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A Notations

Table 1: List of the notations used in the text and in the appendix, with remarks
notation ∈ type meaning

mathematical objets

sets and associated notations
N,Z set of natural numbers, integers
Q,R,C division ring of rationals, real, complex numbers
∈, /∈ belongs to, does not belong to
3, 63 contains, does not contain
M set of matrices (including vectors)
A set of applications
℘ set power set
.? set without 0 or the empty set
Jm; pK set [m; p] ∩ N
|.| cardinality number of elements of a set
\ operator set-theoretic difference
ℵ0 cardinality of the natural numbers (ℵ0 := |N|)
max
I
,min
I

element the biggest, the smallest,
of a set indexed by I

elementary notations
:= equal by definition
a R scalar constant
A A (R) scalar time-dependent variable
a ℘ (N) set subset of N
a M (R) vector (may be line or colum vector)
A M (R) matrix
< R scalar real part of a complex number
I{A} {0; 1} variable dummy variable of condition A
δi,j A

(
R2, {0; 1}

)
number Kronecker’s delta, 1 if i = j, null otherwise

0m M1,m (R) vector m-dimensional null vector,
(

0 0 · · · 0
)
m

1m M1,m (R) vector m-dimensional unit vector,
(

1 1 · · · 1
)
m

e(m)
i M1,m (R) vector i-th vector of the Rm standard basis

0m,p Mm,p (R) matrix m× p zero matrix
Im Mm,m (R) matrix m×m identity matrix
J M (R) matrix jacobian matrix
Sp C set spectrum of a square matrix
s R set spectral bound of a square matrix
ρ R set spectral radius of a square matrix
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notation ∈ type meaning

arithmetical operations
b.c floor function
modm modulo operation, m ∈ Z,modm (a) = c⇐⇒ a ≡ c [m]
.i1,...,ik−1,•,ik+1,... sum over the k-th index
.i1,...,ik−1,•,ik+1,... marginal arithmetic mean over the k-th index
.i1,...,ik−1,•,ik+1,...,i`−1,•,i`+1,... marginal arithmetic mean over the k-th and `-th indices

analytical objects
d
dt derivative with respect to time
.̂ steady-state value of a variable (constant solution of an ODE)
ε R quantity negligible, |ε| � 1
Ck property for a function to have k ∈ N continuous derivatives

matrix operations
. product standard matrix product, scalar product

� product Hadamard product (termwise product),
(A,B) ∈M2

`,c =⇒ A�B = (aijcij)(i,j)∈[[1;`]]×[[1;c]]

⊗ product de Kronecker (outer product)
A ∈M`,c,B ∈Mp,q =⇒ A⊗B = (aijB)(i,j)∈[[1;`]]×[[1;c]] ∈M`p,cq

T operator transpose matrix

vec operator vectorized matrix,
A ∈M`,c ⇐⇒ vec (A) =

(
amodc(i)+1,b i

cc+1

)
i∈[[1;`c]]

diag operator diagonalized matrix,
v ∈M1,c ⇐⇒ diag (v) = (δi,jvi)(i,j)∈[[1;c2]]

det operator square matrix determinant

dimensions
#p parasite load
#h host density
c concentration of public production molecules
t time

modelling objects
t R+ time
n N? number of parasite genotypes
G = J1;nK set of genotypes
R R+ number basic reproductive number
◦ single infection state (within-host level)

or disease-free state (between-host level)
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notation ∈ dimension type meaning

within-host
x = (Xk) Mn,1 (R+) #p vector parasite loads
g = (Gk) Mn,1 (R+) c scalar public good concentration
z = (Zk) Mn,1 (R+) c vector spite concentrations
U = diag (uk) Mn (R+) c.#−1

p vector public good production rates
V = diag (vk) Mn (R+) c.#−1

p matrix spite production rates
Γ = (γk,`) Mn (R+) c−1.t−1 vector public good effects on growth rate
Σ = (σk,`) Mn (R−) c−1.t−1 matrix spite effects on growth rate
H = (ηk,`) Mn (R) #−1

p .t−1 matrix binary interactions
% = (%k) Mn,1 (R+) t−1 vector basal growth rates
υ R?+ t−1 scalar standard clearing rate
Pk R t−1 scalar malthusian growth rate

class handling
℘ (G) ℘ (N) set host and inoculum classes
i ℘ (G) set host or inoculum class
C A (℘ (G) , J0; 2n − 1K) operator class labelling
ci,k {0; 1} coefficient presence
ci {0; 1}n vector presence
i J0; 2n − 1K label of host or inoculum class i = C−1 (i)
B ℘ (G) set biological classes
E ℘ (G) set epidemiological classes

φ A
(
B2,B

)
1 operator infection operator

ς A (℘ (G) , {0, 1}) 1 operator stability indicator

between host
βr,d,i R?+ #−2

h .t−1 scalar transmission rate
β R?+ #−1

h .t−1 scalar constant transmission factor
θd,i R?+ #−1

h .t−1 scalar recovery rate
θ R?+ #−1

h .t−1 scalar constant recovery factor
µi R?+ #−1

p .#−1
h .t−1 scalar death rate

µ R?+ #−1
p .#−1

h .t−1 scalar constant death factor
s◦ R?+ #h scalar constant total population size
S R+ #h scalar susceptible density
y = (Ii) Mn,1 (R+) #h vector host densities (I0 ≡ S)
X = (xi,j) Mn,2n (R+) #p matrix within-host steady state parasite loads
Ψ M2n,2n (R) #−2

h .t−1 matrix infection output rates
Φ M2n,22n (R) #−2

h .t−1 matrix infection input rates
Θ M2n,2n (R) #−1

h .t−1 matrix recovery output rates
Ξ M2n,2n (R) #−1

h .t−1 matrix recovery input rates

∆ M2n,2n (R) #−1
h .t−1 matrix death output rates

(input for susceptibles)
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B Within-host dynamics

