Supporting Information

Direct Generation of Triketide Stereopolyads *via* Merged Redox-Construction Events: Total Synthesis of (+)-Zincophorin Methyl Ester

Zachary A. Kasun, Xin Gao, Radoslaw M. Lipinski and Michael J. Krische

University of Texas at Austin, Department of Chemistry and Biochemistry Austin, TX 78712

mkrische@mail.utexas.edu

Table of Contents	pg
1. Summaries of Previous Syntheses	S1
2. General Information	S12
3. Preparation of Starting Materials and Reagents	S13
4. Experimental Procedure and Characterization of Intermediates	S16

1. Summaries of Previous Syntheses

Zincophorin Methyl Ester (Danishefsky, J. Am. Chem. Soc. 1987, 109, 1572; J. Am. Chem. Soc. 1988, 110, 4368.) Reagents

Key: (a) **S1**; (b) NaH, HMPA, then H₂O; (c) BOMCl, *i*-Pr₂EtN; (d) Ozonolysis; (e) **S2**, MgBr₂; (f) NaBH₄, CeCl₃; (g) 3,4-(OMe)₂PhCH₂Cl, *p*-TsOH; (h) BH₃-THF, then H₂O₂, NaOH; (i) (COCl)₂, DMSO, then Et₃N; (j) L-Selectride; (k) DDQ; (l) LiBH₄; (m) TBDPSCl; (n) Me₂C(OMe)₂, PPTS; (o) TBAF; (p) **S3**; (q) NaBH₄, CeCl₃; (r) Ac₂O, DMAP; (s) (*E*)-crotylsilane, BF₃-OEt₂; (t) OsO₄, NalO₄; (u) CrO₃; (v) H₂, Pd-C; (w) BzCl, pyridine; (x)*p*-TsOH

Fragment 2

Key: (a) LDA, then Mel; (b) LAH; (c) (COCI)₂, DMSO, then Et₃N; (d) Ph₃PC(Me)CO₂Et; (e) DIBAL-H; (f) **A1**, TiCl₄; (g) *p*-TsCl, pyridine, DMAP; (h) TBSOTf, Et₃N; (i) KSPh; (j) PhSeSePh, H₂O₂.

Zincophorin (Danishefsky, J. Am. Chem. Soc. 1987, 109, 1572; J. Am. Chem. Soc. 1988, 110, 4368.) (continued)

Fragment Union and End Game

Key: (a) *n*-BuLi, MgBr₂; (b) Na/Hg; (c) 1M HCI/MeOH/THF; (d) 2.0 M LiOH in MeOH/THF, then 1N HCI; (e) CH₂N₂

Zincophorin Methyl Ester (Cossy, Org. Lett. 2003, 5, 4037; J. Org. Chem. 2004, 69, 4626.)

Reagents

Fragment 1

Key: (a) Rh₂(R-MEPY)₄; (b) MeLi, then TBDPSCI; (c) MsCI, NEt₃, DMAP; (d) BH₃-THF, H₂O₂; (e) PCC, 4A MS; (f) (EtO)₂P(O)CH₂COOEt; (g) H₂, PtO₂; (h) DIBAL-H; (i) Cy₂BCI, Et₂NMe; (j) HF-Py; (k) Hg(TFA)₂, KBr; (l) Bu₃SnH; (m) TBDPSCI, IM; (n) LiBH₄, then NaIO₄; (o) NaCIO₂; (p) TMSCHN₂; (q) HF-Py

Fragment 2

Key: (a) DMP; (b) Pd(OAc)₂, PPh₃, ZnEt₂; (c) H₂, Pd/BaSO₄; (d) TBSOTf, 2,6-lutidine; (e) OsO₄, NMO; (f) NaIO₄; (g) Et₂CuLi; (h) DMP

Fragment 3

Key: (a) Pd(OAc)₂, PPh₃, ZnEt₂; (b) MOMCI; (c) BuLi, RBr, HMPA; (d) TBAF; (e) DMP, Py; (f) (Z)-propenyl MgBr, MgBr₂-OEt₂; (g) diketene, DMAP; (h) Al₂O₃; (i) DIBAL-H; (j) MsCl, NEt₃; (k) LAH; (l) TsOH; (m) TBSOTf; (n) Li, NH₃; (o) DMP, Py.

Zincophorin (Cossy, Org. Lett. 2003, 5, 4037; J. Org. Chem. 2004, 69, 4626.) (continued)

Fragment Union and End Game

Key: (a) TiCl₄; (b) NaBH₄; (c) HF-Py

Zincophorin (Miyashita, Angew. Chem. Int. Ed. 2004, 43, 4341.)

Reagents

Key: (a) (SiCIPh₂SiMe₂Ph, Et₃N; (b) Cp₂Zr(H)Cl, then Me₂Zn, 4Å sieves, BOMCl; (c) Pd(acac)₂, *t*-BuCH₂C(Me)₂NC; (d) *n*-BuLi. (Fukuda, K.; Miyashita, M.; Tanino, K. *Tetrahedron Lett.* **2010**, *51*, 4523.)

Fragment 1

Key: (a) (COCI)₂, DMSO, then Et₃N; (b) (*o*-Me-PhO)₂P(O)CH₂CO₂Et, NaH; (c) DIBAL-H; (d) MCPBA; (e) (*i*-PrO)₂P(O)CH₂CO₂Et, *t*-BuOK; (f) Me₂Zn-CuCN; (g) H₂, PtO₂; (h) Ti(O*i*-Pr)₄; (i) DIBAL-H; (j) **S1**, TiCl(O*i*-Pr)₄; (k) TIPSOTf, 2,6-lutidine; (l) Ca, NH₃; (m) Ti(O*i*-Pr)₄, D-(-)-DIPT, *t*-BuOOH, 4Å sieves; (n) Me₂CuLi; (o) TESOTf, 2,6-lutidine; (p) Ti(O*i*-Pr)₄, D-(-)-DET, *t*-BuOOH, 4Å sieves; (q) (EtO)₂P(O)CH₂CO₂Et, NaH; (r) TBAF; (s) Me₃Al-D₂O; (t) PPh₃, I₂, imidazole; (u) BuLi; (v) TBSCI, DMAP; (w) NaClO₂, NaH₂PO₄, 2-methyl-2-butene; (x) TMSCHN₂ (y) 9-BBN.

Zincophorin (Miyashita, Angew. Chem. Int. Ed. 2004, 43, 4341.) (continued)

Key: (a) (COCl)₂, DMSO, then Et₃N; (b) CBr₄, PPh₃, pyridine; (c) Me₂CuLi, then I₂; (d) **S2**, ZnBr₂, [PdCl₂(PPh₃)], DIBAL-H; (e) HF; (f) MCPBA; (g) Me₂CuLi; (h) TESOTf, 2,6-lutidine; (i) HF-pyridine; (j) DMP; (k) CrCl₂, CHI₃.

Fragment Union and End Game

Key: (a) aq. Cs₂CO₃, AsPh₃, [PdCl₂(dppf)]; (b) TEAF; (c) LiOH, H₂O/MeOH/THF.

Zincophorin (Leighton, J. Am. Chem. Soc. 2011, 133, 7308.)

Chiral Auxiliary Synthesis

Key: (a) NaH, BnBr; (b) Shi epoxidation, oxone, Na₂EDTA; (c) Propyne, BuLi, AlMe₃; (d) dicrotylsilane, NaH; (e)Rh(acac)(CO)₂, then H₂O₂, KF; (f) TBSOTf, 2,6-lutidine; (g) DIBAL-H; (h) CDI; (i) OsO₄, NMO, then NaIO₄; (j) K-trifluorocrotylborate, TBAI.

Key: (a) Rh(acac)(CO)₂, PPh₃, CO/H₂; (b) Ac₂O, Py, DMAP; (c) TiCl₄, SnCl₄, *i*Pr₂NEt; (d) DMAP, MeOH; (e) Pd/C; (f) DIAD, PPh₃; (g) (NH₄)₆Mo₇O₂₄⁻⁴H₂O, H₂O₂

Zincophorin (Leighton, J. Am. Chem. Soc. 2011, 133, 7308.) (continued)

Fragment 3

Key: (a) Sc(OTf)₃; (b) Hoveyda-Grubbs-II, then TsCl, Et_3N ; (c) Sc(OTf)₃; (d) KHMDS, PMBBr, then LiBEt₃H; (e) OsO₄, NalO₄, 2,6-lutidine.

Fragment Union and End Game

Key: (a) KHMDS; (b) DDQ, pH = 7 buffer; (c) NaOMe; (d) HF, H_2O .

Zincophorin (Guindon, Tetrahedron 2015, 71, 709.)

Reagents and Chiral Auxiliary Synthesis

Fragment 1

Key: (a) BF₃OEt₂, **S1**; (b)Bu₂BOTf, DIEA, then Bu₃SnH, BEt₃, air; (c) TESOTf, 2,6- lutidine; (d) DIBAL-H; (e) (COCl)₂, DMSO, then Et₃N; (f) Ph₃PC(H)=CO₂Me; (g) H₂, Pd–C; (h) DMP, NaHCO₃; (i) BiBr₃, **S1**; (j) Ph₃SnH, BEt₃, air; (k) BnO=CNHCl₃, TfOH; (l) TBAF; (m) TiCl₄, **S1**; (n) TBDPSCI, Et₃N, DMAP; (o) BF₃OEt₂, **S2**; (p)MePPh₃Br, *n*-BuLi; (q) 9-BBN, then NaOH/H₂O₂; (r) PivCl, pyridine; (s) NaClO₂, NaH₂PO₄, 2-methyl-2-butene; (t) TMSCHN₂; (u) TBSOTf, 2,6-lutidine; (v) K₂CO₃; (w) DIAD, PPh₃, **S3**; (x) (NH₄)₆Mo₇O₂₄-4H₂O, H₂O₂.

