53::URA3 GAL-TEV::TRP1/-		
JPY4925	MATa/a rad50∆::KAN/RAD50 FLAG-RAD53/FLAG-RAD53::URA3	W303+	this study
JPY4617	MATa/a rad50-46::HYG/RAD50 FLAG-RAD53/FLAG-RAD53	W303+	this study
JPY4446	MATa/a rad50-47::HYG/RAD50 FLAG-RAD53/FLAG-RAD53	W303+	this study
JPY4614	MATa/a rad50-48::HYG/RAD50 FLAG-RAD53/FLAG-RAD53	W303+	this study
JPY4681	MATa/a rad50S::HYG/RAD50 sae2∆KAN/SAE2 FLAG-RAD53/FLAG-	W303+	this study
	RAD53	0144	0.14
JPY410	MATa/a his4B::LEU2/his4X::LEU2	SK1	S.Keeney
JPY3969	MATa/a rad50-46/46::HYG his4B::LEU2/his4X::LEU2	SK1	this study
JPY4639	MATa/a rad50-4//4/::HYG his4B::LEU2/his4X::LEU2	SK1	this study
JPY4674	MATa/a rad50-48/48::HYG his4B::LEU2/his4X::LEU2	SK1	this study
JPY409	MATa/ α sae2 Δ/Δ his4B::LEU2/his4X::LEU2	SK1	this study
JPY3973	MATa/a rad50-46/46::HYG sae2 Δ/Δ his4B::LEU2/his4X::LEU2	SK1	this study
JPY5245	MATa/a rad50-47/47::HYG sae2 Δ/Δ his4B::LEU2/his4X::LEU2	SK1	this study
JPY5247	MATa/a rad50-48/48::HYG sae2 Δ/Δ his4B::LEU2/his4X::LEU2	SK1	this study
JPY5596	MATa/a HIS4::LEU2-(BamHI)/his4-X::LEU2-(NgoMIV)-URA3	SK1	S.Keeney
JPY5597	MATa/α dmc1Δ/Δ::HYG HIS4::LEU2-(BamHI)/his4-X::LEU2-(NgoMIV)- URA3	SK1	this study
JPY5597	MATa/a dmc1 ^Δ /Δ::HYG HIS4::LEU2-(BamHI)/his4-X::LEU2-(NgoMIV)- UBA3	SK1	this study
JPY5649	MATa/a rad50S/S HIS4::LEU2-(BamHI)/his4-X::LEU2-(NaoMIV)-URA3	SK1	S.Keenev
JPY5598	MATa/a rad50-46/46::HYG HIS4::LEU2-(BamHI)/his4-X::LEU2-	SK1	this study
	(NgoMIV)-URA3		
JPY5600	MATa/a rad50-4//4/::HYG HIS4::LEU2-(BamHI)/his4-X::LEU2- (NgoMIV)-URA3	SK1	this study
JPY5599	MATa/a rad50-48/48::HYG HIS4::LEU2-(BamHI)/his4-X::LEU2- (NgoMIV)-UBA3	SK1	this study
JPY2162	MATa rad50/ura3- GAL-TEV::TRP1	W303+	this study
JPY2170	MATo rad50/jura3- GAL-TEV::TRP1 Ycp50 (empty)	W303+	this study
JPY2171	MATa rad50/ura3- Ycp50-RAD50	W303+	this study
JPY6314	MATa rad50/ura3- Ycp50-rad50-46	W303+	this study
JPY6325	MATa rad50/ura3- Ycp50-rad50-46-I680V	W303+	this study
JPY6311	MATg rad50/jura3- Ycp50-rad50-46-K700Q V285A	W303+	this study
JPY6315	MATa rad50/ura3- Ycp50-rad50-46-V285A	W303+	this study
JPY6316	MATg rad50 <u>A</u> ura3- Ycp50-rad50-46-K700Q	W303+	this study
JPY6321	MATg rad50/ura3- Ycp50-rad50-46-L703F	W303+	this study
JPY6322	MATa rad50/ura3- Ycp50-rad50-46-N607Y	W303+	this study
JPY6330	MATa rad50/ura3- Ycp50-rad50-46-N873I	W303+	this study
JPY6313	MATa rad50/ura3- Ycp50-rad50-46-P168S	W303+	this study
JPY6312	MATa rad50/ura3- Ycp50-rad50-46-S193F	W303+	this study
JPY6329	MATa rad50/ura3- Ycp50-rad50-K700Q	W303+	this study
JPY6327	MATa rad50/ura3- Yop50-rad50-I 703E	W303+	this study
JPY6331	MATa rad 50 /ura 3 - Ycp 50 -rad 50 -N873	W303+	this study
JPY6333	MATa rad50/ura3- Yop50-rad50-S193E	W303+	this study
JPY6210	MATa rad50-N8731: HYG	W303+	this study
IPV6202	MATa rad50-46-N8731::HYG	W303+	this study
	MATa rad50 47 N873I::HVG	M303 1	this study
		W202	this study
	MATe red50 ebert esil N9721110	W000+	
JPY6296	MAT A RADU-SNORT COII-IN8/31HYG	VV303+	this study
JPY6299	MATa rad50- short coll+hook-N8/31::HYG	W303+	this study
JPY6381	MATa rad50-L703F::HYG	W303+	this study
JPY6383	MATa rad50-C1G-L703F::HYG	W303+	this study
JPY6385	MATa rad50-46-L703F::HYG	W303+	this study