B.1 Partial genotype combination steady-state

Here we show that there is a unique steady-state parasite load associated to a partial combination of
genotypes. Let i be the set of genotypes with non zero parasite loads at steady state (for a given set
of initial conditions),

i :=
{
k ∈ G : X̂k 6= 0

}
,

and x̂i the steady state parasite load vector associated to i. Therefore, the elements of x̂i the index
of which do not belong to i are 0. This gives

∀j ∈ G \ i, X̂j := 0,

(2.3) Ĝj = 0, Ẑj = 0,

(2.2) 0 = X̂j (M.x̂i)j = 0,

where M =: (mk,j)(k,j)∈G2 is the square matrix of steady-state interactions. In order to solve (2.2)
at steady state, it is necessary to extract these tautological rows. If Mi is a sub-matrix and %i a
sub-vector defined as

Mi := (mk,`)(k,`)∈i2 ,%i := (%k)k∈i ,

then the elements of x̂i are given by

X̂k =

0, k /∈ i,

−
(
M−1

i .%i

)
k
, k ∈ i.

(B.1)

Since M is a constant matrix, the elements of x̂i do not depend on the initial conditions of the
within-host system. As a consequence, there is only one steady state parasite load vector for each
partial genotype combination.

C Linking the within and between-host levels

C.1 Class labelling

As explained in the main text, labelling the class is a computational requirement to model and simu-
lating parasite dynamics. For n different parasite genotypes, there exist exactly |℘ (G)| = 2n different
host and inoculum classes.We introduce the following labelling operator:

C (i) :=
n∑
k=1

I{k∈i}2k−1,

where the set i ⊂ G is a class and IA the indicator function which equals 1 if A is true and 0 otherwise.
The label of the susceptible class, which is uninfected, is then

C (∅) =
n∑
k=1

I{k∈∅}2k−1 =
n∑
k=1

0× 2k−1 = 0.
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The label of the class which contains all the n genotypes is

C (G) = C (J1;nK) =
n∑
k=1

I{k∈J1;nK}2k−1 =
n∑
k=1

2k−1 = 1× 1− 2n

1− 2 = 2n − 1.

Since ∀i ⊂ G, ∀k ∈ G, I{k∈G} ≥ I{k∈i}, all the labels range from 0 to 2n−1 and we use J0; 2n − 1K to
index ℘ (G).
C is a labelling function if and only it is bijective. To prove so, let us study the following function

f : J0; 2n − 1K −→ ℘ (G) ,

i 7−→ f (i) :=
{
k ∈ G : mod2

⌊
i

2k−1

⌋
= 1

}
.

Let us consider an arbitrary label i ∈ J0; 2n − 1K. Because J0; 2n − 1K ⊂ N, and because any natural
number can be written using the binary numeral system, there is a sequence of (aj)j∈N ∈ {0; 1}N, which
is constantly equal to 0 after a certain rank N , and which corresponds to the digits of i in the binary
numeral system (0 or 1), such that i = (. . . 0 . . . 0aNaN−1 . . . a1a0)2 =

∞∑
j=0

aj2j . Then, for any k ∈ G,

we have

mod2

⌊
i

2k−1

⌋
:=

⌊
i

2k−1

⌋
− 2

⌊
i

2k−1

2

⌋
,

=


∞∑
j=1

aj2j−1

2k−1

− 2


∞∑
j=1

aj2j−1

2k

 ,

=


1
2k

k−1∑
j=1

(
aj2j

)
︸ ︷︷ ︸

<1 (*)

+
∞∑
j=k

(
aj2j−k

)
− 2


k∑
j=1

(
aj2j−k−1

)
︸ ︷︷ ︸

<1

+
∞∑

j=k+1

(
aj2j−k−1

)
 ,

=
∞∑
j=k

(
aj2j−k

)
− 2

∞∑
j=k+1

(
aj2j−k−1

)
,

= ak,

where (∗) is justified by the well-known sum
∞∑
j=0

1
2j = 2.

Finally, by identifying i to the label of a class i, i := C (i), we have ak = I{k∈i} and f (i) =
{k ∈ G : ak = 1} =

{
k ∈ G : I{k∈i} = 1

}
= {k ∈ G : k ∈ i} = {k ∈ i} = i. So f is the inverse function

of C. We have proved that C is bijective and that its inverse function, which is also bijective, is
C−1 : i 7→

{
k ∈ G : mod2

⌊
i

2k−1

⌋
= 1

}
.

Therefore it is possible to know if a genotype belongs to a class directly from the label of the latter.
This is done by calculating the following presence coefficient for each couple (i, k) ∈ J0; 2n − 1K×J1;nK,

ci,k = mod2

⌊
i

2j−1

⌋
= I{k∈C−1(i)},

which is 1 if genotype k belongs to host class i. As a consequence of this definition, we have
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i =
∑
k∈G

ci,k2k−1.

The presence vector ci := (ci,k)k∈G is then the vector of the presence coefficients for all genotypes
in a given class. The presence vector is useful for calculating class ranks. For a given class with label
i, its rank denoted ni, that is the number of genotypes it contains, is

ni = ci.1T
n ,

where 1n is the unity vector of Rn.
Thereafter, light class indices (such as i) refer to labelled classes and bold class indices (such as

i) refer to the associated set-theoretic classes. Class-related functions can indifferently be applied to
both forms owing to the bijectivity of C.

