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FITC-LDV dissociation assay 

The dissociation kinetics of FITC-LDV was measured by flow cytometry following the addition of 100-

fold excess of non-fluorescent LDV. (The kinetic constants obtained are the same within experimental 

error whether adding 100-fold or 200-fold excess non-fluorescent LDV). The fluorescence decrease was 

recorded (see B in S2 Fig.). For the resting state, when a fluorescence plateau was reached after the 

addition of LDV-FITC, LDV was added to the cell suspension. For the high affinity state, when the 

fluorescence reached equilibrium after the sequential addition of LDV-FITC and N-formyl peptide, LDV 

was added. To study the effect of a compound, LDV was added at the time point when the fluorescence 

approached a minimum. The fluorescence decrease curve was fitted to Equation 2 to obtain the 

dissociation rate constant koff. The equilibrium binding constant Kd is the ratio of the dissociation rate 

constant koff to the association rate constant kon.  Previous studies have shown that kon of LDV binding to 

VLA-4 is largely invariable, and primarily dependent on diffusion [1]. Therefore the binding affinity can 

also be estimated by comparing the measured koff. Treating the cells with formyl peptide stimulated the 

integrin to achieve the high affinity state and the koff is about half of that of the resting state, i.e., 0.014 s-1. 

Compound treatments after formyl peptide stimulation decreased the binding affinity between the integrin 

and the LDV-FITC peptide, causing the dissociation rate constants to be between the two values 

described above (see E in S2 Fig.). 

 

Cytotoxicity of compound 1 and its analogues in cellular assays  

Since compound 1 is a pan-GTPase inhibitor and GTPases play multiple roles in cells, it is important to 

confirm that any phenotypes observed in cellular assays were not due to the cytotoxicity incurred by the 

compound. Therefore, the cytotoxicity of compound 1 and its analogues on the viability of two cell lines 

U937 FPRΔST and SCC-12F, which were later used to carry out cellular assays, was examined. The 

CellTiter-Glo® Luminescent Cell Viability Assay Kit from Promega was used and the provided protocols 

were applied. Briefly, cells were added to 96-well plates. The densities of the cells were in the linear 

range of the luminescence change. Compounds were added at increasing concentrations (1-100 µM) and 

incubated for 1-24 h. After adding the luciferase substrate, the luminescence was read on a PerkinElmer 

VICTOR X Multilabel plate reader. The compound and its analogues did not show cytotoxicity in the 

experimental timeframe up to 100 µM (see S3 Fig.).  

 

 

𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = (1 −
𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 𝑎𝑓𝑡𝑒𝑟 𝐷𝑀𝑆𝑂 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
) ∗  100%   

 (Equation 1) 

  𝑦 = 𝐴 ∗ 𝑒𝑥𝑝(−𝑘𝑜𝑓𝑓 ∗ 𝑥) +  𝐶  (Equation 2)  

 

 

 

 



 
 

Discussion on the remaining binding activity from the dose response assay 

Several experiments were conducted to study the cause of the remaining activity at high compound 

concentrations and its relationship if any to protein denaturation. In Fig. 4 of the main text, GTPases were 

incubated with the compound overnight. The compound was then removed by recovering the microsphere 

beads with bound GTPase by centrifugation and washing.  The recovered bead-bound GTPases show 

identical BODIPY® FL GTP binding as the GTPases without previous compound treatment. Thus, if the 

compound can denature the GTPases, the protein showed the capacity to renature once the compound is 

removed.  

