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Inference of alleles and their chromosome distribution

Our method relies on matching read sequences to substrings of genomic V, D and J gene sequences. There is,
however, some degree of allelic diversity in these genes, and we initially have no idea which alleles are carried by the
individual whose sequences are being analyzed. Some information about common alleles for these genes in the human
population can be found in the IMGT database [1], but there is no guarantee that the alleles we are actually faced
with are in the database. If we do not have in hand the correct genomic sequence for our individual subject, we will
incorrectly identify mismatches between the read and the genomic sequence as being due to sequence error or, in the
right context, hypermutation. We do not expect the numerical impact on our analysis of this issue to be large, but
since it is an identifiable source of error, it would be desirable to eliminate it, if at all possible, by somehow acquiring
accurate genomic sequence for the alleles that are actually present, individual subject by individual subject. We have
developed an automated multi-step allele inference process that does precisely this.

As a first step, using naive nonproductive sequences, we run an initial alignment using genomic data derived from
a reference genome (in other words, using a unique sequence for each V, D and J gene). After the initial alignment
has been completed, we assign to each read in the data set the V, D and J gene with the highest alignment score (this
score tries to minimize mismatches and maximize the length of the read that is identified as of genomic origin). Note
that we always carry out this procedure on reads in the naive data set so as to avoid the confusing effect of somatic
hypermutation. For each gene, we collect all the read subsequences that were assigned to that gene. Working on the
collection of strings associated with a particular gene, we then carry out a procedure that sorts these strings into
subgroups such that, within each subgroup, every member is a proper substring of the same maximal length string.
Each of these maximal length strings typically can be aligned to the reference gene sequence in such a way that it
differs from the reference sequence in only a few positions. We typically find that one or two of these subgroups have
many more members than any of the others, and we use the maximal string associated with them to construct the
individual subject’s allele(s) for the gene under consideration. Basically, we extend the maximal string to the full
extent of the gene using the reference genome sequence. This defines two alleles per individual for each gene and yields
an interim genomic dataset. This procedure obviously cannot detect allelic variation outside the read “window”, so
these are not true biological alleles, but they capture all the allelic variation that is relevant to our inference procedure.
This procedure defines a set of allelic variants of the V, D and J genes appropriate to the individual subject being
analyzed. Of course the procedure has to be done independently for each new subject, but the computational overhead
of this step is not too heavy.

At this stage it is clear if a particular allele is homozygous or heterozygous, but we have no idea how the heterozygous
alleles are associated on two chromosomes. To explore this issue, we use the interim genomic dataset derived through
the procedure described above to infer the generative probability distribution responsible for the sequence data set we
are working with. One of the outcomes of our probabilistic approach is an evaluation of the joint probability distribu-
tion P(Vallele, Dallele, Jallele) for producing any triplet of VDJ alleles. From the organization of the different alleles
on two different chromosomes, some V-D, D-J and V-J allele associations are impossible because the recombination
machinery works on one chromosome or the other at a time, never both. Given our probabilistic approach, this should
be reflected in a lower probability for inappropriate V-D-J triplets in the joint P(Vallele, Dallele, Jallele) probability
of the model. We exploit this fact to reconstruct the chromosomal organization and remove wrongly inferred alleles
as follows: each gene with two alleles is assigned a two state variable: each gene is marked as either heterozygous or
homozygous. At this point, based on the initial assignment described above, each gene that has two candidate alleles
is marked as heterozygous. An iterative procedure described below re-assigns the homo/heterozygosity parameters. If
the gene is marked as heterozygous, the allele is assigned to one of the two chromosomes, with the constraint that two
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alleles of the same gene cannot lie on the same chromosome. If the gene is marked as homozygous, one of the alleles
is “real”, while the other is erroneous (again with the constraint that the two alleles of a given gene must be in two
different states - real or erroneous.). Finding the chromosomal organization entails doing a search to find the values
of these parameters that minimize the net probability (derived from the P(Vallele, Dallele, Jallele) distribution) of
recombination scenarios involving V, D or J alleles that do not lie on the same chromosome.

In practice, all genes with two alleles are initially taken to be heterozygous and all alleles are assigned randomly
to a chromosome. After initialization, a gene is chosen at random and the probability of scenarios violating the
chromosomal organization is computed for the four possible states of the two alleles of this gene (heterozygous -
chromosome 1, heterozygous - chromosome 2, homozygous - real allele, homozygous - erroneous allele) given by the
previously defined two state variables. A change in the assignment of these parameters is accepted only if it decreases
the probability of erroneous recombination events. This step is iteratively repeated until no further change is possible.
This procedure is ensured to converge to a local minimum. Repetitions of this procedure starting from randomly
chosen initial states always converge to the same final state, and we conclude that only one global minimum exists.