C.2 Within-host jacobian matrix

We need to calculate the within-host jacobian matrix Jw in order to determine the stability of the
steady states. Jw is the 3n× 3n matrix given by the following general formula

Jw :=
(

∂

∂Wj

(dWk

dt

))
(k,j)∈J1;3nK2

where Wk =


Xk, k ∈ J1;nK ,

Gk−n, k ∈ Jn+ 1; 2nK ,

Zk−2n, k ∈ J2n+ 1; 3nK ,

which can be split into nine n× n submatrices as follows

Jw =


JX,X JX,G JX,Z
JG,X JG,G JG,Z
JZ,X JZ,G JZ,Z

 .
Let us calculate ∂

∂Xj

(
dXk
dt

)
,

∂

∂Xj

(dXk

dt

)
= ∂

∂Xj

%k +
∑
`∈G

γk,`G` −
∑
`∈G

σk,`Z` +
∑
`∈G

ηk,`X`

Xk

 ,
if j 6= k, = ηk,jXk,

if j = k, = %k +
∑
`∈G

γk,`G` −
∑
`∈G

σk,`Z` +
∑
`∈G

ηk,`X` + ηk,kXk,

so

JX,X = diag (% + Γ.g−Σ.z + H.x) + H� (x.1n) .

Let us calculate ∂
∂Gj

(
dXk
dt

)
,

∂

∂Gj

(dXk

dt

)
= ∂

∂Gj

%k +
∑
`∈G

γk,`G` −
∑
`∈G

σk,`Z` +
∑
`∈G

ηk,`X`

Xk

 ,
= γk,jXk,
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so

JX,G = Γ� (x.1n) .

Let us calculate ∂
∂Zj

(
dXk
dt

)
,

∂

∂Zj

(dXk

dt

)
= ∂

∂Zj

%k +
∑
`∈G

γk,`G` −
∑
`∈G

σk,`Z` +
∑
`∈G

ηk,`X`

Xk

 ,
if j 6= k, = −σk,jXk,

if j = k, = 0 (because σk,k = 0),

so

JX,Z = −Σ� (x.1n) .

Let us calculate ∂
∂Xj

(
dGk
dt

)
,

∂

∂Xj

(dGk
dt

)
= ∂

∂Xj
(υ (ukXk −Gk))

if j 6= k, = 0,

if j = k, = υuj ,

so
JG,X = υU.

Let us calculate ∂
∂Zj

(
dGk
dt

)
,

∂

∂Zj

(dGk
dt

)
= ∂

∂Zj
(υ (ukXk −Gk)) ,

= 0,

so

JG,Z = 0n,n.

Let us calculate ∂
∂Gj

(
dGk
dt

)
,

∂

∂Gj

(dGk
dt

)
= ∂

∂Gj
(υ (ukXk −Gk)) ,

if j 6= k, = 0,

if j = k, = −υ,

so
JG,G = −υIn.

Let us calculate ∂
∂Xj

(
dZk
dt

)
,
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∂

∂Xj

(dZk
dt

)
= ∂

∂Xj
(υ (vkXk − Zk)) ,

if j 6= k, = 0,

if j = k, = υvk,

so

JZ,X = υV

Let us calculate ∂
∂Zj

(
dZk
dt

)
,

∂

∂Zj

(dZk
dt

)
= ∂

∂Zj
(υ (vkXk − Zk)) ,

if j 6= k, = 0,

if j = k, = −υ,

so

JZ,Z = −υIn.

Let us calculate ∂
∂Gj

(
dZk
dt

)
,

∂

∂Gj

(dZk
dt

)
= ∂

∂Gj
(υ (vkXk − Zk)) ,

= 0,

so

JZ,G = 0n,n.

Jw can then be written as the following bloc matrix:

Jw (x,g, z) =


diag (% + Γ.g−Σ.z + H.x) + H� (x.1n) Γ� (x.1n) −Σ� (x.1n)

υU −υIn 0n,n
υV 0n,n −υIn

 .
Finally, in a steady state (x̂, ĝ, ẑ) with non zero values of x̂, it follows from (2.6) that

Jw (x̂, ĝ, ẑ) =


H� (x̂.1n) Γ� (x̂.1n) −Σ� (x̂.1n)

υU −υIn 0n,n
υV 0n,n −υIn

 .
C.3 Susceptible state instability

In an uninfected host, x = g = z = 0T
n . Therefore the within susceptible host jacobian matrix is
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J◦w =


diag (%) 0n,n 0n,n
υU −υIn 0n,n
υV 0n,n −υIn

 ,
which is a real-valued upper triangular matrix. Its eigenvalues are straightforward Sp (J◦w) = {%1, . . . , %n,−υ}.
Since we assume that any considered genotype grows when alone within a host, i.e. %k > 0, the sus-
ceptible state is unstable for any n ∈ N?.

C.4 Single infection state stability

Assuming % > 0 makes the susceptible state unstable. Assuming η+γu < 0 makes the single infection
steady state positive. The stability of the latter still needs to be proved. The jacobian matrix within
singly infected host is the following 3× 3 matrix

Jw (X,G,Z) =


%+ γG+ 2ηX γX 0

υu −υ 0
υv 0 −υ

 ,
where the indices are not shown for the sake of simplicity. Note that σ does not appear, for we assume
that no genotype is affected by the spite it produces.