Next, it was examined whether the GTPases that were used in the dose-response binding experiment were 

already partially denatured even before the addition of the compound. This could possibly cause 

nonspecific binding of BODIPY® FL GTP demonstrated as residual fluorescence.  To explore this, 

several experiments were conducted.  First, another GST tagged protein, GST-RILP was used to measure 

nonspecific binding of BODIPY® FL GTP to protein on beads. Also, naked beads were used to measure 

nonspecific binding towards beads. Secondly, after incubation with BODIPY® FL GTP and compound, 

the MgCl2 was added to the reaction mixture to 20 mM final concentration (with no obvious pH change) 

in order to lock BODIPY® FL GTP that had been bound to the active site. Thirdly, after locking 

BODIPY® FL GTP with 20 mM MgCl2, the reaction mixture was diluted 10 fold in buffer containing 20 

mM MgCl2 and measured. We did not observe significant nonspecific binding of BODIPY® FL GTP 

towards GST-RILP (Figs. 1SA and 1SB for raw and analyzed data, respectively).  The addition of MgCl2 

did not decrease the remaining activity (Fig. 1SC, compared to Fig. 1SB). Further dilution, which is 

supposed to decrease non-specific binding, did not decrease remaining activity (Fig. 1SD, compared to 

Fig. 1SC). These results showed that partially denatured protein with nonspecific binding of BODIPY® 

FL GTP is not likely to be the reason of remaining activity.  

To further test whether the GTPases were denatured by compound CID1067700, the circular dichroism 

(CD) spectra of the GTPases in the presence and absence of the compound were recorded. CD spectra 

were recorded using the Aviv Model 410 Circular Dichroism Spectrometer in a 1 mm path length 

rectangular cuvette at 25°C. The spectra were recorded in HEPES buffer [2] . Data points from 250 to 198 

nm were recorded for Cdc42, Ras and Rab7 (1 µM) at 1 nm intervals. To examine whether CID1067700 

denatures the GTPases, the proteins were incubated with the compound at different concentrations (0.5 

µM, 2.5 µM and 12.5 µM) at room temperature for 30 min before CD spectra were collected. For 

comparison, incubation with the same volumes of DMSO was conducted in parallel.  Each data point was 

averaged for either 1 or 4 seconds. Averaging for 4 seconds reduced the data noise but not significantly. 

The buffer baseline was subtracted from the GTPase spectra, while the spectrum of the compound alone 

in buffer was subtracted from the spectra of the GTPases with the compound. For each spectrum, three 

individual samples were prepared and each was scanned at least three times. The data were averaged. In 

spite of low resolution, a double bottom between 210 and 222 nm, which is characteristic of α-helical 

structures [3,4], was identifiable for all three GTPases. The presence of different concentrations of 

CID1067700 did not obviously change the CD spectra of the GTPases (Figs. 2SA-C). For Ras incubated 

with 12.5 µM compound, the CD spectrum appeared shallower. However, the same volume of DMSO 

induced a similar effect (Fig. 2SB) and DMSO is known to interfere with the CD measurement [2].  As 

 



 
 

Fig. 1S 

a control, 5M urea was added to the enzyme solution. The CD spectra were recorded from which the 

baseline of buffer containing 5 M urea was subtracted.  At low wavelength, the presence of 5 M urea 

significantly increased the noise. Therefore, the corresponding data were not shown. The results do not 

support the notion that CID1067700 denatures the bulk of the protein allowing BODIPY® FL GTP to 

remain bound to a pool of protein.  As this analysis is only to identify the extent of denaturation, the 

measured ellipticities were not converted to mean residual molar ellipticities. 

It was then examined whether the remaining activity is due to the multiplex assay format. Two factors 

were considered. First, when measuring the negative control, two hundred fold excess instead of 5000 

fold excess non-fluorescent GTP was used to compete with the BODIPY® FL GTP.  If the negative 

control value is low, the calculated response percentage, which equals (sample-negative control)/ 

(positive control-negative control)*100, may appear high causing the apparent remaining activity.  

However, our results showed that 200 fold and 5000 fold excess unlabeled GTP gave comparable 

negative control values and did not affect the response percentage (Fig. 3S). Secondly, we examined 

whether the multiplex setup contributed to the remaining activity.  Individual GTPases were included in 

both single-plex and multi-plex assays. Dose response curves with similar EC50s and remaining activity 

were observed (Fig. 4S). These results do not support the assay format as the source of the remaining 

activity. Because of the availability of the reagents, Ras G12V, which has similar dose response against 

compound CID1067700, was used instead of Ras wild type. 