Table S2, related to Figure 1. MMS sensitivity of all rad50 hook mutants tested. The rad50^{hook} alleles, rad50-46, -47, -48 are highlighted. MMS survival of most other rad50^{hook} alleles was comparable to wild-type. Two rad50^{hook} alleles (highlighted in pink) showed MMS sensitivity comparable to $rad50\Delta$. Both alleles contained the rad50-46 and rad50-48 mutations, respectively, but acquired an additional third mutation (C686G or N696I), rendering these alleles MMS sensitive. The single rad50-C686G and rad50-N696I mutant alleles were indistinguishable from wild-type, suggesting that the observed MMS sensitivity was a composite effect of the triple mutants. MMS survival of alleles targeting the conserved zinc hook cysteines, were also comparable to rad50 Δ .

★ Partial MMS sensitivity

 Δ rad50 Δ -alike MMS sensitivity

unmarked WT-alike (no or residual MMS sensitivity)

Table S3, related to Figure 2 and Experimental Procedures. Sequences of zinc hook peptides used for steady-state fluorescence anisotropy measurements. 5-CF denotes 5-carboxyfluroescein moiety.

Rad50-wt: (5-CF)-KTALENLKMHQTTLEFNRKALEIAERDSCCYLCSRKFENESFKSKLLQELKTKTDANFEKTLKDTVQN-(amide) Rad50-46: (5-CF)-KTALENLKMHQTTLEFNRKALEIAERDRCCELCSRKFENESFKSKLLQELKTKTDANFEKTLKDTVQN-(amide) Rad50-47: (5-CF)-KTALENLKMHQTTLEFNRKALEIAERDSCCYRCSRKFENESFKSKLLQELKTKTDANFEKTLKDTVQN-(amide) Rad50-48: (5-CF)-KTALENLKMHQTTLEFNRKALEIAERDRCCRLCSRKFENESFKSKLLQELKTKTDANFEKTLKDTVQN-(amide)