At steady state, we have %+ γĜ+ 2ηX̂ = %− γu
(

%
η+γu

)
− 2η

(
%

η+γu

)
= − %η

η+γu , so

Jw (x◦k (1, uk, vk)) =


−%η
η+γu

−%γ
η+γu 0

υu −υ 0
υv 0 −υ

 ,
the eigenvalues of which ares the roots of the following determinant

|Jw (x◦k (1, uk, vk))− λI3| =

∣∣∣∣∣∣∣∣
−%η
η+γu − λ

−%γ
η+γu 0

υu −υ − λ 0
υv 0 −υ − λ

∣∣∣∣∣∣∣∣ ,
= − (υ + λ)2

(
%η

η + γu
+ λ

)
− (υ + λ) %γ

η + γu
υu,

= − (υ + λ)
(

(υ + λ)
(

%η

η + γu
+ λ

)
+ υ%γu

η + γu

)
,

= − (υ + λ)
(
λ2 +

(
υ + %η

η + γu

)
λ+ %υ

)
.

A first obvious eigenvalue is λ0 = −υ < 0. The remaining two are the roots of the following
polynomial

λ2 +
(
υ + %η

η + γu

)
λ+ %υ = 0,

the discriminant of which is
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∆ =
(
υ + %η

η + γu

)2
− 4%υ,

= υ2 − 2%υ (2γu+ η)
η + γu

+
(

%η

η + γu

)2
,

=
(
υ − %η

η + γu

)2
− 4%υγu
η + γu

.

Owing to the previous assumptions, ∆ > 0, and the eigenvalues are the following real real numbers

λ1,2 = −1
2

υ + %η

η + γu
±

√(
υ + %η

η + γu

)2
− 4%υ

 < 0.

These eigenvalues are both negative, implying the single infection steady state stable.

C.5 Biological, epidemiological classes and infection, stability operators

As explained in the main text, labelling the class is a computational requirement to model and simu-
lating parasite dynamics. The set of biological classes B is formally defined as

B := {i ∈ ℘ (G) ? : ∀k ∈ i, x̂i > 0 ∧max (< (Sp (Jw ((In,U,V) .x̂i)))) < 0} ∪ {∅} ,

where Jw is here the 3 |i|×3 |i| jacobian matrix obtained by removing the lines and columns related to
genotypes absent from i and max (< (Sp (Jw ((In,U,V) .x̂i)))) refers to the greatest real part among
its eigenvalues.

Consider now a host belonging to class r ∈ B the parasite loads of which have reached the biologi-
cally meaningful within-host steady state x̂r, that is to say positive and stable. Let us further assume
that this host is infected by a class p inoculum. We call

(
x(r,p),g(r,p), z(r,p)

)
(t) the dynamical system

that corresponds to this infection event, defined by its initial condition
(
x(r,p),g(r,p), z(r,p)

)
(0) :=

(x̂r + ε ‖x̂r‖ cp, ĝr, ẑr), where 0 < ε� 1 is the inoculation factor.
Given this modelling of infection events, the output class is found through the infection operator

defined as

φ (r,p) :=


min
i∈B

∥∥∥∥ lim
t→∞

x(r,p) (t)− x̂i

∥∥∥∥ , ∥∥∥∥ lim
t→∞

x(r,p) (t)
∥∥∥∥ <∞,

0, otherwise.

This definition of φ holds only if x(r,p) has a finite limit when t → ∞ . If the limit is infinite,
then φ is 0 because of our definition of the ultrainfection pattern (see below). If there is no finite nor
infinite limit (this occurs when the attractor is not a fixed point), then φ must be adapted depending
on the behaviour of the system, the use of the model and additionnal assumptions. As alternative
definitions of φ, one can think of fixing a finite time for within-host dynamics, that is

0 < T <∞, φ (r,p) := I{
sup

t∈[0,T ]
x(r,p)(t)<∞

}min
i∈B

∥∥∥∥ lim
t→T

x(r,p) (t)− x̂i

∥∥∥∥ ,
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or averaging over a period or an long amount of time, as in

0 < T <∞, φ (r,p) := I{
sup

t∈[0,2T ]
x(r,p)(t)<∞

}min
i∈B

∥∥∥∥∥ 1
T

∫ 2T

T
x(r,p) (t) dt− x̂i

∥∥∥∥∥ .
Finally, in case of chaos, one should pay attention to the inoculation factor which can greatly influence
the output. In the next subsection (C.6) we give a sufficient condition for lim

t→∞
x(r,p) (t) to always be

a steady-state x̂i with i ∈ B, so the first definition of φ holds.
Ultrainfection happens when the growth of at least one genotype is not bounded. Recall that

ultrainfection relies on three assumptions:

1. time scale separation between the two levels of dynamics, that is to say at within-host level
all hosts of a given class have the same class show the same parasite loads and these are at
steady-state,

2. host mortality rate is an increasing non bounded function of total parasite load,

3. constant population size.

Then the set of epidemiological class E is defined as

E :=
{

i ∈ B : ∃ (r,d) ∈ B2, ∃p ⊂ d, φ (r,p) = i
}
∪ {∅} .

The stability operator ς, used thereafter in the labelled form of between-host rates, is simply
defined as

∀i ∈ J0; 2n − 1K , ς (i) := I{C−1(i)∈E}.

C.6 A sufficient condition for global asymptotic stability

In this subsection we use a Lyapunov function [57] to derive a sufficient condition for within-host
steady states to be globally asymptotically stable so that non fixed point attractors are avoided. The
derivation is inspired from previous works on generalized competitive Lotka-Volterra systems such as
[58, 59].