For the purposes of this paper, we use the results of the procedure just described to identify spurious alleles , leaving
a final, cleaned-up, list of alleles for the given individual subject. Summary information about the genes that this
procedure declares to be heterozygous (for individual subject A) is presented in Tables S1 and S2 below. We have used
this allelically improved, individual specific, genomic data set to carry out the model inference procedure described in
the main text. For reasons of computational convenience, however, the model that we inferred is in fact rather simpler
than the one used (as described above) to infer the genomic alleles. To be specific, instead of using the gene choice factor
P(Vallele, Dallele, Jallele), we used the less complex structure P(V)P(D, J)P(Vallele|V)P(Dallele|D)P(Jallele|J)
(distinguishing between gene and allele of same gene). For most of the quantities we compute, the less complex model
gives almost the same results as the fully allelic model. However, only the latter model will be able to capture the
correlations that arise from chromosomal organization of alleles and, while the associated effects are not large, they
are worth tracking. Evidence that the fully allelic model for gene choice really captures all the correlations present
in the data is presented in Fig. S3. That figures displays correlations (as quantified by mutual information) between
various model variables and compares the values derived from sequence data with the values derived directly from
the model (the fully allelic one) inferred from the same data. The match between the two is nearly perfect (although
the data does show evidence of a few very weak correlations that the model structure cannot incorporate), which we
take as a validation of our hypothesized model structure. Simpler model structures in general show a significantly
less impressive match.

[1] Giudicelli V, Chaume D, Lefranc MP (2005) IMGT/GENE-DB: a comprehensive database for human and mouse im-
munoglobulin and T cell receptor genes. Nucleic Acids Research 33:D256-D261.



TABLE I: Heterozygous V allele information (Individual A)

Gene Allele # Overall Usage Fractional Allele Usage Mismatch Positions from start (from end)
IGHV1-3 1 0.012 0.481 187 (-109), 267 (-29), 272 (-24)
- 2 0.012 0.519 -
IGHV1-69 1 0.011 0.27 214 (-82), 220 (-76)
- 2 0.029 0.73 -
IGHV1-8 1 0.0099 0.533 210 (-86)
- 2 0.0087 0.467 -
IGHV2-26 1 0.0044 0.634 258 (-43), 295 (-6)
- 2 0.0025 0.366 -
IGHV3-20 1 0.0074 0.51 283 (-13)
- 2 0.0071 0.49 -
IGHV3-23 1 0.033 0.627 180 (-116), 219 (-77)
- 2 0.019 0.373 -
IGHV3-33 1 0.0012 0.85 276 (-20)
- 2 0.0002 0.15 -
IGHV3-47 1 0.0021 0.645 243 (-48)
- 2 0.0012 0.355 -
IGHV3-53 1 0.011 0.582 214 (-79), 261 (-32)
- 2 0.0081 0.418 -
IGHV3-69-1 1 0.0018 0.337 170 (-123), 213 (-80)
- 2 0.0036 0.663 -
IGHV3-71 1 0.0071 0.66 278 (-24), 282 (-20)
- 2 0.0037 0.34 -
IGHV3-9 1 0.045 0.538 200 (-98), 272 (-26)
- 2 0.039 0.462 -
IGHV4-38-2 1 0.012 0.857 267 (-27)
- 2 0.002 0.143 -
IGHV4-59 1 0.01 0.469 261 (-32)
- 2 0.011 0.531 -

Total Heterozygous V Usage 0.32




TABLE II: Heterozygous D and J allele information (Individual A)