 
 

Fig. 2S
 

 

 

Fig. 3S

 

 

 

 

 

 

 



 
 

Fig. 4S 

 

 

Taken together, the explanation that the remaining activity indicates deviation from competitive behavior 

is most consistent with all of the data. First, compound CID1067700 inhibited fluorescent GTP binding, 

but the inhibition is not entirely competitive. This is consistent with the effector binding assay (Fig. 6 in 

the manuscript) and multiple cellular functional assays (Fig. 7-10 in the manuscript) where the 

intracellular GTP concentration is high. It is possible that the compound blocks guanine nucleotide 

binding to different degrees for different GTPases, and that the incomplete blocking led to the observation 

of the residual fluorescence from bound BODIPY® FL GTP.  The difference among the GTPases could 

also be seen from our multiple repetitions of the dose-dependent binding assay. Cdc42 is sensitive to 

assay conditions, while Ras always has higher remaining activity compared with Rab7. Exploring these 

differences may contribute to the identification of selective GTPase activity modulators. Secondly, as 

stated in the manuscript, the compound at high concentration could not induce complete dissociation of 

the bound fluorescent GTP (Figs. 1 and 5 in the manuscript). The EC50s obtained at different 

concentrations of BODIPY® FL GTP did not change in a strictly linear manner (Fig. 2 in the 

manuscript), which indicates deviation from competitive inhibition. Thirdly, results from the recent 

experiments did not support alternative explanations.  Nonspecific binding of BODIPY® FL GTP to 

partially denatured GTPases does not likely contribute to the observed residual fluorescence (Fig. 1S).  

The presence of the compound did not denature the protein (Fig. 2S and Fig. 4 in the manuscript).  

Moreover, the assay format is not the source of the remaining fluorescence (Figs. 3S and 4S). In 



 
 

conclusion, the available data support the idea that compound CID1067700 has non-classical competitive 

character.   

Solubility of 1 and analogs: 

Solubility was measured in phosphate buffered saline (PBS) at room temperature (23 °C). PBS by 

definition is 137 mM NaCl, 2.7 mM KCl, 10 mM sodium phosphate dibasic, 2 mM potassium phosphate 

[monobasic and a pH of 7.4.  Detection was based on UV absorbance. Compound 1 was found to have an 

excellent PBS solubility measurement of > 116 µg/mL, or > 297 µM, under these conditions. Solubility 

was also assessed in the each of the four media used in the individual assays. Compound 1 was 

determined to have excellent assay media solubility, as depicted in Table 2.  

Table 1S. Solubility for 1 in Assay Media 

compound 

number 
CID unit 

Dose Response-buffer: 30mM 

HEPES, pH 7.5, 100mM KCl, 

20mM NaCl, 0.01% (v/v) 

NP-40,  

LDV-FITC assay buffer: 

RPMI 1640 + 10% HI-FBS 

EGFR degradation assay 

medium: DMEM/F-12, 

Invitrogen # 11320-082 

1 1067700 
 µg/mL >68.1 > 116 > 116 

µM >174.4 297.1 297.1 

7 53301934 
 µg/mL >29.7 >83 54.5 

µM >70.6 > 197.4  129.6 

9 53377405 
 µg/mL >69.1 115.3 67.6 

µM 169.2 282.3 165.5 

10 53301931 
 µg/mL >93 >93 >93 

µM > 198    > 198    > 198   

 

Stability of Compound 1  

Stability was measured under two distinct conditions with 1.  Stability, depicted as closed circles in the 

graph, was assessed at room temperature (23 °C) in PBS (no antioxidants or other protectants and DMSO 

concentration below 0.1%). Stability data is depicted in Fig. S8 showing the loss of compound with time 

over a 48 h period with a minimum of 6 time points and providing the percent remaining compound at 

end of the 48 h period.  Under these conditions, 77% of 1 remains after 48 hours.  The degradation has not 

been further characterized. 