The set of biological infected classes

B? := {i ∈ ℘ (G) ? : ∀k ∈ i, x̂i > 0,max (< (Sp (Jw ((In,U,V) .x̂i)))) < 0}

is characterized by its feasibility, that is the positivity of the steady state parasite loads, and by
its local asymptotic stability, provided by the negativity of the real part of all eigenvalues of the
jacobian matrix evaluated at the steady state [57]. A steady state is said to be locally asymptotically
stable (LAS) if there is a neighbourhood of the steady state where any trajectory starting from it
will converge infinitely close to the steady state as time goes to infinity. However, this neighbourhood
may be very limited and its boundary difficult to estimate. Thus, local asymptotic stability does not
guarantee that any feasible trajectory will get infinitely close to the steady state. The trajectory may
be trapped in other attractors that are not a fixed point but a finite set of points, a limit cycle or even
strange attractors. The only way to make sure that any trajectory that starts with positive initial
conditions will not be trapped by other attractors than steady states is to make these steady states
globally asymptotically stable (GAS) [57].
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Let us consider i ∈ B? a biological class and assume that that the steady state ŵi =


x̂i

ĝi

ẑi

, with
x̂i,k > 0,∀k ∈ i, is LAS in (R+)3n. Even though this last condition is more restrictive than ŵi being
LAS in (R+)3|i| (it is straightforward that ŵi LAS in (R+)3n =⇒ ŵi LAS in (R+)3|i|), we use it for
the sake of simplicity. Indeed, since n and i are arbitrary, the following result can be applied to any
nonempty subset of G without any loss of generality.

First of all, we note that (R+)3n is a positively invariant set, that is any trajectory starting in
(R+)3n remains in (R+)3n [57]. This can be intuitively shown as follows. The time derivative in
(2.1) and (2.2) are respectively linear and bilinear, and therefore continuous; therefore Xk (t) cannot
become negative without taking the value 0 beforehand. But since Xk is a common factor in (2.2),
it will remain 0 from then on. Similarly, Gk (t) cannot become negative without taking the value 0
beforehand. Due to the previous argument, it then follows that d

dtGk (t) = ukXk ≥ 0 and the same
applies to Zk (t). This allows us to define a Lyapunov function on (R+)3n (see below).

Let w =


x
g
z

 be the variable vector and Ωi be the following subset of (R+)3n:

Ωi :=
{
w ∈ (R+)3n : ∀k ∈ i, Xk > 0

}
.

The usual way of proving that a steady state is GAS on a given set is to prove the existence of a
Lyapunov function that satisfies certain definiteness properties on the set [57]. Here, ŵi is globally
asymptotically stable on Ωi if there is a C1 function Vi : (R+)3n → R such that

1. V i (ŵi) = 0,

2. ∀w ∈ Ωi \ {ŵi} , Vi (w) > 0,

3. d
dtVi (ŵi) = 0,

4. ∀w ∈ Ωi \ {ŵi} , d
dtVi (w) < 0.

We now present a sufficient condition on within-host parameters for this function to exist.
We now consider the function Vi defined as

Vi (w) :=
∑
k∈i

qx,k

(
Xk − x̂i,k − x̂i,klog

(
Xk

x̂i,k

))
+
∑
k∈G\i

qx,kXk+
1

2υ
∑
k∈G

qg,k (Gk − ĝi,k)2+qz,k (Zk − ẑi,k)2 ,

(C.1)
where ∀k ∈ G, (qx,k, qg,k, qz,k) ∈

(
R?+
)3, and ∀k /∈ i, ĝi,k = ẑi,k = x̂i,k = 0 by definition.

Vi is C1 on Ω because it is a sum of elementary single variable functions which are C1 on R+

except the logarithm that applies to Xk, k ∈ i and is C1 on R?+.
The first sum of Vi in (C.1) involves terms of the form f (x) := x− a− a (logx− loga), with a > 0.

Given that the first derivative of f is f ′ (x) = 1 − a
x and its second derivative is f ′′ (x) = a

x2 > 0, it
follows that the argmin

R?
+

(f) = a and min
R?

+
(f) = 0. Thus, and since Vi is a separable function in each

component of w and qx,k, qg,k, qz,k and υ are positive constants, it is straightforward that

∀w ∈ Ω \ {ŵi} , Vi (w) > 0,

Vi (ŵi) = 0.
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Properties 1 and 2 of the Lyapunov function are satisfied.
Let us now calculate the time derivative of Vi with the help of the following notation of the

malthusian growth rate Pk (w) that satisfies

d
dtXk = Pk (w)Xk,

hence
Pk (w) := %k +

∑
`∈G

γk,`G` − σk,`Z` + ηk,`X`,

so the time derivative of Vi is

d
dtVi (w) =

∑
k∈i

qx,k

(
Pk (w)Xk − x̂i,k

Pk (w)Xk

Xk

)
+
∑
k∈G\i

qx,kPk (w)Xk

+
∑
k∈G

qg,k (ukXk −Gk) (Gk − ĝi,k) + qz,k (vkXk − Zk) (Zk − ẑi,k) .

Given that ∀k /∈ i, x̂i,k = 0, it follows that

d
dtVi (w) =

∑
k∈G

qx,kPk (w) (Xk − x̂i,k) + qg,k (ukXk −Gk) (Gk − ĝi,k) + qz,k (vkXk − Zk) (Zk − ẑi,k) .

It is straightforward that d
dtVi (ŵi) = 0, that is property 3 is satisfied. The following calculations

are then made to find a sufficient condition for property 4.
From (2.3) and (B.1), we have that ∀k ∈ i, Pk (ŵi) = 0, which gives

%k = −
∑
`∈G

γk,`ĝi,` + σk,`ẑi,` − ηk,`x̂i,`,

thus ∀k ∈ i,

Pk (w) =
∑
`∈G

γk,` (G` − ĝi,`)− σk,` (Z` − ẑi,k) + ηk,` (X` − x̂i,k) .

