SUPPLEMENTAL MATERIALS

Suppl. Figure 1. Respiratory activity of nonsynaptic mitochondria isolated from 10-month old WT (thin traces) and YAC128 (thick traces) mice. In A and B, representative traces for mitochondrial O₂ consumption. Where indicated, mitochondria (Mtc), 200 μ M ADP, and 60 μ M 2,4-dinitophenol (2,4-DNP) were added. In A, incubation medium was supplemented with 3 mM pyruvate (pyr) and 1 mM malate (mal). In B, incubation medium contained 3 mM succinate (succ) and 3 mM glutamate (glut). In C and D, statistical analysis of respiratory rates. Data are mean±SEM *p<0.05 comparing V₄ respiratory rates of mitochondria from WT and YAC128 mice, N=7.

Suppl. Figure 2. Respiratory activity of synaptic mitochondria isolated from 10-month old WT (thin traces) and YAC128 (thick traces) mice. In A and B, representative traces for mitochondrial O₂ consumption. Where indicated, mitochondria (Mtc), 200 μ M ADP, and 60 μ M 2,4-dinitophenol (2,4-DNP) were added. In A, incubation medium was supplemented with 3 mM pyruvate (pyr) and 1 mM malate (mal). In B, incubation medium contained 3 mM succinate (succ) and 3 mM glutamate (glut). In C and D, statistical analysis of respiratory rates. Data are mean±SEM. **p*<0.05 comparing V₄ respiratory rates of mitochondria from WT and YAC128 mice, N=7.

Suppl. Figure 3. KCN completely inhibits respiration of isolated brain mitochondria. In A and B, representative traces for mitochondrial O_2 consumption by nonsynaptic mitochondria from WT and YAC128 mice. In C and D, representative traces for mitochondrial O_2 consumption by synaptic mitochondria from WT and YAC128 mice. Where indicated, mitochondria (Mtc), 200µM ADP, 60µM 2,4-dinitophenol (2,4-DNP), and 5 mM KCN were added. In A and C, incubation medium was supplemented with 3 mM pyruvate (pyr) and 1 mM malate (mal). In B and D, incubation medium was supplemented with 3 mM succinate (succ) and 3 mM glutamate (glut).

Suppl. Figure 4. Respiratory activity of unpurified brain mitochondria isolated from 2month old WT (thin traces) and YAC128 (thick traces) mice. In A and B, representative traces for mitochondrial O₂ consumption. Where indicated, mitochondria (Mtc), 200 μ M ADP, 1 μ M oligomycin (to inhibit ATP synthase) and 60 μ M 2,4-dinitophenol (2,4-DNP) were added. In A, incubation medium was supplemented with 3 mM pyruvate (pyr) and 1 mM malate (mal). In B, incubation medium contained 3 mM succinate (succ) and 3 mM glutamate (glut). In C and D, statistical analysis of respiratory rates. Data are mean±SEM, N=7. E, Western blot, showing the presence of mHtt in unpurified brain mitochondria from YAC128 mice. VDAC was used as a loading control.

Suppl. Figure 5. Respiratory activity of liver mitochondria isolated from 2-month old WT (thin traces) and YAC128 (thick traces) mice. In A and B, representative traces for mitochondrial O_2 consumption. Where indicated, mitochondria (Mtc), 200µM ADP, and 60µM 2,4-dinitophenol (2,4-DNP) were added. In A, incubation medium was supplemented with 3 mM glutamate (glut) and 1 mM malate (mal). In B, incubation medium was with 3 mM succinate (succ) and 3 mM glutamate (glut). In C and D, statistical analysis of respiratory rates. Data are mean±SEM, N=6. E, Western blot, showing the presence of mHtt in liver mitochondria from YAC128 mice. VDAC was used as a loading control.