 
 

 

Fig. 5S. Graph depicting stability of 1 after 48 h in PBS (no additives). 

To assess the chemical stability of 1 and its propensity towards nucleophilic attack, the compound was 

treated with a range of equivalents of L-glutathione in DMSO for 72 h at 37 °C. The three experiments 

were monitored by LCMS at each of the following time points: 1 h, 2 h, 4 h, 24 h, 48 h, and 72 h.  

Procedure: To a solution of 1, 1.0 mg, 2.56 µmol, 1 eq) in DMSO (1.0 mL) was added:  

a) L-glutathione (1.0 mg, 3.25 µmol, 1.2 eq) and the mixture stirred at 37 °C for 72 h 
b) L-glutathione (1.6 mg, 5.12 µmol, 2.0 eq) and the mixture stirred at 37 °C for 72 h 
c) L-glutathione (2.4 mg, 7.68 µmol, 3.0 eq) and the mixture stirred at 37 °C for 72 h 

LCMS analysis of each reaction vial, taken after time (t) = 1 h, 2 h, 4 h, 24 h, 48 h, and 72 h, showed only 

the presence of 1.  No glutathione conjugate or other peaks were observed.  These results suggest that the 

compound is not generally electrophilic or susceptible to protein-derived nucleophiles  

General experimental and analytical details: 
1H and 13C NMR spectra were recorded on a Bruker AM 

400 spectrometer (operating at 400 and 101 MHz respectively) or a Bruker AVIII spectrometer (operating 

at 500 and 126 MHz respectively) in CDCl3 with 0.03% TMS as an internal standard or DMSO-d6. The 

chemical shifts () reported are given in parts per million (ppm) and the coupling constants (J) are in 

Hertz (Hz). The spin multiplicities are reported as s = singlet, br. s = broad singlet, d = doublet, t = triplet, 

q = quartet, dd = doublet of doublet and m = multiplet. The LCMS analysis was performed on an Agilent 

1200 RRL chromatograph with photodiode array UV detection and an Agilent 6224 TOF mass 

spectrometer. The chromatographic method utilized the following parameters: a Waters Acquity BEH C-

18 2.1 x 50mm, 1.7 um column; UV detection wavelength = 214 nm; flow rate = 0.4ml/min; gradient = 5 

- 100% acetonitrile over 3 minutes with a hold of 0.8 minutes at 100% acetonitrile; the aqueous mobile 

phase contained 0.15% ammonium hydroxide (v/v). The mass spectrometer utilized the following 

parameters: an Agilent multimode source which simultaneously acquires ESI+/APCI+; a reference mass 

solution consisting of purine and hexakis(1H, 1H, 3H-tetrafluoropropoxy) phosphazine; and a make-up 

solvent of 90:10:0.1 MeOH:Water:Formic Acid which was introduced to the LC flow prior to the source 

to assist ionization. Melting points were determined on a Stanford Research Systems OptiMelt apparatus. 

 



 
 

2-(3-Benzoylthioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylic acid (1, CID 

1067700) was purchased from ChemDiv, Inc. (CAS 314042-01-8) and purified by mass-directed reverse-

phase chromatography to yield a white solid. CID1067700 can theoretically be prepared by the route 

described in Scheme 1 which was used to prepare its analogs.  

Scheme 1 

 

  



 
 

 

Fig. 6SA. Proton data for 1, CID 1067700. 

 



 
 

 

Fig. 6SB. Carbon data for 1, CID 1067700. 

 

Fig. 6SC. LCMS purity data at 214 nm for 1, CID 1067700; LCMS retention time: 1.871 min; purity at 

214 nm = 92.8%. 