Zincophorin (Guindon, Tetrahedron 2015, 71, 709.) (continued)

Fragment 2

Key: (a) (COCl)₂, DMSO, then Et₃N; (b) Ph₃P=C(Me)CO₂Et; (c) DIBAL-H; (d) MgCl₂, Et₃N, TMSCl, A1; (e) TFA; (f) PMPOC(NH)CCl₃ (g) LiBH₄; (h) DMP, NaHCO₃.

Fragment Union and End Game

Key: (a) KHMDS; (b) DDQ, pH 7 buffer; (c) TBAF.

Synthesis	Construction Steps	Strategic Redox	Non-strategic Redox	Protecting Group Manipulations	Functional Group Interconversions	Total Steps (LLS)
Danishefsky (19	87) 12	4	15	14	16	61 (35)
Cossy (2003)	13	3	18	10	12	56 (30)
Miyashita (2004	4) 21	1	13	12	5	53 (38)
Leighton (2011) 10	1	3	8	11	33 (21)
Guindon (2015	5) 12	2	21	18	17	70 (49)
Krische (2015) 10	0	3	3	9	25 (13)

2. General Information

All reactions were carried out in oven- or flame-dried flasks, under an inert atmosphere of argon or nitrogen if anhydrous conditions were required. Anhydrous solvents were transferred by oven-dried syringes and needles. All reactions were carried out at room temperature unless otherwise stated. Reagents obtained from Acros, Sigma-Aldrich, Alfa Aesar, Fisher Scientific, Takasago, Oakwood, or Strem Fine Chemicals suppliers were used directly as supplied or following purification according to procedures described by Amarego and Chai.¹ Tetrahydrofuran, dichloromethane, diethyl ether, and toluene were distilled prior to use. Thin laver chromatography (TLC) was performed on Dynamic Adsorbents F₂₅₄ 0.25 mm precoated silica gel plates. Compounds were visualised under UV light and by staining with potassium permanganate, phosphomolybdic acid or para-anisaldehyde solution. Flash column chromatography was performed using silica gel (40-63 µm, Silicycle) and using head pressure by means of a positive pressure from an air line, according to Still.² Infra-red spectra were recorded on a Thermo Nicolet 380 spectrometer. Melting points were obtained using a Thomas-Hoover apparatus and are uncorrected. High-resolution mass spectra were recorded on an Agilent Technologies 6530 Accurate Mass Q-Tof LC/MS instrument for electrospray ionisation (ESI) or a Micromass Autospec Ultima instrument for chemical ionization (CI) and are reported as a ratio of mass to charge (m/z) in Daltons. Specific optical rotations were recorded on an Atago AP-300 automatic polarimeter at the sodium line (589.3 nm) in CHCl₃ or CH₂Cl₂. Solution concentrations are given in the units of 10⁻² g mL⁻¹. ¹H NMR spectra were recorded on an Agilent MR (400 MHz), Varian DirectDrive (400, 600 MHz), or Varian INOVA (500 MHz) spectrometer in CDCl₃ or C₆D₆ at ambient temperature. Chemical shifts are quoted to two decimal places in parts per million (ppm) with splittings recorded as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quin) and multiplet (m). Coupling constants, J, are quoted to one decimal place in Hz. ¹³C NMR spectra were recorded on an Agilent MR (100 MHz), Varian DirectDrive (100, 150 MHz), or Varian INOVA (125 MHz) spectrometer in CDCl₃ or C₆D₆ with broadband decoupling. All NMR chemical shifts were referenced to residual solvent peaks (CDCl₃, $\delta_{\rm H}$ 7.26 ppm, $\delta_{\rm C}$ 77.0 ppm; $C_6D_6 \delta_H$ 7.16 ppm, δ_C 128.06 ppm).

3. Preparation of Starting Materials and Reagents

(rac)-But-3-en-2-yl acetate (S1)

To a stirred solution of (*rac*)-3-butene-2-ol (13.0 mL, 150.0 mmol), 4-dimethylaminopyridine (1.00 g, 8.1 mmol, 5.4 mol%), Et₃N (45 ml, 323.0 mmol, 215 mol%), and CH₂Cl₂ (150 mL) in a round bottom flask was added Ac₂O dropwise (23.0 mL, 242.3 mmol, 160 mol%) at 0 °C. The reaction was allowed to warm to room temperature over 4 h. The reaction mixture was transferred into a separatory funnel with 70 mL 2M HCl. The layers were separated. The organic layer was washed once with 50 mL saturated NaHCO₃ and 50 mL of a 1:1 mixture of saturated brine and saturated CuSO₄. The organic layer was dried with Na₂SO₄, filtered, and the volatiles were removed *via* rotary evaporation (250 mbar, 35 °C). The residue was subjected to distillation over K₂CO₃ (bp = 120-125 °C) to afford but-3-en-2-yl acetate (**S1**) (14.21 g, 124.5 mmol, 83 % yield) as a colorless oil. The spectral data were identical to those reported.³

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 5.84 (ddd, J = 17.2, 10.8, 6.0 Hz, 1H), 5.34 (quin.t, J = 6.4, 1.2, 1H), 5.24 (dt, J = 17.2, 1.2 Hz, 1H), 5.13 (dt, J = 10.8, 1.2 Hz, 1H), 2.05 (s, 3H), 1.31 (d, J = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 170.2, 137.7 115.6, 70.9, 21.2, 19.8.

4-Iodo-1-butene (S2)

To a stirred solution of NaI (9.97 g, 66.52 mmol, 200 mol%) in acetone (27 mL) in a round bottomed flask was added 4-bromo-1-butene (4.49 g, 33.26 mmol, 100 mol%). The flask was equipped with a reflux condenser, and the reaction was heated at reflux for 45 min. The reaction was cooled to room temperature, and water (10 mL) was added. The reaction mixture was extracted with Et₂O (3 × 10 mL) and the combined extracts were dried with Na₂SO₄, and filtered. The volatiles were removed *via* rotary evaporation (400 mbar, water bath temperature 35 °C), and the remaining residue was distilled over K₂CO₃ and Cu wire (bp = 128-130 °C) to yield 4-iodo-1-butene (**S2**) (3.60g, 19.78 mmol), 59% yield). The spectral data were consistent with those reported. ⁴

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 5.81-5.70 (m, 1H), 5.14-5.09 (m, 2H), 3.18 (t, J = 7.2 Hz, 2H), 2.62 (qt, J = 7.2, 1.2 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 136.8, 117.0, 37.6, 4.7.

(R)-4-Isopropylthiazolidine-2-thione (S3)

To a solution of D-valine (4.00 g, 34.1 mmol) in THF (100 mL) at 0 °C was added NaBH₄ (3.10 g, 81.8 mmol, 240 mol%) in one portion. The resulting mixture was stirred for 5 min before a solution of iodine (8.65 g, 34.1 mmol, 100 mol%) in THF (10.0 mL) was added dropwise over 20 min (vigorous gas evolution). The reaction mixture was warmed to room temperature and stirred until no more effervescence was observed and then heated to reflux. After 24 hrs the reaction was cooled to room temperature and MeOH was added dropwise until the mixture became clear. The volatiles were removed *via* rotary evaporation and the resultant white paste was dissolved in an aqueous solution of KOH (20% w/v, 25 mL). The solution was stirred for 4 hrs before being extracted with CH_2Cl_2 (3 × 50 mL). The combined organic extracts were dried over Na₂SO₄, filtered and the volatiles were removed *via* rotary evaporation to afford crude D-valinol (3.0 g) as a white semisolid, which was used in the next step without further purification.

To a solution of crude D-valinol (1.10 g, 10.6 mmol) in EtOH (3.0 mL) was added carbon disulfide (1.66 mL, 27.6 mmol, 260 mol%). A solution of KOH (1.61 g, 28.7 mmol, 270 mol%) in a 1:1 mixture of EtOH (6.0 mL) and H₂O (6.0 mL) was added slowly over 20 min using a pressure-equalising addition funnel. The addition funnel was replaced with a reflux condenser and the resulting mixture was heated at reflux for 72 hrs, at which the reaction was cooled to room temperature and the volatiles were removed *via* rotary evaporation. The resulting suspension was acidified with an aqueous solution of HCl (0.5 M, 60 mL) and extracted with CH₂Cl₂ (3 × 20 mL). The combined organic extracts were dried over MgSO₄, filtered and the volatiles were removed *via* rotary evaporation to give (*R*)-4-isopropylthiazolidine-2-thione (**S3**) (1.47 g, 9.12 mmol, 86%) as a dark yellow solid, which was used in the next step without further purification. The spectral data were identical to those reported⁵

<u>TLC (SiO₂):</u> $R_f = 0.15$ (hexanes/CH₂Cl₂ 50:50)

 $[\alpha]_{D}^{20}$: +31.2 (*c* 1.0, CHCl₃).⁵

<u>mp</u>64–66 °C, (lit.5 68–69 °C)

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 8.74 (s, 1H), 4.02 (td, J = 8.2, 6.2 Hz, 1H), 3.43 (dd, J = 11.2, 8.4 Hz, 1H), 3.22 (dd, J = 11.2, 8.0 Hz, 1H), 1.90 (dq, J = 13.4, 6.7 Hz, 1H), 0.92 (d, J = 6.8 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): δ 200.2, 69.7, 35.3, 31.5, 18.3, 17.7

(R)-1-(4-Isopropyl-2-thioxothiazolidin-3-yl)propan-1-one (S4)