Gene Allele # Overall Usage Fractional Allele Usage Mismatch Positions from start (from end)
IGHD1-14 1 0.00051 0.339 12 (-5)
- 2 0.001 0.661 -
IGHD1-7 1 0.0043 0.802 4 (-13), 12 (-5)
- 2 0.0011 0.198 -
IGHD2-2 1 0.05 0.244 29 (-2)
- 2 0.15 0.756 -
IGHD2-21 1 0.017 0.455 19 (—9)
- 2 0.02 0.545 -
IGHD4-4 1 0.0021 0.81 11 (-5)
- 2 0.00048 0.19 -
IGHD5-5 1 0.0053 0.721 17 (-3)
- 2 0.0021 0.279 -
Total Heterozygous D Usage 0.26
IGHJ6 1 0.0087 0.297 18 (-45), 19 (-44), 20 (-43), 36 (-27)
- 2 0.021 0.703 -
Total Heterozygous J Usage 0.029
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FIG. S1: Convergence with successive iterations of the expectation maximization procedure for inferring the pre-selection model
Pyre. A: The VD insertion distribution for individual A over ten iterations is displayed. Convergence to a stable distribution
is complete after only a few iterations. B: Log-likelihood of the data under the model, as a function of iteration number. The
algorithm converges rapidly to its maximum likelihood solution.
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FIG. S2: Robustness of model inference to statistical noise in the pre-selection model Py... Model distributions inferred from
disjoint data sets of 200K sequences from individual A are compared. The distributions are essentially indistinguishable.
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FIG. S3: Matrix of data-derived mutual information between variables describing the VDJ recombination scenario. The pairwise
mutual informations derived from the data (resp. directly from the generative model) are displayed above (resp. below) the
45 degree straight line The assumed structure of the recombination model implies that there is no correlation between certain
variable pairs, such as VD and DJ insertions. The observed correlations in the sequence data for such variable pairs are zero
within statistical noise, indicating that the model structure is in good accord with the correlations present in the data.
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FIG. S4: Convergence of the expectation maximization procedure for the selection model Q. Plotted is the log-likelihood of

the data under the model - >°_log[> y, ; Q(0,V,J)Ppre(0, V, J)], as a function of iteration number. The algorithm converges
to a stable maximum likelihood solution.
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FIG. S5: Robustness of the model inference to statistical noise for the selection model (). Each point in the scatter plot
corresponds to one position/length/amino-acid combination. The size of each point corresponds to product of usage probability
of this combination in the two datasets. Combinations with negligible usage are not shown. The points cluster around the line
of unit slope, with the clustering being very tight for the points with high usage probability. The scatter around the identity
line increases with decreasing usage probability, as is expected for sample noise.
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FIG. S6: V gene usage frequencies in VDJ recombination as inferred from naive nonproductive sequence repertoires for indi-
viduals A and B. Usage probability varies widely between genes and this plot displays only those V genes with usage frequency
greater than .01 for both individuals. Less than half of all V genes pass this filter. The variation between individuals, even for
genes with the highest usage rates, is quite substantial.
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FIG. S7: D and J gene usage frequencies in VDJ recombination as inferred from naive nonproductive sequence repertoires for
individuals A and B. Once again the plot only displays genes with usage frequency greater than .01 for both individuals. Less
that half of the D genes (but all of the J genes) pass this filter. The variation between individuals of D gene usage (but not of
J gene usage) is quite substantial.
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FIG. S8: Gene specific deletion profiles for a few frequently used V genes for individuals A and B (the profile for each of the two
individuals is displayed separately on the same plot). Negative deletions account for the occurrence of “palindromes” of different
length: when there is no deletion, some length of double-stranded DNA at the beginning of the gene can be “unfolded” into a
single-stranded palindrome that then gets filled in as double-stranded DNA before the insertion machinery acts. The deletion
apparatus is very sensitive to sequence context, and the deletion profile is quite variable from gene to gene. Remarkably, the
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deletion profile is nearly identical between the two subjects.
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FIG. S9: Mononucleotide utilization frequency for insertions. Top panel - individual A, Bottom panel - individual B. A simple
mononucleotide Markov model for generating VD and VJ insertions does not describe their sequence statistics with complete

accuracy.
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Individual A: Di-nucleotide frequencies
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FIG. S10: Dinucleotide frequencies of VD andDJ insertions. Top panel - individual A, Bottom panel - individual B. A common
dinucleotide Markov model accurately describes the sequence statistics of both VD and DJ insertions (reading VD sequences
from the DNA top strand and the DJ insertions from the bottom strand).
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FIG. S11: Scatter plot of observed trinucleotide frequencies in VD and DJ insertions against their frequencies as predicted
by the dinucleotide Markov model. The plot clearly indicates that three-base correlations are accurately reproduced by the
dinucleotide Markov model for both individuals and both types of insertion.
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FIG. S12: Selection factors of pairs of V and J genes for both individuals (heat plot of the logarithm of the selection factors
qv.g). Again, only V genes with usage frequency greater than .01 for both individuals are shown. V selection pattern is different

between individuals, but J pattern is more similar across genes.
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