 
 

 

Fig. 6SD. HRMS data for 1, CID 1067700: HRMS: m/z calculated for C18H19N2O4S2 [M
++1]: 391.0781, 

found 391.0777. 

 

 

tert-Butyl-2-amino-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate. Following a 

previously reported procedure [5], a mixture of 2,2-dimethyldihydro-2H-pyran-4(3H)-one (0.30 g, 2.34 

mmol, 1 eq), tert-butyl cyanoacetate (0.37 mL, 2.57 mmol, 1.1 eq), sulfur (0.083 g, 2.57 mmol, 1.1 eq), 

morpholine (0.30 mL, 3.51 mmol, 1.5 eq), and ethanol (7 mL) was heated at 50 °C for 16 h.  The reaction 

mixture was then filtered, and the filter cake washed with ethyl acetate (20 mL).  Purification by silica gel 

chromatography (0-20% EtOAc/Hex ramp over 20 min) afforded the desired product tert-butyl 2-amino-

5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate as a yellow solid (0.63 g, 2.23 mmol, 95 

% yield).  1H NMR (400 MHz, CDCl3) δ 5.88 (s, 2H), 4.52 (apparent t, J = 1.9, 2H), 2.64 (apparent t, J = 

1.9, 2H), 1.53 (s, 9H), 1.26 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 165.22, 161.77, 130.07, 113.43, 

106.94, 80.38, 70.83, 59.81, 38.72, 28.56, 26.46.   

 

tert-Butyl-2-(3-(4-fluorobenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-

carboxylate. tert-Butyl 2-amino-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate (0.28 g, 

1.00 mmol) and 4-fluorobenzoyl isothiocyanate (0.18 g, 0.99 mmol) were dissolved in THF (5 mL) and 

heated at 50 °C for 22 hours. The solvent was removed and EtOH (10 mL) was added. The product was 

filtered and rinsed with EtOH (2 x 10 mL). tert-Butyl 2-(3-(4-fluorobenzoyl)thioureido)-5,5-dimethyl-



 
 

5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate (0.330 g, 0.71 mmol, 71% yield) was isolated as a pale 

yellow solid. 1H NMR (400 MHz, CDCl3) δ 14.70 (s, 1H), 9.01 (s, 1H), 8.00 – 7.94 (m, 2H), 7.25 – 7.18 

(m, 2H), 4.74 (apparent t, J = 1.5 Hz, 2H), 2.76 (apparent t, J = 1.5 Hz, 2H), 1.64 (s, 9H), 1.31 (s, 6H). 

 

tert-Butyl-2-(3-(2-bromobenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-

carboxylate. tert-Butyl 2-amino-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate (0.28 g, 

1.00 mmol) and 2-bromobenzoyl isothiocyanate (0.24 g, 1.00 mmol) were dissolved in THF (5 mL) and 

heated at 50 °C for 22 hours.  The solvent was removed and EtOH (10 mL) was added. The product was 

filtered and rinsed with EtOH (2 x 10 mL).  tert-Butyl 2-(3-(2-bromobenzoyl)thioureido)-5,5-dimethyl-

5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate (0.26 g, 0.49 mmol, 49% yield) was isolated as a white 

solid. 1H NMR (400 MHz, CDCl3) δ 14.64 (s, 1H), 9.04 (s, 1H), 7.75 (apparent dd, J = 7.6, 1.8 Hz, 1H), 

7.67 (apparent dd, J = 7.9, 1.1 Hz, 1H), 7.45 (apparent td, J = 7.5, 1.3 Hz, 1H), 7.40 (apparent td, J = 7.7, 

1.9 Hz, 1H), 4.74 (apparent t, J = 1.5 Hz, 2H), 2.77 (t, J = 1.5 Hz, 2H), 1.63 (s, 9H), 1.31 (s, 6H). 

 

tert-Butyl-2-(3-(3-methoxybenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-

carboxylate. tert-Butyl 2-amino-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate (0.28 g, 