Note now that ∀k /∈ i, the following equality holds

Pk (w) =
∑
`∈G

γk,` (G` − ĝi,`)− σk,` (Z` − ẑi,k) + ηk,` (X` − x̂i,k) + %k +
∑
`∈G

γk,`ĝi,` − σk,`ẑi,` + ηk,`x̂i,`.

=
∑
`∈G

γk,` (G` − ĝi,`)− σk,` (Z` − ẑi,k) + ηk,` (X` − x̂i,k) + Pk (ŵi) .

Moreover, note that ∀k ∈ G, ukXk −Gk can be written as

ukXk −Gk = ukXk − ukx̂i,k + ukx̂i,k −Gk,

= uk (Xk − x̂i,k)− (Gk − ĝi,k) ,

14



and the same holds for vkXk − Zk

vkXk − Zk = vk (Xk − x̂i,k)− (Zk − ẑi,k) .

Therefore, the time derivative of Vi can be written as

d
dtVi (w) =

∑
k∈G

∑
`∈G

qx,k (γk,` (G` − ĝi,`)− σk,` (Z` − ẑi,k) + ηk,` (X` − x̂i,k)) (Xk − x̂i,k)

+
∑
k∈G

qg,kuk (Xk − x̂i,k) (Gk − ĝi,k)− qg,k (Gk − ĝi,k)2

+qz,kvk (Xk − x̂i,k) (Zk − ẑi,k)− qz,k (Zk − ẑi,k)2

+
∑
k∈G\i

qx,kPk (ŵi)Xk.

Then, because ŵi is assumed to be LAS, we can apply the following theorem by Takeuchi [59],

∀N ∈ N?,


d
dtw = f (w)�w,

f : RN → RN is C1, =⇒ f (ŵ) ∈ (R−)N .

ŵ is LAS,

Hence,
∑

k∈G\i
qx,kPk (ŵi)Xk ≤ 0 so we have

d
dtVi (w) ≤

∑
k∈G

(
qg,kuk (Xk − x̂i,k) (Gk − ĝi,k)− qg,k (Gk − ĝi,k)2

+qz,kvk (Xk − x̂i,k) (Zk − ẑi,k)− qz,k (Zk − ẑi,k)2∑
`∈G

(qx,kγk,` (G` − ĝi,`) (Xk − x̂i,k)− qx,kσk,` (Z` − ẑi,k) (Xk − x̂i,k)

+qx,kηk,` (X` − x̂i,k) (Xk − x̂i,k))) . (C.2)

If we use now generalized variable notations Wk and ŵi,k such that

∀k ∈ G,

Wk := I{k∈J1;nK}Xk + I{k∈Jn+1;2nK}Gk + I{k∈J2n+1;3nK}Zk,

ŵi,k := I{k∈J1;nK}x̂i,k + I{k∈Jn+1;2nK}ĝi,k + I{k∈J2n+1;3nK}ẑi,k,

where G := J1; 3nK. Similarly, we define

∀k ∈ G, qk := I{k∈J1;nK}qx,k + I{k∈Jn+1;2nK}qg,k + I{k∈J2n+1;3nK}qz,k.

Using these notations, we can now see that

d
dtVi (w) ≤

∑
(k,`)∈G2

qkak,` (Wk − ŵi,k) (W` − ŵi,`) = 1
2 (w− ŵi)T

(
Q.A + AT.Q

)
(w− ŵi) , (C.3)

where Q = diag (qk)k∈G and A := (ak,`)(k,`)∈G2 . By comparing (C.2) and (C.3), it follows that A is
the following matrix of within-host parameters
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A =


H Γ −Σ
U −In 0n,n
V 0n,n −In

 . (C.4)

From (C.3), it follows that property 4 is satisfied if and only if there exists a positive diagonal
matrix Q ∈M3n,3n

(
R?+
)
such that Q.A + AT.Q is negative definite.

We finally use a theorem from Berman & Plemmons [60] that states ∀N ∈ N?, ∀A = (ai,j)(i,j)∈J1;NK2 ∈
MN,N (R),

∃d = (di)i∈J1;NK ∈
(
R?+
)N : ∀k ∈ J1;NK ,−diai,i >

∑
j∈J1;NK\{i}

|ai,j | dj

=⇒ ∃Q ∈MN,N

(
R?+
)
diagonal : Q.A + AT.Q is negative definite.

The premise of this theorem is called strict row diagonal dominance. Then, a sufficient condition
for property 4 to be satisfied is the following by setting d = 1n for instance,

∀k ∈ G, ak,k < −
∑

`∈G\{i}

|ak,`| < 0,

that is to say, by (C.4),

∀k ∈ G,


ηk,k < −

∑
`∈G\{k}

|ηk,`| −
∑
`∈G

γk,` + σk,` < 0,

0 < uk < 1,

0 < vk < 1.

(C.5)

We have thus proved that if ŵi is a LAS steady state in (R+)3n and the within-host parameters
satisfy (C.5), then ŵi is GAS in Ωi, that is w (0) ∈ Ωi =⇒ lim

t→∞
w (t) = ŵi.

D Between host level

D.1 Transmission rates properties

Hereafter we provide a proof of the two transmission rate properties which are (4.4), the overall
transmission rate is constant whatever the host class, and (4.5), which gives the transmission rate of a
given genotype from a given host class. For the sake of simplicity, the proof is provided for an abstract
finite set instead of a set of parasite genotypes.

Let Ω be a finite set such that

Ω =
{
ω1, ω2, . . . , ω|Ω|

}
, |Ω| < ℵ0.