Table S4, related to Figure 2, Figure 7 and Experimental Procedures. Sequences of zinc hook peptides used in CD and UV absorbance titration experiments.

```
Rad50-wt:(Acetyl)-LEFNRKALEIAERDSCCYLCSRKFENESFKSKLLQELKTKT-(amide)Rad50-46:(Acetyl)-LEFNRKALEIAERDRCCELCSRKFENESFKSKLLQELKTKT-(amide)Rad50-46-I680V:(Acetyl)-LEFNRKALEIAERDRCCELCSRKFENESFØSKLLQELKTKT-(amide)Rad50-46-K700Q:(Acetyl)-LEFNRKALEIAERDRCCELCSRKFENESFØSKLLQELKTKT-(amide)Rad50-46-L703F:(Acetyl)-LEFNRKALEIAERDRCCELCSRKFENESFØSKLLQELKTKT-(amide)Rad50-47:(Acetyl)-LEFNRKALEIAERDRCCELCSRKFENESFKSKLLQELKTKT-(amide)Rad50-48:(Acetyl)-LEFNRKALEIAERDRCCELCSRKFENESFKSKLLQELKTKT-(amide)
```

Table S5, related to Figure 2, Figure 7 and Experimental Procedures. The chemical

components of zinc buffers used in this study and related free Zn ²⁺ concentration	values.
---	---------

Competitor	Total Zn ²⁺	Free [Zn ²⁺]	-log[Zn ²⁺]
	(mM)		
1.0 mM EDTA	0	-	-
1.0 mM HEDTA	0.2	1.64 × 10 ⁻¹³	12.79
1.0 mM HEDTA	0.4	4.36 × 10 ⁻¹³	12.36
1.0 mM HEDTA	0.6	9.81 × 10 ⁻¹³	12.01
1.0 mM HEDTA	0.8	2.62 × 10 ⁻¹²	11.58
1.0 mM EGTA	0.05	3.57 × 10 ⁻¹¹	10.45
1.0 mM EGTA	0.1	7.54 × 10 ⁻¹¹	10.12
1.0 mM EGTA	0.3	2.91 × 10 ⁻¹⁰	9.54
1.0 mM EGTA	0.5	6.78 × 10 ⁻¹⁰	9.17
1.0 mM EGTA	0.9	6.11 × 10 ⁻⁹	8.21

Supplemental Experimental Procedures

Yeast Experiments, Western and Southern blots

All gene replacements and knockouts were done in diploid cells and dissected spores were verified by PCR genotyping and sequencing. In some experiments, Rad50 was also expressed in haploid or diploid *rad50* cells from the single copy centromeric plasmid *Ycp50 (URA3)* under control of its native promoter. Strains were either grown in YPD or synthetic dropout medium containing 2% glucose. Galactose induction was done as described previously (Hohl et al., 2011). *Ycp50-rad50 Sac*I digested plasmid used for gap repair was gel purified and extracted using QIAprep Spin columns (Qiagen). *rad50-46* suppressor plasmids were rescued from yeast cells according to a protocol specified (Balestrini et al., 2013).

In DNA damage survival assays, cells were grown at 30°C to exponential phase, serially 5-fold diluted and were spotted (250,000 to 80 cells) onto freshly prepared YPD or selective plates containing the indicated concentrations of MMS, CPT or HU. Incubation times varied based on incubation temperatures, and were 2.5-3.5 days at 30°C, 3.5-5 days at 23°C and 1.5-2 days at 37°C. All experiments were performed at least in triplicate with two or more independent diploids or spores.

Nitrocellulose membranes for western blots were incubated with primary and secondary antibodies at room temperature. FLAG-Rad53 phosphorylation was assessed as previously described (Al-Ahmadie et al, 2014) by exposing exponential growing cells for 90 min to 0.1% MMS.

SK1 strains were cultivated and genomic DNA was prepared essentially as described (Murakami et al., 2009), but including an additional phenol chloroform extraction following proteinase K treatment.