1.00 mmol) and 3-methoxybenzoyl isothiocyanate (0.20 g, 1.01 mmol) were dissolved in THF (5 mL) and 

heated at 50 °C for 22 hours. The solvent was removed and EtOH (10 mL) was added. The product was 

filtered and rinsed with EtOH (2 x 10 mL).  tert-Butyl-2-(3-(3-methoxybenzoyl)thioureido)-5,5-dimethyl-

5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate (0.32 g, 0.68 mmol, 68% yield) was isolated as a pale 

yellow solid. 1H NMR (400 MHz, CDCl3) δ 14.71 (s, 1H), 9.06 (s, 1H), 7.51 – 7.49 (m, 1H), 7.44 – 7.40 

(m, 2H), 7.19 – 7.13 (m, 1H), 4.74 (apparent t, J = 1.5 Hz, 2H), 3.89 (s, 3H), 2.77 (apparent t, J = 1.5 Hz, 

2H), 1.64 (s, 9H), 1.31 (s, 6H). 

 

tert-Butyl-2-(3-(4-methoxybenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-

carboxylate. A solution of tert-butyl 2-amino-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-

carboxylate (1.0 mL, 0.083 M, 0.083 mmol) in THF was added to a solution of 4-methoxybenzoyl 

isothiocyanate (51 mg, 0.26 mmol) in THF (1 mL) and heated at 50 °C for 16 hours, then cooled to room 

temperature.  The solvent was removed and EtOH (2 mL) was added.  The product was filtered and rinsed 

with EtOH (3 x 5 mL).  tert-Butyl 2-(3-(4-methoxybenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-

thieno[2,3-c]pyran-3-carboxylate (31 mg, 0.065 mmol, 78% yield) was isolated as a white solid. 1H NMR 

(400 MHz, CDCl3) δ 14.65 (s, 1H), 8.98 (s, 1H), 7.83 (apparent d, J = 8.9 Hz, 2H), 6.91 (apparent d, J = 

8.9 Hz, 2H), 4.66 (s, 2H), 3.81 (s, 3H), 2.69 (s, 2H), 1.56 (s, 9H), 1.24 (s, 6H). 13C NMR (101 MHz, 

CDCl3) δ 173.90, 164.52, 164.49, 163.88, 147.40, 129.93, 129.13, 124.58, 123.65, 118.03, 114.34, 82.36, 

70.79, 59.81, 55.62, 38.25, 28.49, 26.48. 

 

tert-Butyl-2-(3-(2-fluorobenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-

carboxylate. To a solution of tert-butyl 2-amino-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-

carboxylate (50 mg, 0.18 mmol) in THF (3 mL) was added 2-fluorobenzoyl isothiocyanate (35.2 mg, 0.19 



 
 

mmol) and the mixture heated at 60 °C for 16 h.  The solvent was removed in vacuo.  The residue was 

sonicated (1 min) with cold EtOH, filtered and the resulting solid rinsed with cold EtOH to yield tert-

butyl 2-(3-(2-fluorobenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate 

(41 mg, 0.088 mmol, 50% yield) as a pale yellow solid.  1H NMR (400 MHz, CDCl3) δ 14.70 (s, 1H), 

9.69 (s, 1H), 8.25 – 8.11 (m, 1H), 7.63 – 7.49 (m, 1H), 7.36 – 7.26 (m, 1H), 7.23 – 7.17 (m, 1H), 4.72 (s, 

2H), 2.73 (d, J = 6.3, 2H), 1.58 (d, J = 2.4, 9H), 1.29 (d, J = 1.7, 6H). 13C NMR (101 MHz, CDCl3) δ 

173.27, 164.59, 161.79, 161.21, 161.18, 159.30, 147.36, 135.67, 135.57, 132.79, 129.15, 125.37, 125.34, 

124.64, 119.06, 118.96, 118.06, 116.70, 116.46, 82.42, 70.79, 59.81, 38.24, 28.49, 26.48. 