To a stirred solution of (R)-4-isopropylthiazolidine-2-thione (S3) (730 mg, 4.53 mmol) in THF (3.0 mL) was added *n*-BuLi (2.5 M in hexanes, 2.0 mL, 4.98 mmol, 110 mol%) dropwise at -78 °C and the resultant solution was stirred for 10 min. Freshly distilled propionyl chloride (0.515 mL, 5.89 mmol, 130 mol%) was added dropwise and the resulting mixture was stirred for 15 min before being warmed to room temperature and stirred for a total period of 2 h. The reaction was then cooled to 0 °C and quenched with a saturated aqueous solution of NH₄Cl (5.0 mL) and H₂O (5.0 mL). The mixture was extracted with CH_2Cl_2 (3 × 15 mL) and the combined organics were dried over MgSO₄, filtered and the volatiles were removed via rotary evaporation. The residue was subjected to flash column chromatography $(SiO_2,$ hexanes/CH₂Cl₂ 80:20) to afford (R)-1-(4-isopropyl-2thioxothiazolidin-3-yl)propan-1-one (S4) (748 mg, 3.44 mmol, 76%) as a yellow oil. The spectral data were identical to those reported.⁵

<u>**TLC (SiO₂):**</u> $R_f = 0.75$ (hexanes/CH₂Cl₂ 50:50)

 $[\alpha]_{p}^{20}$: -417.1 (*c* 1.0, CHCl₃).⁵

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 5.20–5.13 (m, 1H), 3.50 (dd, J = 11.5, 8.0 Hz, 1H), 3.36 (qd, J = 18.0, 7.3 Hz, 1H), 3.15 (qd, J = 18.1, 7.1 Hz, 1H), 3.01 (dd, J = 11.5, 1.0 Hz, 1H), 2.36 (qd, J = 13.4, 6.8 Hz, 1H), 1.16 (t, J = 7.0 Hz, 3H), 1.05 (d, J = 7.0 Hz, 3H), 0.97 (d, J = 7.0 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): δ 202.6, 174, 7, 71.5, 32.0, 30.7, 30.3, 19.0, 17.6, 8.9

4. Experimental Procedures and Characterization of Materials

(R)-tert-Butyl-2-(((trifluoromethyl)sulfonyl)oxy)propanoate (S5)

$$Me \xrightarrow{I}_{\tilde{O}H} OtBu \xrightarrow{Tf_2O} Me \xrightarrow{I}_{\tilde{O}} OtBu \xrightarrow{I}_{\tilde{O}} OtBu$$

To a stirred solution of (*R*)-*t*-butyl 2-hydroxypropanoate (**3**)⁶ (4.0 g, 27.4 mmol) and 2,6-lutidine (4.80 mL, 41.1 mmol, 150 mol%) in CH₂Cl₂ (110 mL) was added trifluoromethanesulfonic anhydride (6.44 mL, 38.3 mmol, 140 mol%) dropwise using a syringe pump (4 mL/h) at 0 °C. The resulting solution was stirred for 1 hr before being slowly diluted with petroleum ether (550 mL, 20 mL/mmol) and washed with a 3:1 mixture of brine and 1 M HCl (3×250 mL). The organic layer was dried over MgSO₄ and filtered. The volatiles were removed *via* rotary evaporation (300 mbar, water bath temperature 25 °C) and the residue was subjected to flash column chromatography (SiO₂, petroleum ether/CH₂Cl₂ 50:50) to afford triflate **S5** (6.71 g, 24.1 mmol, 88%) as a colorless oil. The spectral data were identical to those reported.⁷

<u>TLC (SiO₂)</u>: $R_f = 0.70$ (petroleum ether/CH₂Cl₂ 70:30).

 $[\alpha]_{p}^{20}$: -42.2 (*c* 2.50, CHCl₃).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 5.10 (q, J = 6.9 Hz, 1H), 1.66 (d, J = 6.7 Hz, 3H), 1.51 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 166.4, 118.5 (q, *J* = 319.3 Hz), 84.3, 80.6, 27.8, 18.0.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -75.3.

(R)-tert-Butyl-2-methylpentanoate (S6)

To a solution of anhydrous ZnCl₂ (308 mg, 2.26 mmol, 10 mol%) in THF (75 mL) was added triflate **S5** (6.30 g, 22.6 mmol) and the resultant solution was cooled to -10 °C. *n*-Propylmagnesium chloride (2.0 M in Et₂O, 14.1 mL, 28.2 mmol, 125 mol%) was added dropwise over 15 min and the reaction mixture was stirred -10 °C for 5 hrs before being diluted with pentane (75 mL) and quenched with a saturated aqueous solution of NH₄Cl (50 mL). The layers were separated and the aqueous layer was extracted with pentane (3 × 50 mL). The combined organic extracts were dried over MgSO₄ and filtered. The volatiles were removed *via* rotary evaporation (250 mbar, water bath temperature 35 °C) and the residue was subjected to flash column chromatography (SiO₂, pentane/Et₂O 95:5) to afford ester **S6** (3.34 g, 19.4 mmol, 86%) as a colorless oil.

<u>TLC (SiO₂):</u> $R_f = 0.75$ (hexanes/Et₂O 98:2).

 $[\alpha]_{\mathbf{p}}^{20}$: -12.5 (*c* 0.80, CHCl₃).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 2.37–2.25 (m, 1H), 1.65–1.56 (m, 1H), 1.43 (s, 9H), 1.38–1.23 (m, 3H), 1.08 (d, J = 7.0 Hz, 3H), 0.90 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.4, 79.7, 40.2, 36.1, 28.1, 20.4, 17.1, 14.0.

<u>FTIR</u> (neat): 2972, 1757, 1416, 1371, 1244, 1202 cm⁻¹.

HRMS: (ESI, *m/z*) for C₁₀H₂₀NaO₂ calculated 195.1356, found 195.1354.

(R)-2-Methylpentan-1-ol (4)

To a stirred solution of ester **S6** (7.00 g, 40.7 mmol) in Et₂O (200 mL) at 0 °C was added LiAlH₄ (1.73 g, 45.6 mmol, 120 mol%) portionwise over 10 min. The resulting mixture was allowed to warm to room temperature and stirred for 2 h. The reaction was carefully quenched by the sequential addition of H₂O (7.0 mL), an aqueous solution of NaOH (15% w/v, 7.0 mL) and H₂O (21 mL). The mixture was diluted with Et₂O and stirred for 30 min. The layers were portioned, and the aqueous layer was extracted with Et₂O (3 × 15 mL). The combined organics were dried over Na₂SO₄ and filtered through a plug of celite before being concentrated *via* rotary evaporation (400 mbar, water bath temperature 35 °C) to give alcohol **4** (4.00 g, 39.1 mmol, 96%) as a colorless oil, which was used in the next step without further purification. The spectral data were identical to those reported.⁸

<u>TLC (SiO₂)</u>: $R_f = 0.35$ (hexanes/Et₂O 70:30).

 $[\alpha]_{\rm p}^{20}$: +11.0 (*c* 1.0, CHCl₃).⁹

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 3.50 (dd, J = 10.6, 5.9 Hz, 1H), 3.40 (dd, J = 10.6, 6.7 Hz, 1H), 1.68–1.55 (m, 1H), 1.41–1.31 (m, 3H), 1.16–1.01 (m, 1H), 0.94–0.86 (m, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 68.4, 35.5, 35.4, 20.0, 16.5, 14.3.

(*R*,*E*)-Ethyl-2,4-dimethylhept-2-enoate (S7)

To a solution of oxalyl chloride (3.05 mL, 36.0 mmol, 200 mol%) in CH₂Cl₂ (120 mL) at -78 °C was added DMSO (5.10 mL, 72.0 mmol, 400 mol%) dropwise over 5 min. The resulting solution was stirred for 30 min before a solution of alcohol **4** (1.84 g, 18.0 mmol) in CH₂Cl₂ (10 mL) was added dropwise over 10 min. The reaction mixture was stirred for 45 min at -78 °C before triethylamine (10.0 mL, 72.0 mmol, 400 mol%) was added slowly over 10 min. The resultant white suspension was stirred for 30 min and slowly warmed to room temperature. A solution of (carbethoxymethylene)triphenylphosphorane (7.83 g, 21.6 mmol, 120 mmol%) in CH₂Cl₂ (20 mL) was slowly added and the resulting mixture was heated at reflux for 48 h. The mixture was cooled to room temperature and the volatiles removed *via* rotary evaporation. The residue was triturated with hexanes (100 mL) and filtered through a plug of celite. The volatiles of the filtrate were removed *via* rotary evaporation, and the residue was subjected to flash column chromatography (SiO₂, hexanes/CH₂Cl₂ 50:50) to afford ester **S7** (2.38 g, 13.0 mmol, 72%) as a colorless oil. The spectral data were identical to those reported.⁸

<u>TLC (SiO₂)</u>: $R_f = 0.75$ (hexanes/CH₂Cl₂ 50:50).

 $[\underline{\alpha}]_{\mathbf{n}}^{20}$: -4.3 (*c* 1.0, CHCl₃).¹⁰

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 6.52 (dd, J = 10.2 and 1.2 Hz, 1H), 4.17 (q, J = 7.2 Hz, 2H), 2.55–2.45 (m, 1H), 1.82 (d, J = 1.2 Hz, 3H), 1.36–1.20 (m, 7H), 0.98 (d, J = 6.7 Hz, 3H), 0.87 (t, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 168.5, 148.1, 126.2, 60.4, 39.1, 33.0, 20.6, 20.0, 14.3, 14.1, 12.5.

(*R*,*E*)-2,4-Dimethylhept-2-en-1-ol (5)

To a stirred solution of ester **S7** (1.80 g, 9.83 mmol) in CH₂Cl₂ (100 mL) was added diisobutylaluminium hydride (1.0 M solution in hexanes, 29.4 mL, 29.4 mmol, 300 mol%) dropwise at -78 °C. The resulting solution was stirred for 1 hr before being slowly quenched with MeOH (10 mL) and a saturated aqueous solution of Rochelle's salt (100 mL). The resultant mixture was warmed to room temperature and was stirred vigorously for 2 h. The layers were separated and the aqueous layer was extracted with Et₂O (3 × 50 mL). The combined organic extracts were washed with brine (50 mL), dried over MgSO₄ and filtered. The volatiles were removed *via* rotary evaporation, and the residue was subjected to flash column chromatography (SiO₂, hexanes/Et₂O 70:30) afforded alcohol **5** (1.23 g, 8.65 mmol, 88%) as a colorless oil. The spectral data were identical to those reported.⁸

<u>TLC (SiO₂)</u>: $R_f = 0.40$ (hexanes/Et₂O 70:30).