We define an arbitrary measure µ on Ω as follows

1. µ ∈ A (Ω, [0; 1]),

2. µ (∅) = 0,

3. µ (Ω) = 1,
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4. ∀ω ∈ Ω, 0 < µ ({ω}) < 1,

5. ∀P ∈ ℘ (Ω) , µ (P) =
∑
ω∈P

µ ({ω}).

One can see µ as an elementary probability associated to Ω. As a consequence of points 3. and 5. of
this definition, we have

∑
ω∈Ω

µ ({ω}) 5.= µ (Ω) 3.= 1. (D.1)

Next, we introduce the operator F.,. that is a function of a couple of disjoint subsets of Ω,

∀ (P,Q) ∈ ℘ (Ω)2 : P ∩Q = ∅, FP,Q :=
∏
ω∈P

µ ({ω})
∏
ω∈Q

(1− µ ({ω})) .

This operator is the product over all the measures of each element of its first subset argument
and the complementary measures of each element of its second subset argument. It has the following
properties

6. ∀α ∈ Ω, F{α},∅ = µ ({α}),

7. ∀α ∈ Ω, F∅,{α} = 1− µ ({α}) ,

8. ∀α ∈ Ω, F{α},∅ + F∅,{α} = 1,

9. ∀ (P,Q,R,S) ∈ ℘ (Ω)4 mutually disjoint, FP,QFR,S = FP∪R,Q∪S ,

10. ∀α ∈ Ω, ∀ (P,Q) ∈ ℘ (Ω \ {α})2 : P ∩Q = ∅, FP,Q = FP∪{α},Q + FP,Q∪{α}.

Let us prove them all.
The proof of property 6. is the following

∀α ∈ Ω, F{α},∅, :=
∏

ω∈{α}
µ ({ω})

∏
ω∈∅

(1− µ ({ω})) ,

= µ ({α})× 1,

= µ ({α}) ,

since the empty product is the neutral element of multiplication, that is one, such for ∀x ∈ R?, x0 = 1.
Similarly, the proof of property 7. is

∀α ∈ Ω, F∅,{α}, :=
∏
ω∈∅

µ ({ω})
∏

ω∈{α}
(1− µ ({ω}))

= 1× (1− µ ({α})) ,

= 1− µ ({α}) .

The proof of property 8. is straightforward from the previous two

∀α ∈ Ω, F{α},∅ + F∅,{α}
6. and 7.= µ ({α}) + (1− µ ({α})) ,

= 1.
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To prove property 9., let P,Q,R,S a family of four mutually disjoint subsets of Ω, then

FP,QFR,S :=

∏
ω∈P

µ ({ω})
∏
ω∈Q

(1− µ ({ω}))

(∏
ω∈R

µ ({ω})
∏
ω∈S

(1− µ ({ω}))
)
,

=
∏

ω∈P∪R
µ ({ω})

∏
ω∈Q∪S

(1− µ ({ω})) ,

=: FP∪R,Q∪S .

Finally, to prove property 10., let α be an element of Ω and P,Q two disjoint susbets of Ω \ {α},
that is none of them contains α. Using properties 8. and 9. we have

FP,Q
8.=

(
F{α},∅ + F∅,{α}

)
FP,Q,

= F{α},∅FP,Q + F∅,{α}FP,Q,

9.= FP∪{α},Q + FP,Q∪{α}.

Let us now do the following calculation starting from F{ω1},∅ and using |Ω| − 1 times property 8,

F{ω1},∅
8.= F{ω1},∅

(
F{ω2},∅ + F∅,{ω2}

) (
F{ω3},∅ + F∅,{ω3}

)
. . .
(
F{ω|Ω|},∅ + F∅,{ω|Ω|}

)
,

= F{ω1},∅

 ∑
P∈℘(Ω\{ω1})

∏
ω∈P

F{ω},∅
∏

ω∈(Ω\{ω1})\P
F∅,{ω}

 ,
9.= F{ω1},∅

 ∑
P∈℘(Ω\{ω1})

FP,∅F∅,(Ω\{ω1})\P

 ,
9.= F{ω1},∅

 ∑
P∈℘(Ω\{ω1})

FP,(Ω\{ω1})\P

 ,
by noticing that each term of the expansion contains either F{ωk},∅ or F∅,{ωk}, for a given ω of Ω\{ω1}.
Each term of the expansion is then a unique partition (P, (Ω \ {ω1}) \ P) of Ω\{ω1}, whence the sum
index.

Including F{ω1},∅ in the sum, we have

F{ω1},∅ =
∑

P∈℘(Ω\{ω1})
F{ω1},∅FP,(Ω\{ω1})\P ,

9.=
∑

P∈℘(Ω\{ω1})
FP∪{ω1},(Ω\{ω1})\P ,

=
∑
P∈℘(Ω)
P3ω1

FP,Ω\P .

The same calculation can be done for each ω of Ω. The following equality holds
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∀ω ∈ Ω, F{ω},∅ =
∑
P∈℘(Ω)
P3ω

FP,Ω\P . (D.2)

Let us now do the following calculation

1 (D.1)=
∑
ω∈Ω

µ ({ω}) ,

6.=
∑
ω∈Ω

F{ω},∅,

(D.2)=
∑
ω∈Ω

∑
P∈℘(Ω)
P3ω

FP,Ω\P ,

=
∑
P∈℘(Ω)

∑
ω∈P

FP,Ω\P ,

=
∑
P∈℘(Ω)

FP,Ω\P
∑
ω∈P

1,

=
∑
P∈℘(Ω)

FP,Ω\P |P| .