 

 

2-(3-(4-Fluorobenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylic 

acid (9, CID53377405).  A solution of 40% v/v TFA/DCM (20 mL) was added to tert-butyl 2-(3-(4-

fluorobenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate (0.33 g, 0.71 

mmol) and the mixture was stirred at RT for 1 hour.  The volatiles were removed at 30 °C and the 

material was purified by reverse-phase chromatography (10-100% MeCN/water). 2-(3-(4-

Fluorobenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylic acid (0.21 g, 

0.51 mmol, 72% yield) was isolated as a pale, yellow solid. 1H NMR (400 MHz, DMSO) δ 14.81 (s, 1H), 

13.36 (s, 1H), 11.83 (s, 1H), 8.11 – 8.00 (m, 2H), 7.38 (apparent t, J = 8.9 Hz, 2H), 4.66 (s, 2H), 2.74 (s, 

2H), 1.23 (s, 6H). 13C NMR (101 MHz, DMSO) δ 174.33, 166.13, 165.72, 165.35, 163.63, 146.76, 

131.80, 131.70, 129.08, 128.60, 128.57, 124.06, 116.48, 115.54, 115.32, 70.12, 58.80, 37.25, 26.16. 

LCMS retention time: 3.206 min; LCMS purity at 214 nm = 98%. HRMS m/z calculated for 

C18H18FN2O4S2 [M
++1]: 409.0687, found 409.0687.  Melting point 205.3 °C, decomposition. 

 

 

2-(3-(2-Bromobenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylic 

acid (10, CID53301931). A solution of 40% v/v TFA/DCM (13.4 mL) was added to tert-butyl 2-(3-(2-

bromobenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate (0.25 g, 0.48 

mmol) and the mixture was stirred at room temperature for 1 h.  The volatiles were removed at 30 °C and 

the material was purified by reverse-phase chromatography (10-100% MeCN/water).  2-(3-(2-

Bromobenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylic acid (0.16 g, 

0.33 mmol, 69% yield) was isolated as a pale, yellow solid. 1H NMR (400 MHz, DMSO) δ 14.70 (s, 1H), 

13.48 (s, 1H), 12.21 (s, 1H), 7.72 (apparent dd, J = 7.8, 1.2 Hz, 1H), 7.62 (apparent dd, J = 7.4, 1.8 Hz, 

1H), 7.53 – 7.42 (m, 2H), 4.66 (s, 2H), 2.75 (s, 2H), 1.23 (s, 6H). 13C NMR (101 MHz, DMSO) δ 174.29, 

167.42, 165.95, 147.16, 137.00, 133.01, 132.56, 129.70, 129.60, 128.04, 124.63, 119.33, 116.98, 70.62, 

59.29, 37.74, 26.65. LCMS retention time: 3.193 min; LCMS purity at 214 nm = 98%. HRMS m/z 

calculated for C18H18BrN2O4S2 [M++1]: 468.9886, found 468.9860.  Melting point 188.4 °C, 

decomposition. 

 



 
 

2-(3-(3-Methoxybenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylic 

acid (7, CID53301934).  A solution of 40% v/v TFA/DCM (20 mL) was added to tert-butyl 2-(3-(3-

methoxybenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate (0.32 g, 0.67 

mmol) and the mixture was stirred at room temperature for 1 h.  The volatiles were removed at 30 °C and 

the material was purified by reverse-phase chromatography (10-100% MeCN/water).  2-(3-(3-

Methoxybenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylic acid (0.114 g, 

0.26 mmol, 39% yield) was isolated as a pale, yellow solid. 1H NMR (500 MHz, DMSO) δ 14.84 (s, 1H), 

13.39 (s, 1H), 11.78 (s, 1H), 7.58 – 7.54 (m, 1H), 7.54 – 7.51 (m, 1H), 7.45 (apparent t, J = 7.9 Hz, 1H), 