Fluorescence anisotropy, UV titration and CD spectroscopy

Peptides of 41 or 68 amino acids in lengths were synthesized on solid phase using Fmoc strategy in microwave-assisted automated peptide synthesizer (CEM Liberty 1) and purified by RP-HPLC as previously reported (Pomorski et al., 2013). In case of 68-mer peptides, solid

phase synthesis was combined with native chemical ligation (Blanco-Canosa and Dawson, 2008). Peptides were N-terminally labeled with 5-carboxylfuorescein (68-mers) or acetylated (41-mers), and C-terminally amidated. Steady state fluorescence anisotropy measurements were performed at 20°C or 30°C using 5-carboxyfluorescein labeled 68-mer peptides at a final concentration of 50 nM incubated in a series of metal-buffers controlling free Zn^{2+} containing 50 mM HEPES pH 7.4, 100 mM NaCl, 30 μ M TCEP, 1 mM chelator (EDTA, HEDTA or EGTA) and ZnSO₄ in the range of 0 - 0.9 mM (see Supporting Information). UV absorbance and circular dichroism (CD) measurements were performed at 20 °C with non-fluorescently modified (acetylated and amidated only) 41-mers. Peptides at a concentration of 5 μ M were titrated with ZnSO₄ in 50 mM borate buffer pH 7.4, 100 mM NaClO₄, 60 μ M TCEP using 1.0 cm-path length cuvette.

Preparation of metal buffers and steady-state fluorescence anisotropy studies of 68-mer peptides.

The Zn²⁺ depended dimerization of 5-carboxyfluorescein labeled 68-mer zinc hook peptides (Table S3) was monitored by steady state fluorescence anisotropy measurements in a series of metal buffers (Table S5).

Preparation of metal buffers:

Briefly, 1 mM concentration of appropriate Zn²⁺ chelator (EDTA, HEDTA or EGTA) was used with various concentrations of ZnSO₄ (0 - 0.9 mM) in 50 mM HEPES, 100 mM NaCl, 60 uM TCEP at pH 7.4 to maintain the free Zn²⁺ concentration at a constant nano- (EGTA) or subnanoand pico- (HEDTA) molar level (Table S4). Additionally, chelator-only (1mM EDTA) buffer without ZnSO₄ was used. Accurate free Zn²⁺ values were calculated based on protonation constants of HEDTA ($\beta_{HL} = 9.81$, $\beta_{H_2L} = 15.18$, $\beta_{H_3L} = 17.78$), EGTA ($\beta_{HL} = 9.4$, $\beta_{H_2L} = 18.32$, $\beta_{H_3L} = 20.98$, $\beta_{H_4L} = 22.98$) and their stability constants with Zn(II) ($\beta_{ZnL}^{HEDTA} = 14.6$, $\beta_{ZnL}^{EGTA} =$ 12.7, $\beta_{ZnHL}^{EGTA} = 17.66$) using the program HySS2009 (Table S4). (Martell and Smith, 1974; Alderighi et al, 1999)

Steady-state fluorescence anisotropy measurements

Steady-state fluorescence anisotropy measurements were obtained using a Jobin Yvon Fluoromax-3 spectrofluorimeter (Horiba) equipped with Peltier-thermostatted cell holder. The excitation and emission wavelengths were set to $\lambda_{ex} = 492$ nm and $\lambda_{em} = 520$ nm. 5-carboxyfluorescein labeled peptides at a final concentration of 50 nM were incubated for 48h at 20°C in a series of metal buffer prior to measurement at 20°C. Afterwards, the samples were incubated for further 4h at 30°C and then measured again at 30°C.

Supplemental References

- Alderighi L., Gans P., Ienco A., Peters D., Sabatini A. and Vacca A. (1999). Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coordination Chemistry Reviews, 184: 311-318.
- Cao, L., Alani, E., and Kleckner, N. (1990). A pathway for generation and processing of doublestrand breaks during meiotic recombination in S. cerevisiae. Cell *61*, 1089-1101 issn: 0092-8674.
- Hunter, N., and Kleckner, N. (2001). The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell *106*, 59-70.
- Martell E. and Smith R. M. (1974). Critical Stability Constants.
 - (Plenum Press, New York).
- Murakami, H., Borde, V., Nicolas, A., and Keeney, S. (2009). Gel electrophoresis assays for analyzing DNA double-strand breaks in Saccharomyces cerevisiae at various spatial resolutions. Methods in molecular biology *557*, 117-142.