 $[\alpha]_{p}^{20}$: -14.4 (c 1.1, CHCl₃).¹¹

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 5.14 (dd, J = 9.6, 1.0 Hz, 1H), 3.95 (s, 2H), 2.43–2.28 (m, 1H), 1.63 (d, J = 1.2 Hz, 3H), 1.33–1.09 (m, 5H), 0.90 (d, J = 6.7 Hz, 3H), 0.88–0.80 (m, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 133.1, 132.9, 68.9, 39.8, 31.7, 20.9, 20.5, 14.2, 13.7.

<u>**GC**</u> Cyclosil-B: initial temperature 50 °C; final temperature 80 °C; rate = 1.5 °C/min; 5 min hold; flow rate = 2 mL/min; $T_{minor} = 21.25$ min, $T_{major} = 21.55$ min; ee = 92%.

S23

A resealable pressure tube equipped with a magnetic stir bar was charged with (*R*)-Ir-SEGPHOS (210 mg, 0.203 mmol, 5 mol%) and anhydrous K_3PO_4 (431 mg, 2.03 mmol, 50 mol%), then the tube was sealed with a rubber septum and purged with argon for 2 min. Alcohol **5** (577 mg, 4.06 mmol) and THF (2.03 mL) were added and the resulting suspension was sparged with argon for 2 min. But-3-en-2-yl acetate (**S1**) (926 mg, 8.12 mmol, 200 mol%) and H₂O (0.365 mL, 20.3 mmol, 500 mol%) were added and the rubber septum was quickly replaced with a screw cap. The reaction mixture stirred for 15 min at room temperature before being heated to 60 °C for 48 h. The mixture was then allowed to cool to room temperature and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, hexanes/Et₂O 90:10) afforded alcohol **6** (572 mg, 2.92 mmol, 72%) as a colorless oil in a 5.5:1 dr. The diastereomers were carried forward as a mixture. The major diastereomer is characterized below.

<u>TLC (SiO₂):</u> $R_f = 0.65$ (hexanes/Et₂O 70:30).

 $[\alpha]_{\mathbf{p}}^{20}$: -13.0 (*c* 1.0, CH₂Cl₂).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 5.73 (ddd, J = 17.2, 10.0, 8.4 Hz, 1H), 5.20–5.08 (m, 3H), 3.60 (d, J = 9.0 Hz, 1H), 2.47–2.34 (m, 1H), 2.34–2.22 (m, 1H), 1.79 (br. s., 1H), 1.60 (d, J = 1.2 Hz, 3H), 1.32–1.11 (m, 5H), 0.93 (d, J = 6.7 Hz, 3H), 0.87 (d, J = 7.0 Hz, 5H).

¹³C NMR (100 MHz, CDCl₃): δ 141.4, 136.0, 133.0, 116.3, 81.7, 42.1, 39.8, 31.8, 20.9, 20.6, 16.8, 14.1, 10.8.

<u>FTIR</u> (neat): 2957, 2927, 2871, 1691, 1638, 1455, 1377, 1005, 909 cm⁻¹.

<u>HRMS</u>: (ESI, m/z) for C₁₃H₂₄NaO calculated 219.1719, found 219.1721.

Me

(3E,5R,6R,7E,9R)-1-Iodo-5,7,9-trimethyldodeca-3,7-dien-6-ol (S8)

A flame-dried round bottom flask was charged with Hoveyda–Grubbs 2^{nd} Generation catalyst (89.3 mg, 0.143 mmol, 15 mol%) and purged with argon for 5 min. A solution of alkene **6** (187 mg, 0.950 mmol) in sparged CH₂Cl₂ (3.8 mL) was added slowly, followed by 4-iodo-1-butene (**S2**) (1.383g mL, 7.60 mmol, 800 mol%), and the resulting mixture was heated to 40 °C and stirred for 24 hrs. The reaction was allowed to cool to room temperature and the volatiles were removed *via* rotary evaporation. The residue was subjected to flash column chromatography (SiO₂, hexanes/Et₂O 90:10) to afford iodide **S8** (221mg, 0.675 mmol, 71%) as a colorless oil.

<u>TLC (SiO₂):</u> $R_f = 0.25$ (hexanes/Et₂O 70:30)

 $[\alpha]_{D}^{20}$: +1.5 (*c* 1.0, CHCl₃)

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 5.53-5.36 (m, 2H), 5.15 (d, J = 9.6 Hz, 1H), 3.60 (d, J = 9.2 Hz, 1H), 3.27-3.11 (m, 2H), 2.65-2.51 (m, 2H), 2.44-2.24 (m, 2H), 1.96 (s, 1H), 1.60 (d, J = 1.2 Hz, 3H), 1.30-1.14 (m, 4H), 0.94 (d, J = 6.8 Hz, 3H), 0.88-0.84 (m, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 136.3, 136.1, 132.9, 130.7, 81.8, 41.2, 39.8, 36.3, 31.8, 21.0, 20.7, 17.1, 14.2, 10.9, 6.8.

FTIR (neat): 3356, 2956, 2925, 1636, 1454, 1376, 1243, 1168, 1003, 970, 668 cm⁻¹.

<u>HRMS</u>: (CI+, m/z) for C₁₅H₂₈IO⁺ calculated 351.1179, found 351.1185.

Triethyl(((3*E*,5*R*,6*R*,7*E*,9*R*)-1-iodo-5,7,9-trimethyldodeca-3,7-dien-6-yl)oxy)silane (Fragment A)

To a stirred solution of iodide **S8** (134.0 mg, 0.383 mmol) in CH₂Cl₂ (3.8 mL) at 0 °C was added imidazole (104.2 mg, 1.530 mmol, 400 mol%), followed by the dropwise addition of chlorotriethylsilane (96 μ L, 0.574 mmol, 150 mol%). The resulting mixture was allowed to warm to room temperature and stirred for 2 hrs before being quenched with a saturated aqueous solution of NaHCO₃ (3 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 × 3 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄, and filtered. The volatiles were removed *via* rotary evaporation and the residue was subjected to flash column chromatography (SiO₂, hexanes/Et₂O 97:3) afforded ether (**Fragment A**) (174.6 mg, 0.376 mmol, 98%) as a colorless oil.

<u>TLC (SiO₂):</u> $R_f = 0.73$ (hexanes/Et₂O 95:5)

 $[\alpha]_{p}^{20}$: -14.3 (*c* 1.0, CHCl₃)

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 5.56 (ddt, J = 15.2, 7.2, 1.2, 1H), 5.38-5.28 (m, 1H), 5.00 (d, J = 9.2 Hz, 1H), 3.59 (d, J = 8.3 Hz, 1H), 3.18-3.07 (m, 2H), 2.64-2.46 (m, 2H), 2.40-2.32 (m, 1H), 2.27-2.19 (m, 1H), 1.54 (td, J = 8.4, 1.6 Hz, 3H), 1.28-1.16 (m, 4H), 0.94-0.84 (m, 15H), 0.81 (d, J = 6.8 Hz, 3H), 0.57-0.50 (m, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 137.0, 134.6, 134.3, 127.5, 83.5, 40.7, 39.9, 37.2, 31.7, 20.70, 20.68, 16.9, 14.2, 11.1, 6.9, 5.8, 4.9.

<u>FTIR</u> (neat): 2955, 2874, 1456, 1238, 1061, 1006, 867, 815, 740, 687 cm⁻¹.

<u>HRMS</u>: (ESI, m/z) for C₂₁H₄₁INaOSi⁺ calculated 487.1864, found 487.1866.

An oven-dried sealed tube under an atmosphere of argon was charged with 2-methyl-1,3propanediol (**1b**) (0.985 g, 10.93 mmol), (*S*)-Ir-SEGPHOS catalyst (283 mg, 0.273 mmol, 2.5 mol%), K₂CO₃ (3.021g, 21.86 mmol, 200 mol%), H₂O (0.78 mL, 43.72 mmol, 400 mol%) and THF (10.9 mL). Freshly distilled crotyl acetate (6.238 g, 54.65 mmol, 500 mol%) was added and the mixture was sparged with Ar for 2 min. The reaction was heated to 70 °C for 168 hr. The reaction mixture was cooled to room temperature and the volatiles were removed *via* rotary evaporation. The resulting residue was subjected to flash column chromatography (SiO₂; hexanes/EtOAc 80:20—70:30) to afford diol **2b** (1.104 g, 5.574 mmol, 51%) as a 6:1 mixture of diastereoisomers and as a colorless viscous oil which solidified on standing. The major diastereomer could be separated by flash column chromatography. The spectral data were identical to those reported.¹²

<u>TLC (SiO₂)</u>: $R_f = 0.31$ (hexanes/EtOAc 75:25).

 $[\underline{\alpha}]_{\mathbf{D}}^{\mathbf{20}}$: -19.0 (*c* 0.41, CH₂Cl₂).

¹<u>H NMR</u> (400 MHz, CDCl₃): $\delta 5.85-5.73$ (m, 2H), 5.15-5.09 (m, 4H), 3.65 (d, J = 9.6 Hz, 1H), 3.39-3.37 (m, 1H), 2.80 (s, 1H), 2.54 (d, J = 4.0 Hz, 1H), 2.46-2.40 (m, 1H), 2.31-2.25 (m, 1H), 1.89-1.86 (m, 1H), 1.03 (d, J = 7.2 Hz, 3H), 1.01 (d, J = 6.8 Hz, 1H), 0.94 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ142.2, 141.0, 116.5, 116.0, 79.3, 73.9, 42.3, 42.0, 34.8, 17.2, 16.5, 10.7.