7.22 (apparent ddd, J = 8.3, 2.6, 0.9 Hz, 1H), 4.66 (s, 2H), 3.85 (s, 3H), 2.74 (s, 2H), 1.23 (s, 6H). 13C 

NMR (126 MHz, DMSO) δ 174.24, 166.41, 165.25, 158.88, 146.70, 133.23, 129.51, 128.99, 123.98, 

120.94, 119.29, 116.40, 113.19, 70.04, 58.71, 55.33, 37.16, 26.08. LCMS retention time: 3.199 min; 

LCMS purity at 214 nm = 97%. HRMS m/z calculated for C19H21N2O5S2 [M++1]: 421.0886, found 

421.0889.  Melting point 199.3 °C, decomposition. 

 

2-(3-(4-Methoxybenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylic 

acid (8, CID53301932). A solution of 40% v/v TFA/DCM (2.5 mL total) was added to tert-butyl 2-(3-(4-

methoxybenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate (34 mg, 

0.071 mmol) and the mixture was stirred at room temperature for 1 h. The volatiles were removed at 30 

°C and the material was purified by mass-directed reverse-phase chromatography. 2-(3-(4-

Methoxybenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylic acid (14 mg, 

0.033 mmol, 46% yield) as a white solid. 1H NMR (500 MHz, DMSO) δ 14.86 (s, 1H), 13.38 (s, 1H), 

11.59 (s, 1H), 8.04 – 7.97 (m, 2H), 7.11 – 7.03 (m, 2H), 4.65 (s, 2H), 3.86 (s, 3H), 2.73 (s, 2H), 1.22 (s, 

6H). 13C NMR (126 MHz, DMSO) δ 174.55, 165.94, 165.28, 163.16, 146.98, 131.01, 129.02, 123.95, 

123.75, 116.39, 113.76, 70.12, 58.80, 55.58, 37.25, 26.16. LCMS retention time: 3.264 min; LCMS purity 

at 214 nm = 99%. HRMS m/z calculated for C19H21N2O5S2 [M
++1]: 421.0886, found 421.0893.  Melting 

point 213.2 °C, decomposition. 

 

2-(3-(2-fluorobenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylic 

acid (CID53301935). To  tert-butyl 2-(3-(2-fluorobenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-

thieno[2,3-c]pyran-3-carboxylate (36 mg, 0.077 mmol) was added a solution of 2,2,2-trifluoroacetic acid 

(0.75 mL, 9.76 mmol) in CH2Cl2 (1.1 mL) [40% v/v] and the mixture stirred at RT for 1 h.  The solvent 

was evaporated in vacuo and the residue chromatographed using reversed-phase MPLC (0-100% ACN-

H2O; 40 g C18 column) to yield  2-(3-(2-fluorobenzoyl)thioureido)-5,5-dimethyl-5,7-dihydro-4H-

thieno[2,3-c]pyran-3-carboxylic acid (10.5 mg, 0.026 mmol, 33% yield) as a pale yellow solid. 1H NMR 

(500 MHz, DMSO) δ 14.70 (s, 1H), 11.94 (s, 1H), 7.72 (apparent d, J = 7.3, 1H), 7.65 (s, 1H), 7.38 – 7.32 

(m, 2H), 4.65 (s, 2H), 2.73 (s, 2H), 1.22 (s, 6H). 13C NMR (126 MHz, DMSO) δ 173.69, 165.48, 163.91, 

160.34, 158.35, 146.81, 134.19, 134.12, 130.50, 129.19, 124.64, 124.61, 124.24, 122.28, 122.17, 116.60, 

116.32, 116.14, 70.20, 58.87, 37.32, 26.23. LCMS retention time: 3.275 min; LCMS purity at 214 nm = 

99.6%. HRMS m/z calculated for C18H18FN2O4S2 [M++1]: 409.0687, found 409.0687.  Melting point 

202.8 °C, decomposition. 
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