
Supplemental material:

Transition to chaos in random networks with

cell-type-specific connectivity

Johnatan Aljadeff, Merav Stern, Tatyana Sharpee

S1 Largest Lyapunov exponent

We used the standard method [1] to compute the largest Lyapunov exponent for the
system parameterized as follows: D = 2, α1 = α2 =

1

2
and

g =

(

κ/2 1/2
2 κ/2

)

. (S1)

When κ is varied between 0.3 and 3, Λ1 varies between 0.71 and 1.27. For this
parametrization, the average synaptic gain ḡ = (

∑D
c,d=1

αcαdg
2

cd)
1

2 is greater than 1
for all values of κ in that range (see Fig. S1). Since N is finite the transition does not
occur exactly at Λ1 = 1. It is however in excellent agreement with the Lyapunov expo-
nent for the single cell-type (D = 1) system (when N is the same for the two networks
and g is matched to

√
Λ1).
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Figure S1: The maximal Lyapunov exponent for 25 realizations in each value of Λ1 for
a family of D = 2 networks (parameters in text) compared with a network with a single
cell-type (D = 1). Inset: the value of the average synaptic gain ḡ is always greater than
1 for this parametrization.

S2 Universality and sparsity

In the main text we have discussed connectivity matrices with elements drawn from
Gaussian distributions. However, Girko’s circular law is universal, meaning that the
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Figure S2: Universality and sparse connectivity. (a) Our results extend to sparse con-
nectivity matrices, an example matrix with non-Gaussian element distributions. The
formula for the radius (blue circle) is in agreement with the numerical results. Insets
shows average synaptic strengths, G (top) and the sparsity levels (bottom). (b) In
each block the elements of J were drawn from a centered β distribution with different
parameters leading to skewed and bimodal distributions.

spectral density of connectivity matrices describing single cell-type networks depends
only on the second moment of the matrix entry distribution [2] (as long as the mean re-
mains zero). This suggests that our results for matrices with block structured variances,
extend to non-Gaussian distributions, provided that 〈Jij〉 = 0 and N〈J2

ij〉 = g2cidj < ∞.

Using numerical simulations, we have verified that the formula for the spectral radius
(Eq. (8) in the main text) holds for a number of non-Gaussian matrix element distri-
butions, including networks where connection strengths were taken from sparse and β
distributions (Fig. S2). In the sparse example, scd is the fraction of nonzero elements,
randomly drawn from a Gaussian distribution with variance g2cd/N . The block-wise
variance is therefore scdg

2

cd/N , and eigenvalues are bounded by a circle with radius
calculated using Mcd = αdscdg

2

cd.

S3 Effective and average synaptic gain

We now demonstrate that the network with cell-type dependent connectivity, and specif-
ically our simplified model of adult neurogenesis, can have an increased computational
capacity when compared to a network with a single cell type. In the main text we
show that the effective gain,

√
Λ1, serves as a good coordinate to describe the network’s

capacity to perform computational tasks. We have also shown that
√
Λ1 is in general

different from the average synaptic gain in the network, ḡ. The average gain is the gain
one would get by starting with a network with cell-type dependent connectivity and
randomly permuting all the entries of the connectivity matrix.

A simple calculation shows that for the parametrization (α1, γ, ǫ), for any α1 ∈ (0, 1)
and for any γ > (1− ǫ) > 0 the effective gain is larger than the average gain. We plot
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Figure S3: Ratio of effective and average synaptic gain in a simplified model of adult
neurogenesis. In the entire γ − α1 plane

√
Λ1/ḡ > 1. This ratio is equal to 1 by

definition for α1 = 0 and α1 = 1 (networks with one group of neurons). In black we
plot the contour lines of the ratio and in white we plot α⋆(γ), the value of α1 such that
the ratio is maximal for a given γ.

the ratio
√
Λ1/ḡ for fixed ǫ = 0.2 and α1, γ in the same range used in the main text

(α1 is extended to 0).
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