(2*S*,3*R*,4*R*,5*R*,6*S*)-2-((*S*)-But-3-en-2-yl)-6-(iodomethyl)-3,5-dimethyltetrahydro-2Hpyran-4-ol (7)

A solution of diol **2b** (535 mg, 2.70 mmol) and NaHCO₃ (566.6 mg, 6.74 mmol, 250 mol%) in MeCN (54.0 mL) was cooled to -20 °C. To this solution was added iodine (2.054 g, 8.09 mmol, 300 mol%) in one portion. The reaction was stirred at -20 °C for 1 h. The reaction mixture was warmed to 0 °C and was allowed to stir at this temperature for 6 h. Saturated aqueous Na₂S₂O₃ was added and the reaction mixture was allowed to stir until the solution became colorless. The reaction mixture was transferred to a separatory funnel and the aqueous phase was extracted with EtOAc (3 × 30 mL). The combined organic extracts were dried over MgSO₄, filtered and the volatiles were removed *via* rotary evaporation. The residue was subjected to flash column chromatography (SiO₂, hexanes/EtOAc 10:1) to afford iodoether **7** (656.5 mg, 2.025 mmol, 75%) as a colorless oil in >20:1 dr. The spectral data was identical to those reported.¹²

<u>**TLC (SiO₂)</u>: R_f = 0.52 (hexanes/EtOAc 75:25).</u></u>**

 $[\alpha]_{\mathbf{B}}^{20}$: +37.2 (*c* 0.46, CHCl₃).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 5.87–5.78 (m, 1H), 5.02–4.97 (m, 2H), 3.54–3.50 (m, 1H), 3.40 (dd, J = 10.8, 4.8 Hz, 1H), 3.25 (dd, J = 10.0, 7.6 Hz, 1H), 3.08 (dd, J = 10.0, 6.0 Hz, 1H), 2.88 (dd, J = 10.0, 2.0 Hz, 1H), 2.44–2.37 (m, 1H), 2.19–2.13 (m, 1H), 1.56-1.49 (m, 2H), 1.16 (d, J = 6.8 Hz, 3H), 0.90 (d, J = 6.8 Hz, 3H), 0.80 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 139.2, 115.2, 85.1, 78.7, 76.4, 39.9, 38.2, 34.6, 18.8, 12.2, 6.2, 4.6.

(*S*,*E*)-4-((2*S*,3*R*,4*R*,5*R*,6*S*)-4-Hydroxy-6-(iodomethyl)-3,5-dimethyltetrahydro-2H-pyran-2-yl)pent-2-en-1-yl acetate (S9)

A flame-dried round bottom flask was charged with Stewart–Grubbs catalyst (94 mg, 0.164 mmol, 8.5 mol%) and purged with argon for 10 min. A solution of iodoether 7 (626 mg, 1.91 mmol) in CH₂Cl₂ that was sparged with Ar (8 mL, 0.25 M) was added slowly, followed by (*Z*)-but-2-ene-1,4-diyl diacetate (2.15 mL, 13.52 mmol, 700 mol%). The resulting mixture was heated to 40 °C and stirred for a total period of 24 h. The reaction was allowed to cool to room temperature and the volatiles were removed *via* rotary evaporation. The residue was subjected to flash column chromatography (SiO₂, hexanes/EtOAc 80:20) to afford acetate **S9** (620 mg, 1.57 mmol, 81%) as a colorless oil.

<u>**TLC (SiO₂):**</u> $R_f =$ (hexanes/EtOAc 95:5).

 $[\alpha]_{\mathbf{p}}^{20}$: +53.0 (*c* 1.0, CH₂Cl₂).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 5.75 (dd, J = 15.5, 9.2 Hz, 1H), 5.57–5.47 (m, 1H), 4.47 (d, J = 6.3 Hz, 2H), 3.48 (ddd, J = 7,9, 6.0, 1.8 Hz, 1H), 3.35 (dd, J = 10.6, 4.7 Hz, 1H), 3.21 (dd, J = 10.0, 8.0 Hz, 1H), 3.05 (dd, J = 10.2, 5.9 Hz, 1H), 2.84 (dd, J = 10.0, 1.8 Hz, 1H), 2.40 (m, 1H), 2.10 (m, 1H), 2.02 (s, 3H), 1.42 (m, 1H), 1.12 (d, J = 7.0 Hz, 3H), 0.85 (d, J = 6.7 Hz, 3H), 0.75 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 170.9, 136.2, 124.7, 84.9, 78.6, 76.1, 65.0, 38.2, 38.1, 34.4, 21.0, 18.8, 12.3, 6.1, 4.5.

<u>FTIR</u> (neat): 3500–3300, 2965, 1736, 1457, 1364, 1229, 1131, 1098, 1012, 977, 732 cm⁻¹.

HRMS: (ESI, *m/z*) for C₁₅H₂₅INaO₄ calculated 419.0690, found 419.0630.

(*S*,*E*)-4-((4*S*,5*R*,6*S*)-6-((*S*)-But-3-en-2-yl)-2,2,5-trimethyl-1,3-dioxan-4-yl)pent-2-en-1-ol (8)

To a stirred solution of acetate **S9** (400 mg, 1.01 mmol) in MeOH (10.1 mL) in a glass pressure vessel were added activated zinc dust (994 mg, 15.2 mmol, 1500 mol%) and NH₄Cl (540 mg, 10.1 mmol, 1000 mol%) in one portion. The resulting suspension was heated to 65 °C and stirred vigorously until the TLC analysis indicated complete cleavage of the iodoether and acetate ester (8–12 h). The mixture was allowed to cool to room temperature and filtered through a short plug of SiO₂. The volatiles were removed *via* rotary evaporation. The residue was dissolved in CH₂Cl₂ (10 mL), causing a white solid to precipitate, which was removed *via* gravity filtration. The filtrate was concentrated *via* rotary evaporation to afford crude triol.

To a solution of crude triol in CH₂Cl₂ (10 mL) was added 2,2-dimethoxypropane (1.24 mL, 10.1 mmol, 1000 mol%), followed by *p*-TsOH·H₂O (38 mg, 0.20 mmol, 20 mol%). The resulting mixture was stirred for 3 hrs before MeOH (1.0 mL) was added and the resulting mixture was stirred vigorously until the TLC analysis indicated complete cleavage of primary acetal (usually 5–10 min). A saturated aqueous solution of NaHCO₃ (5.0 mL) was added and the layers were separated. The aqueous layer was extracted with EtOAc (3×5.0 mL) and the combined organic extracts were washed with brine (10 mL), dried over MgSO₄, filtered and the volatiles were removed *via* rotary evaportation. The residude was subjected to flash column chromatography (SiO₂, hexanes/EtOAc 80:20) to afford alcohol **8** (195 mg, 0.727 mmol, 72% over 2 steps) as a colorless oil.

<u>TLC (SiO₂):</u> $R_f = 0.60$ (hexanes/EtOAc 70:30).

 $[\underline{\alpha}]_{\mathbf{n}}^{20}$: +36.6 (*c* 1.0, CH₂Cl₂).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 5.85 (ddd, J = 17.3, 10.5, 6.7 Hz, 1H), 5.74 (dd, J = 15.7, 7.8 Hz, 1H), 5.64 (m, 1H), 5.08–4.92 (m, 2H), 4.12 (d, J = 5.5 Hz, 2H), 3.37 (dd, J = 10.6, 4.3 Hz, 1H), 3.18 (dd, J = 7.0, 3.9 Hz, 1H), 2.37–2.18 (m, 2H), 1.82 (m, 1H), 1.30 (s, 3H), 1.27 (s, 3H), 1.07 (d, J = 6.7 Hz, 3H), 0.91 (d, J = 6.7 Hz, 3H), 0.87 (d, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 142.2, 134.5, 129.6, 113.4, 100.6, 78.3, 73.2, 63.8, 40.0, 37.0, 35.1, 25.0, 23.4, 17.3, 15.7, 12.2.

<u>FTIR</u> (neat): 3500–3300, 2971, 2933, 1457, 1377, 1223, 1181, 997, 976, 909, 888 cm⁻¹.

HRMS: (ESI, *m/z*) for C₁₆H₂₈NaO₃ calculated 291.1931, found 291.1932.

((2*R*,3*R*)-3-((*R*)-1-((4*R*,5*R*,6*S*)-6-((*S*)-But-3-en-2-yl)-2,2,5-trimethyl-1,3-dioxan-4-yl)ethyl)oxiran-2-yl)methanol (S10)

A round bottomed flask equipped with stir bar was charged with powdered 4Å molecular sieves (2.77g) and flamed dried three times under vacuum. The flask was back-filled with argon and CH₂Cl₂ (13 mL) was added followed by (-)-diisopropyl tartarate (396 mg, 1.69 mmol, 130 mol%). The mixture was cooled to -20 °C and Ti(OⁱPr)₄ (0.423 mL, 1.43 mmol, 110 mol%) was slowly added. The resulting mixture was stirred for 20 min. tert-Butyl hydrogen peroxide (5.5 M in decane, 0.473 mL, 2.60 mmol, 200 mol%) was added dropwise and the mixture was stirred at -20 °C for 30 min before a solution of alcohol 8 (350 mg, 1.30 mmol) in CH₂Cl₂ (13 mL) was added dropwise. After stirring for 2 hrs, additional tert-butyl hydrogen peroxide (5.5 M in decane, 0.473 mL, 2.60 mmol, 200 mol%) was added, and the mixture was stirred at -20 °C for a further 2 hrs. The reaction mixture was diluted with EtOAc (50 mL) and quenched with MeOH (10 mL) and H₂O (5.0 mL). The resulting mixture was filtered through a plug of celite and the filtrate was washed with H₂O $(2 \times 20 \text{ mL})$. The organic phase was dried over MgSO₄, filtered and the volatiles were removed via rotary evaporation. The residue was subjected to flash column chromatography (SiO₂, hexanes/actone 85:15) to afford epoxide S10 (315 mg, 1.11 mmol, 85%) as a colorless oil in >20:1 dr.