Suppl. Figure 6. Respiratory activity of heart mitochondria isolated from 2-month old WT (thin traces) and YAC128 (thick traces) mice. In A and B, representative traces for mitochondrial O_2 consumption. Where indicated, mitochondria (Mtc), 200µM ADP, 1µM oligomycin (to inhibit ATP synthase) and 60µM 2,4-dinitophenol (2,4-DNP) were added. In A, incubation medium was supplemented with 3 mM pyruvate (pyr) and 1 mM malate (mal). In B, incubation medium was with 3 mM succinate (succ) and 3 mM glutamate (glut). In C and D, statistical analysis of respiratory rates. Data are mean±SEM, N=6. E, Western blot, showing the presence of mHtt in heart mitochondria from YAC128 mice. VDAC was used as a loading control.

Suppl. Figure 7. The effect of bovine serum albumin (BSA) on mitochondrial membrane potential in nonsynaptic (A, B) and synaptic (C, D) mitochondria isolated from 2-month old WT (thin traces) and YAC128 (thick traces) mice. Representative traces for TPP⁺ accumulation indicating changes in mitochondrial membrane potential ($\Delta \psi$) in response to 0.1% BSA (free from fatty acids) and 60 μ M 2,4-dinitrophenol. In A and C, incubation medium was supplemented with 3 mM pyruvate (pyr) and 1 mM malate (mal). In B and D, incubation medium contained 3 mM succinate (succ) and 3 mM glutamate (glut).

				Respiration			
	Nonsynaptic Mtc			Sy	Synaptic Mtc		
		v 1	F	Pyruvate + Malate			
Effect size	10%	20%	30%	10%	20%	30%	
V_3	29.7	59.4	89.1	30.8	61.6	92.4	
SD	22.6	22.6	22.6	18.6	18.6	18.6	
N=	10	4	3	7	3	3	
V _{DNP}	21.8	43.6	65.4	20.6	41.2	61.8	
SD	14.4	14.4	14.4	13.5	13.5	13.5	
N=	8	4	3	8	4	3	
	Nonsynaptic Mtc				Synaptic Mtc		
			Suc	cinate + Glutamate			
Effect size	10%	20%	30%	10%	20%	30%	
V_3	31.8	63.6	95.4	40.7	81.4	122.1	
SD	23.5	23.5	23.5	22.8	22.8	22.8	
N=	10	4	3	7	3	3	
V _{DNP}	49.1	98.2	147.3	70.9	141.8	212.7	
SD	25.1	25.1	25.1	43.9	43.9	43.9	
N=	6	3	3	8	3	3	
			Mem	ibrane potential ($\Delta \psi$)			
	Nonsynaptic Mtc			Sy	Synaptic Mtc		
			F	Pyruvate + Malate			
Effect size	10%	20%	30%	10%	20%	30%	
$\Delta \psi$	15.2	30.4	45.6	14.6	29.2	43.8	
SD	6.8	6.8	6.8	7.9	7.9	7.9	
N=	6	3	3	6	3	3	
Nonsynaptic Mtc				Syr	Synaptic Mtc		
Effect size	10%	20%	30%	10%	20%	30%	
Λω	16.6	33.2	49.8	15.7	31.4	47.1	
SD	8.0	8.0	8.0	9.2	9.2	9.2	
N=	6	3	3	7	3	3	

Supplemental Table 1. Calculation of a sample size using Power Analysis method.

Power analysis was performed using G*Force software version 3.1.9.2 (by Franz Faul, Universitat Kiel, Germany) to establish the sample size necessary to detect a 10 and 20% difference between mitochondria from WT and YAC128 mice. Based on this power analysis,

the number of experiments that gives an 80% likelihood (the accepted level in statistical analysis) of detecting 10% difference between two means at the significance level of α =0.05 is within the range of 6 to 10 experiments. The number of experiments suitable for statistical analysis was assumed to be 3 or higher. V₃, respiratory rate in the presence of 200µM ADP; V_{DNP}, respiratory rate in the presence of 60µM 2,4-DNP; $\Delta \psi$, mitochondrial membrane potential; SD, standard deviation. Where indicated, the incubation medium was supplemented either with 3 mM pyruvate plus 1 mM malate or with 3 mM succinate plus 3 mM glutamate.