<u>TLC (SiO₂):</u> $R_f = 0.45$ (hexanes/EtOAc 70:30).

 $[\alpha]_{\mathbf{p}}^{20}$: +56.0 (*c* 1.0, CH₂Cl₂).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 5.83 (ddd, J = 17.5, 10.5, 6.7 Hz, 1H), 5.06–4.88 (m, 2H), 3.87 (dd, J = 12.5, 2.7 Hz, 1H), 3.56 (dd, J = 12.5, 5.1 Hz, 1H), 3.46 (dd, J = 10.4, 4.1 Hz, 1H), 3.23 (dd, J = 7.4, 3.5 Hz, 1H), 3.06 (dd, J = 7.8, 2.3 Hz, 1H), 2.88 (td, J = 4.9, 2.6 Hz, 1H), 2.24 (m, 1H), 2.12 (m, 1H), 1.56 (dquin, J = 7.1, 3.5 Hz, 1H), 1.27 (s, 3H), 1.26 (s, 3H), 0.96 (d, J = 7.0 Hz, 3H), 0.92 (d, J = 7.0 Hz, 3H), 0.85 (d, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 142.1, 113.4, 100.7, 77.3, 73.2, 62.1, 56.7, 56.5, 38.7, 37.0, 34.8, 24.9, 23.4, 15.7, 13.6, 12.0.

FTIR (neat): 3550–3200, 2967, 2922, 1459, 1377, 1087, 973, 911, 675 cm⁻¹.

HRMS: (ESI, *m/z*) for C₁₆H₂₈NaO₄ calculated 307.1880, found 307.1884.

(2*S*,3*S*,4*S*)-4-((4*S*,5*R*,6*S*)-6-((*S*)-But-3-en-2-yl)-2,2,5-trimethyl-1,3-dioxan-4-yl)-2-methylpentane-1,3-diol (9)

To a stirred suspension of CuCN (1.99 g, 22.2 mmol, 2000 mol%) in THF (10.1 mL) at -78 °C was added MeLi (1.6 M in Et₂O, 27.8 mL, 44.4 mmol, 4000 mol%) dropwise over 15 min. The resulting mixture was warmed to 0 °C and stirred for 45 min before being cooled to -78 °C. A solution of epoxide **S10** (315 mg, 1.11 mmol) in THF (10.1 mL) was added dropwise and the reaction was stirred at this temperature for 3 hrs before being warmed to 0 °C and stirred for a further 12 hrs. The reaction mixture was poured slowly to a 3:1 mixture of a saturated aqueous solution of NH₄Cl and NH₄OH (200 mL) and the resultant mixture was stirred vigorously for 2 hrs. The layers were partitioned and the aqueous layer was extracted with Et₂O (3 × 100 mL). The combined organics were washed with brine (100 mL), dried over MgSO₄, filtered, and the volatiles were removed *via* rotary evaporation. The residue was subjected to flash column chromatography (SiO₂, hexanes/acetone 85:15—70:30) to afford diol **9** (300 mg, 1.00 mmol, 90%) as a colorless oil and a single regioisomer.

<u>TLC (SiO₂)</u>: $R_f = 0.30$ (hexanes/EtOAc 70:30).

 $[\underline{\alpha}]_{\mathbf{D}}^{\mathbf{20}}$: +17.1 (*c* 0.50, CH₂Cl₂).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 5.83 (ddd, J = 17.3, 10.5, 6.7 Hz, 1H), 5.08–4.93 (m, 2H), 3.88 (dd, J = 11.0, 3.1 Hz, 1H), 3.60–3.51 (m, 2H), 3.48 (dd, J = 10.4, 3.7 Hz, 1H), 3.35 (t, J = 7.0 Hz, 1H), 2.25 (td, J = 10.5, 6.7 Hz, 1H), 1.98–1.80 (m, 3H), 1.36 (s, 3H), 1.28 (s, 3H), 1.12 (d, J = 7.0 Hz, 3H), 0.94 (d, J = 6.7 Hz, 3H), 0.92 (d, J = 6.7 Hz, 3H), 0.88 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 141.7, 113.7, 100.9, 81.9, 80.9, 73.1, 65.0, 41.5, 37.0, 36.8, 36.0, 25.5, 23.5, 15.5, 15.2, 13.3, 12.8.

<u>FTIR</u> (neat): 3500–3200, 2970, 2934, 2879, 1458, 1377, 1224, 1182, 1107, 1019, 1002, 910, 883 cm⁻¹.

<u>HRMS</u>: (ESI, m/z) for C₁₇H₃₂NaO₄ calculated 323.2193, found 323.2202.

(2*S*,3*S*,4*S*,5*S*,6*S*)-6-((2*S*,3*S*,6*S*)-6-Methoxy-3-methyltetrahydro-2H-pyran-2-yl)-2,4dimethylheptane-1,3,5-triol (10)

A solution of diol **9** (119 mg, 0.396 mmol), Xantphos (17 mg, 0.030 mmol, 7.5 mol%) and Rh(acac)(CO)₂ (5.1 mg, 0.020 mmol, 5 mol%) in THF (22 mL) in a 50 mL flat bottom flask was placed in a high pressure Parr bomb and the pressure gauge/gas inlet was assembled. The bomb was charged to 50 psi with CO gas and the pressure was carefully released. This procedure was repeated twice before the bomb was charged to 400 psi CO and then with another 400 psi H₂ (800 psi total) and heated to 100 °C (sand bath, external temperature). The reaction mixture was stirred for 48 hrs before being cooled to room temperature. The pressure was carefully released.

The mixture was diluted with MeOH (7.8 mL, 0.05M), and *p*-TsOH•H₂O (7.5 mg, 0.040 mmol, 10 mol%) was added at ambient temperature. The reaction was allowed to stir for 6 hr before another portion of *p*-TsOH•H₂O (3.8 mg, 0.020 mmol, 5 mol%) was added. The reaction was allowed to stir for an additional 3 hrs before the reaction was quenched with 1 mL Et₃N. The volatiles were then removed *via* rotary evaporation, and the residue was subjected to flash column chromatography (SiO₂, CH₂Cl₂/EtOAc 50:50) to afford triol **10** (73 mg, 0.240 mmol, 61% over 2 steps) as a colorless oil. The major diastereomer could be separated from the minor diastereomer and is characterized below.

<u>TLC (SiO₂)</u>: $R_f = 0.30$ (CH₂Cl₂/EtOAc 50:50).

 $[\underline{\alpha}]_{\mathbf{D}}^{\mathbf{20}}$: +11.1 (*c* 0.25, CH₂Cl₂).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 4.71 (d, J = 2.0 Hz, 1H), 4.03 (dd, J = 11.0, 2.5 Hz, 1H), 3.95 (dd, J = 10.2, 1.4 Hz, 1H), 3.69 (dd, J = 9.0, 2.0 Hz, 1H), 3.61–3.51 (m, 2H), 3.48 (s, 3H), 2.18–2.04 (m, 2H), 1.88 (dt, J = 6.6, 2.7 Hz, 1H), 1.80–1.61 (m, 3H), 1.58–1.46 (m, 2H), 1.23 (d, J = 7.0 Hz, 3H), 1.13 (d, J = 7.2 Hz, 3H), 0.82 (d, J = 6.5 Hz, 3H), 0.73 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 98.9, 84.6, 83.1, 75.0, 64.3, 56.3, 38.9, 35.3, 32.6, 31.5, 30.2, 26.3, 17.3, 15.5, 13.1, 11.2.

<u>FTIR</u> (neat): 3500–3300, 2936, 1653, 1459, 1382, 1158, 1123, 1034, 1010, 815, 685 cm⁻¹.

HRMS: (ESI, *m/z*) for C₁₆H₃₂NaO₅ calculated 327.2142, found 327.2149.

(5*R*,6*S*,7*S*,8*S*)-3,3,11,11-Tetraethyl-5-((*R*)-1-((2*S*,3*S*,6*S*)-6-methoxy-3-methyltetrahydro-2H-pyran-2-yl)ethyl)-6,8-dimethyl-7-((triethylsilyl)oxy)-4,10-dioxa-3,11-disilatridecane (S11)

To a stirred solution of triol **10** as a mixture of diastereomers from the previous step (51.0 mg, 0.168 mmol) in DMF (0.84 mL) was added imidazole (172 mg, 2.52 mmol, 1500 mol%), followed by DMAP (20.5 mg, 0.168 mmol, 100 mol%). The resultant mixture was cooled to 0 °C and chlorotriethylsilane (282 μ L, 1.68 mmol, 1000 mol%) was slowly added. The reaction mixture was allowed to slowly warm to room temperature and was stirred for 24 hrs before being cooled 0 °C and quenched by the dropwise addition of a saturated aqueous solution of NaHCO₃. The mixture was then extracted with Et₂O (3 × 1.0 mL) and the combined organic extracts were washed with brine (2.0 mL), dried over MgSO₄, filtered and the volatiles were removed *via* rotary evaporation. The residue was subjected to flash column chromatography (SiO₂, hexanes/Et₂O 99:1) to afford ether **S11** (95.8 mg, 0.148 mmol, 88%) as a colorless oil. The major diastereomer could be separated from the minor diastereomer and is characterized below.

<u>TLC (SiO₂):</u> $R_f = 0.80$ (hexanes/Et₂O 95:5).

 $[\underline{\alpha}]_{\mathbf{D}}^{\mathbf{20}}$: -21.3 (*c* 0.50, CH₂Cl₂).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 4.64 (t, *J* =2.3 Hz, 1H), 3.97 (dd, *J* = 7.4, 3.5 Hz, 1H), 3.89 (dd, *J* = 8.6, 2.0 Hz, 1H), 3.73 (td, *J* = 10.2, 5.1 Hz, 2H), 3.42–3.36 (m, 4H), 2.02–1.91 (m, 2H), 1.79 (quin, *J* = 7.1 Hz, 1H), 1.71–1.61 (m, 2H), 1.58–1.46 (m, 3H), 1.04–0.85 (m, 33H), 0.80 (d, *J* = 5.9 Hz, 3H), 0.71–0.53 (m, 21H).

¹³C NMR (100 MHz, CDCl₃): δ 98.2, 75.8, 74.5, 73.6, 64.4, 55.2, 44.2, 40.4, 37.9, 31.3, 30.3, 27.3, 18.5, 14.6, 10.8, 10.5, 7.2, 7.1, 6.8, 5.7, 5.5, 4.4.

<u>FTIR</u> (neat): 2953, 2930, 2876, 1458, 1379, 1238, 1082, 1057, 1006, 812, 725 cm⁻¹.

HRMS: (ESI, *m/z*) for C₃₄H₇₄NaO₅Si₃ calculated 669.4736, found 669.4733.

(2*R*,3*R*,4*R*,5*R*,6*R*)-6-((2*S*,3*S*,6*S*)-6-Methoxy-3-methyltetrahydro-2H-pyran-2-yl)-2,4dimethyl-3,5-bis((triethylsilyl)oxy)heptanal (Fragment B)

To a stirred solution of oxalyl chloride (31 µL, 0.359 mmol, 250 mol%) in CH₂Cl₂ (0.7 mL) was added DMSO (51 µL, 0.717 mmol, 500 mol%) dropwise at -78 °C. The resultant solution was stirred for 15 min before a solution of ether **S11** (93 mg, 0.143 mmol) in CH₂Cl₂ (0.7 mL) was slowly added and the reaction mixture was stirred at -78 °C for 3 hrs. Triethylamine (200 µL, 1.43 mmol, 1000 mol%) was added dropwise over 10 min and the mixture was stirred for 45 min before being warmed to 0 °C and quenched with a pH=7 buffer (2.0 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 × 2.0 mL). The combined organics were washed with brine (2.0 mL), dried over MgSO₄, filtered, and the volatiles were removed *via* rotary evaporation. The residue was subjected to flash column chromatography (SiO₂, hexanes/Et₂O 95:5) to afford aldehydes **Fragment B** (39 mg, 0.073 mmol, major diastereomer; 23 mg, 0.043 mmol, minor diastereomer, 81% yield) as colorless oils. The diastereomers were completely separated by column chromatography, and the spectral data for both are reported below.

<u>TLC (SiO₂)</u>: $R_f = 0.50$ (major), 0.39 (minor) (hexanes/Et₂O 90:10).

 $[\underline{\alpha}]_{\mathbf{D}}^{20}$: -48.7 (c 0.50, CH₂Cl₂, major), -33.3 (c 0.50, CHCl₃, minor).

¹<u>H NMR (major)</u>: (400 MHz, CDCl₃): δ 9.82 (d, J = 2.0 Hz, 1H), 4.64 (t, J = 2.4 Hz, 1H), 4.25 (dd, J = 6.0, 1.6 Hz, 1H), 3.79 (dd, J = 5.6, 4.4 Hz, 1H), 3.60 (d, J = 9.6 Hz, 1H), 3.36 (s, 3H), 2.73 (qt, J = 7.2, 2.0 Hz, 1H), 2.17-2.08 (m, 1H), 1.84 (quin., J = 6.6 Hz, 1H), 1.70-1.63 (m, 2H), 1.56-1.48 (m, 3H), 1.15 (d, J = 7.2 Hz, 3H), 0.99-0.93 (m, 21H), 0.89 (d, J = 7.2 Hz, 3H), 0.80 (d, J = 6.4 Hz, 3H), 0.67-0.61 (m, 12H).

¹³C NMR (major): (100 MHz, CDCl₃): 205.5, 98.3, 77.5, 75.4, 74.1, 55.2, 50.1, 43.2, 38.7, 31.6, 30.1, 27.1, 18.4, 12.5, 12.1, 10.2, 7.1, 7.0, 5.5, 5.2.

¹<u>H NMR (minor)</u>: (400 MHz, CDCl₃): δ 9.82 (d, J = 1.6 Hz, 1H), 4.33 (dd, J = 9.4, 2.0 Hz, 1H), 4.24 (dd, J = 6.5, 1.8 Hz, 1H), 3.85 (dd, J = 9.2, 2.5 Hz, 1H), 3.47 (s, 3H), 3.31 (d, J = 9.8 Hz, 1H), 2.83 (q, J = 6.8 Hz, 1H), 2.00 (dt, J = 6.9, 2.5 Hz, 1H), 1.85–1.73 (m, 3H), 1.51 (m, 1H), 1.40 (m, 1H), 1.20 (m, 1H), 1.14 (d, J = 7.0 Hz, 3H), 1.02–0.89 (m, 21H), 0.77 (d, J = 6.7 Hz, 3H), 0.72–0.56 (m, 15H).

¹³C NMR (minor): (100 MHz, CDCl₃): δ 204.7, 102.6, 79.6, 76.1, 74.4, 55.8, 50.9, 41.7, 38.8, 31.8, 31.7, 30.9, 17.3, 13.2, 11.3, 9.9, 7.1, 6.9, 5.6, 5.2.

<u>FTIR</u> (neat): 2954, 2877, 1724, 1457, 1381, 1239, 1057, 1022, 1006, 810, 740 cm⁻¹.

<u>HRMS</u>: (ESI, m/z) for C₂₈H₅₈NaO₅Si₂ calculated 553.3715, found 553.3718 (major), found 553.3715 (minor).

S57

(5*R*,6*S*,7*S*,8*S*,9*R*,14*R*,15*R*,*E*)-3,3,17,17-tetraethyl-5-((*R*)-1-((2*S*,3*S*,6*S*)-6-methoxy-3-methyltetrahydro-2*H*-pyran-2-yl)ethyl)-6,8,14-trimethyl-15-((*R*,*E*)-4-methylhept-2-en-2-yl)-7-((triethylsilyl)oxy)-4,16-dioxa-3,17-disilanonadec-12-en-9-ol (11)

To an oven-dried round bottomed flask equipped with stir bar was added iodide (**Fragment A**) (77 mg, 0.165 mmol, 250 mol%), Et₂O (1.5 mL) and (1*S*,2*S*)- N^1 , N^1 , N^2 , N^2 -tetramethylcyclohexane-1,2-diamine (113 mg, 0.659 mmol, 1000 mol%). The solution was cooled to -78 °C and *tert*-butyl lithium (0.70 M in pentane, 235 µL, 0.165 mmol, 250 mol%) was added dropwise. The solution was allowed to stir for 15 minutes at -78 °C before aldehyde (**Fragment B**) (35 mg, 0.066 mmol, 100 mol%) was added in Et₂O (1.0 ml) dropwise. The reaction was allowed to stir at -78 °C for 1.5 hrs, before being quenched with 1 mL pH=7 buffer. The aqueous layer was extracted with Et₂O (3 × 1 mL). The combined organic layers were dried with Na₂SO₄ and filtered. The volatiles were removed *via* rotary evaporation, and the residue was subjected to flash column chromatography (SiO₂, hexanes/ Et₂O 95:5 – 9:1) to afford **11** as a colorless oil in a 3:1 mixture of diastereomers (30 mg (major), 9 mg (minor), 0.045 mmol, 68% yield). The major and minor diastereomers could be separated by column chromatography and the major is characterized below.

<u>TLC (SiO₂)</u>: $R_f = 0.41$ desired, 0.36 undesired (hexanes/Et₂O 9:1).

 $[\alpha]_{B}^{20}$: +20.0 (c 0.50, CHCl₃).

¹<u>H NMR</u> (400 MHz, CHCl₃): 5.48-5.67 (m, 2H), 4.98 (d, J = 9.6 Hz, 1H), 4.64 (t, J = 2.0 Hz, 1H), 4.11-4.05 (m, 2H), 3.83 (s, 1H), 3.78 (t, J = 5.2 Hz, 1H), 3.65 (d, J = 8.8 Hz, 1H), 3.57 (d, J = 8.4 Hz, 1H), 3.37 (s, 3H), 2.39-2.32 (m, 2H), 2.25-2.11 (m, 3H), 2.02-1.93 (m, 1H), 1.89-1.78 (m, 2H), 1.71-1.49 (m, 9H), 1.36-1.15 (m, 5H), 1.05-0.84 (m, 41H), 0.81 (d, J = 6.0 Hz, 3H), 0.78 (d, J = 7.2 Hz, 3H), 0.73-0.62 (m, 12H), 0.56-0.50 (m, 6H).

¹<u>H NMR</u> (400 MHz, C₆D₆): δ 5.79-5.65 (m, 2H), 5.06 (d, J = 10.4 Hz, 1H), 4.65 f(d, J = 2.8 Hz, 1H), 4.43-4.38 (m, 1H), 4.18 (dd, J = 7.6, 1.6 Hz, 1H), 4.05 (dd, J = 6.4, 4.8 Hz, 1H), 3.90 (d, J = 10.4 Hz, 1H), 3.73 (d, J = 8 Hz, 1H), 3.62 (s, 1H), 3.41 (s, 3H), 2.65-2.55 (m, 1H), 2.47-2.32 (m, 4H), 2.06-1.89 (m, 3H), 1.73-1.67 (m, 2H), 1.66 (d, J = 1.2 Hz, 3H), 1.55-1.48 (m, 3H), 1.39-1.30 (m, 4H), 1.26-0.97 (m, 37 H), 0.92-0.64 (m, 30 H).

¹³C NMR: (100 MHz, C₆D₆): δ 135.6, 134.4, 134.1, 130.1, 98.7, 84.2, 80.7, 76.6, 74.0, 71.0, 55.3, 44.6, 41.4, 40.3, 38.8, 38.6, 36.1, 32.0, 31.9, 30.6, 30.3, 27.5, 21.1, 21.0, 18.6, 17.3, 14.4, 12.9, 12.0, 11.4, 10.8, 7.5, 7.3, 7.3, 6.2, 5.8, 5.5.

FTIR (neat): 2954, 2876, 1458, 1414, 1375, 1233, 1058, 1003, 964, 815, 724 cm⁻¹.

<u>HRMS</u>: (ESI+, m/z) for C₄₉H₁₀₀NaO₆Si₃⁺ calculated 891.6720, found 891.6724.

Methyl (*S*)-2-((*2R*,5*S*,6*R*)-5-methyl-6-((*2S*,3*S*,4*S*,5*S*,6*S*,7*R*,10*E*,12*R*,13*R*,14*E*,16*R*)-3,5,7,13-tetrahydroxy-4,6,12,14,16-pentamethylnonadeca-10,14-dien-2-yl)tetrahydro-2*H*-pyran-2-yl)propanoate (Zincophorin Methyl Ester)

To an over dried test tube under argon was added a solution of thiazole S3 (6.0 mg, 0.028) mmol, 400 mol%) in 0.3 ml CH₂Cl₂. At 0 °C TiCl₄ (1.0 M in CH₂Cl₂, 28 µL, 0.028 mmol, 400 mol%) was added resulting in yellow heterogeneous solution. The reaction was cooled to -40 °C and *i*-Pr₂EtN was added (1.0 M in in CH₂Cl₂, 28 μ L, 0.028 mmol, 400 mol%). The resultant red solution was allowed to stir at -40 °C for 3 hrs. SnCl₄ (1.0 M in in CH₂Cl₂, 8 µL, 0.013 mmol, 120 mol%) was then added, immediately after which a solution of 11 (6.0 mg, 0.007 mmol) in 0.2 mL CH₂Cl₂ was added. The reaction was allowed to stir at -40 °C for 1 hr, before being warmed to -20 °C for an additional 12 hrs. The reaction was then cooled to -78 °C before being quenched with pH=7 buffer. The mixture was extracted with EtOAc (3 \times 1mL). The combined organic layers were dried with Na₂SO₄, filtered, and the volatiles were removed via rotary evaporation. The resulting oil was transferred to a vial with stir bar and diluted with 0.3 mL MeOH. DMAP (0.8 mg, 0.007 mmol, 100 mol%) was then added. The vial was capped and allowed to stir at ambient temperature for 24 hrs. The reaction mixture was then diluted with 1 mL EtOAc and 1mL NH₄Cl (sat., aq.) was added. The aqueous layer was extracted with EtOAc (3×1 mL). The combined organic layers were dried with Na₂SO₄, filtered, and the volatiles were removed *via* rotary evaporation. The resulting residue was subjected to flash column chromatography (SiO₂, hexanes/ EtOAc 9:1-4:1-7:3) to afford Zincophorin Methyl Ester (1.5 mg, 0.0025 mmol, 37% yield over 2 steps).

<u>TLC (SiO₂):</u> $R_f = 0.55$ (3:2 hexanes/ EtOAc).

 $[\alpha]_{B}^{20}$: +26.7 (*c* 0.15, CHCl₃).

¹**H** NMR (400 MHz, CHCl₃): δ 5.92 (s, 1H), 5.61 (dt, J = 15.6, 6.8 Hz, 1H), 5.34 (dd, J = 15.2, 8.8 Hz, 1H), 5.10 (d, J = 8.8 Hz, 1H), 4.43 (d, J = 8.0 Hz, 1H), 4.11-4.07 (m, 3H), 3.75 (d, J = 9.6 Hz, 1H), 3.72 (s, 3H), 3.63 (dd, J = 8.8, 1.6 Hz, 1H), 3.55 (d, J = 9.2 Hz, 1H), 3.43 (td, J = 8.4, 2.8 Hz, 1H), 3.22 (dq, J = 10.8, 7.2 Hz, 1H), 2.44-2.38 (m 1H), 2.27-2.17 (m, 3H), 2.12 (s, 1H), 2.07-1.96 (m, 2H), 1.77-1.61 (m, 4H), 1.60 (d, J = 1.2 Hz, 3H), 1.41-1.15 (m, 6H), 1.10 (d, J = 7.2 Hz, 3H), 1.08 (d, J = 6.8 Hz, 3H), 1.06 (d, J = 6.8 Hz, 3H), 0.89- 0.85 (m, 5H), 0.84 (d, J = 6.8 Hz, 3H), 0.81 (d, J = 6.4 Hz, 3H), 0.66 (d, J = 7.2 Hz, 3H).

¹³C NMR: (100 MHz, CHCl₃): δ 175.6, 135.7, 133.4, 133.3, 133.3*, 84.4, 84.0, 81.9, 76.1, 74.6, 69.0, 52.4, 41.8, 39.9, 39.6, 38.4, 37.5, 34.4, 34.0, 31.8, 31.6, 29.1, 26.3, 25.0, 21.0, 20.6, 17.7, 17.5, 14.8, 14.2, 13.3, 11.3, 11.2, 10.8.

FTIR (neat): 3411, 2954, 2933, 2872, 1737, 1457, 1381, 1278, 1082, 1016, 967 cm⁻¹.

<u>HRMS</u>: (ESI+, m/z) for C₃₄H₆₂NaO₇⁺ calculated 605.4388, found 605.4389.

*The presence of two overlapping olefinic carbons was confirmed by HSQC correlation.

1H (400 MHz)				
<u>δ (ppm)</u>	δ (ppm) Leighton			
5.92	5.91			
5.61	5.63			
5.34	5.34			
5.10	5.11			
4.43	4.42			
4.11-4.07	4.12-4.08			
3.75	3.76			
3.72	3.72			
3.63	3.63			
3.55	3.56			
3.43	3.43			
3.22	3.22			
2.44-2.38	2.46-2.37			
2.27-2.17	2.29-2.18			
2.12	2.11			
2.07-1.96	2.03-1.94			
1.77-1.61	1.77-1.62			
1.60	1.60			
1.41-1.15	1.46-1.15			
1.10	1.10			
1.08	1.08			
1.06	1.06			
0.93	0.94			
0.89-0.85	0.90-0.86			
0.84	0.84			
0.81	0.82			
0.66	0.66			

13C (100 MHz)				
δ (ppm)	δ (ppm) Leighton			
175.6	175.6			
135.7	135.7			
133.4	133.4			
133.3	133.3			
133.3	133.2			
84.4	84.4			
84.0	84.0			
81.9	81.9			
76.1	76.1			
74.6	74.6			
69.0	69.0			
52.4	52.4			
41.8	41.8			
39.9	39.9			
39.6	39.7			
38.4	38.4			
37.5	37.4			
34.4	34.5			
34.0	34.0			
31.8	31.8			
31.6	31.6			
29.1	29.8			
26.3	26.3			
25.0	25.0			
21.0	21.0			
20.6	20.6			
17.7	17.7			
17.5	17.5			
14.8	14.8			
14.2	14.2			
13.3	13.3			
11.3	11.3			
11.2	11.2			
10.8	10.8			

Comparison to Leighton's Synthetic Zincophorin Methyl Ester (Harrison, T.; Ho, S.; Leighton, J. L. J. Am. Chem. Soc. **2011**, 133, 7308.)

¹⁰ $[\underline{\alpha}]_{\mathbf{D}}^{20}$: -4.2 (*c* 1.0, CHCl₃) reported. (*ref.* 8)

Amarego, W. L. F.; Chai, C. Purification of Laboratory Chemicals, 6th ed., Elsevier Inc.: 1 Oxford, UK, 2009.

² Still, W. C.; Kahn, M; Mitra, A. J. Org. Chem. **1978**, 43, 2923.

 ³ Magens, S.; Ertelt, M.; Jatsch, A.; Plietker, B. Org. Lett. 2008, 10, 53.
⁴ Hodgson, D. M.; Kloesges, J.; Evans, B. Org. Lett. 2008, 10, 2781.
⁵ Galvalez, E.; Romea, P.; Urpi, F. Org. Synth. 2009, 86, 70.

 $^{[\}underline{a}]_{\mathbf{p}}^{20} : +34.76 \ (c \ 1.11, \ CHCl_3) \text{ reported for } \mathbf{S3}.$ $[\underline{a}]_{\mathbf{p}}^{20} : -420.84 \ (c \ 1.01, \ CHCl_3) \text{ reported for } \mathbf{S4}.$ ⁶ Prepared according to Breit: *Angew. Chem. Int. Ed.* **2008**, *47*, 5451, but also commercially available.

⁷ Studte, C.; Breit, B. *Angew. Chem. Int. Ed.* **2008**, *47*, 5451.

⁸ Lister, T.; Perkins, M. V. *Aust. J. Chem.* **2004**, *57*, 787. ⁹ $[\alpha]_{D}^{20}$: +10.5, (*c* 0.85, CHCl₃) reported. Chen, H.-Y.; McDonald, F. E. *J. Am. Chem. Soc.* 2006, 128, 4568.

¹¹ [<u>a</u>]²⁰_D: –14.6 (*c* 1.1, CHCl₃) reported. (*ref.* 8) ¹² Gao, X.; Han, H.; Krische, M. J. J. Am. Chem. Soc. **2011**, 133, 12795.