Thus we proved that

∑
P∈℘(Ω)

|P|FP,Ω\P = 1. (D.3)

Let us now reversely apply the previous argument to the sum
∑

P∈℘(Ω\{α})
|P|FP,(Ω\{α})\P , ∀α ∈ Ω

(note that Ω is replaced by Ω \ {α}). We have

∑
P∈℘(Ω\{α})

|P|FP,(Ω\{α})\P =
∑

ω∈Ω\{α}

∑
P∈℘(Ω\{α})
P3ω

FP,(Ω\{α})\P ,

(D.2)=
∑

ω∈Ω\{α}
F{ω},∅,

6.=
∑

ω∈Ω\{α}
µ ({ω}) ,

=
∑
ω∈Ω

µ ({ω})− µ ({α}) ,

(D.1)= 1− µ ({α}) . (D.4)

It is then straightforward that
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∑
P∈℘(Ω)
P63α

|P|FP,Ω\P
9.=

∑
P∈℘(Ω\{α})

|P|F∅,{α}FP,(Ω\{α})\P

= F∅,{ω1}

 ∑
P∈℘(Ω\{α})

|P|FP,(Ω\{α})\P

 ,
7. and (D.4)= (1− µ ({α})) (1− µ ({α})) ,

that is

∀α ∈ Ω,
∑
P∈℘(Ω)
P63α

|P|FP,Ω\P = (1− µ ({α}))2 . (D.5)

Finally, we have ∀α ∈ Ω,

∑
P∈℘(Ω)
P3α

|P|FP,Ω\P
10.=

∑
P∈℘(Ω)
P3α

|P|
(
FP\{α},Ω\P − FP\{α},{Ω\P}∪{α}

)
,

=
∑
P∈℘(Ω)
P3α

|P|FP\{α},Ω\P −
∑
P∈℘(Ω)
P3α

|P|FP\{α},{Ω\P}∪{α},

=
∑
P∈℘(Ω)

|P|FP,Ω\P −
∑
P∈℘(Ω)
P63α

|P|FP,{Ω\P},

(D.3) and (D.5)= 1− (1− µ ({α}))2 ,

= 1− 1 + 2µ ({α})− µ ({α})2 ,

= µ ({α}) (2− µ ({α})) . (D.6)

Now, by identifying Ω to host class d, ωk to genotypes, µ ({ωk}) to genotypes frequencies xd,k∑̀
∈d

xd,`
,

it is straightforward that (D.3) implies (4.4) and (D.6) implies (4.5).
The curve of βd,k as a function of xd,k is given in Figure 4.

20



Figure 4: Transmission rate of genotype k from hosts d as a function of the parasite load of genotype
k (the parasite loads of the other genotypes being fixed), for |d| ≥ 2.

The plateau corresponds to the overall transmission rate β, and is the limit of genotype k trans-
mission rate when its frequency goes to 1, that is

lim
xd,k→∞

βd,k = lim
xd,k→∞

β
xd,k∑̀
∈d
xd,`

2− xd,k∑̀
∈d
xd,`

 ,

= β lim
xd,k→∞

1
1 +

∑
`∈d\{k}

xd,`

xd,k

2− xd,k

xd,k

(
1 +

∑
`∈d\{k}

xd,`

xd,k

)
 ,

= β.

However, the transmission rate of genotype k reaches half of the overall transmission rate relatively
quickly. Indeed, if we denote xd,0.5 the parasite load that satisfies the following equation

β
xd,0.5∑̀
∈d
xd,`

2− xd,0.5∑̀
∈d
xd,`

 = β

2 ,

we have

 xd,0.5∑̀
∈d
xd,`


2

− 2 xd,0.5∑̀
∈d
xd,`

+ 1
2 = 0.

The discriminant of this polynomial is ∆ = 2 so its only root lying in [0; 1] is

xd,0.5∑̀
∈d
xd,`

= +2−
√

2
2 = 1−

√
2

2 ≈ 29 %.
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If we denote by xd,◦ the average parasite load of the |d| − 1 other genotypes in d, the half overall
transmission parasite load xd,0.5 is

xd,0.5 =
(

1−
√

2
2

)
(xd,0.5 + (|d| − 1)xd,◦) ,

=
1−

√
2

2√
2

2

(|d| − 1)xd,◦,

=
(√

2− 1
)

(|d| − 1)xd,◦,

where
√

2 − 1 ≈ 41%. A numerical application shows that xd,0.5 is smaller than xd,◦ only in bi- and
tri-infected hosts.

The main result of this calculation is that whatever the rank of the coinfected host class (provided
that |d| ≥ 2), a given genotype is involved in at least half of the transmissions if its frequency is higher
than about 29% (reminding us that the sum of the parasite transmission rates can be greater than
the overall transmission rate because of shared inoculas).

D.2 Labelled forms of between-host equations

Based on the labelling previously defined, we present here the labelled alternative forms of the equa-
tions and rates written in the set-theoretic form in the main text. We also detail the master equation
matrices, for readers interested in computing the model. Thereafter δa,b refers to the Kronecker’s
delta, which is 1 if a = b and 0 otherwise.

D.2.1 Between-host ODEs

The labelled form of the between-host ODEs is the following


dIi
dt =

2n−1∑
r=0

2n−1∑
d=0

βr,d,iIrId +
2n−1∑
d=0

θd,iId −
(

2n−1∑
d=0

2n−1∑̀
=0
βi,d,`Id +

2n−1∑̀
=0
θi,` + µi

)
Ii,

dS
dt =

2n−1∑
d=0

µdId +
2n−1∑
r=0

2n−1∑
d=0

βr,d,0IrId +
2n−1∑
d=0

θd,0Id −
2n−1∑
d=0

2n−1∑
`=0

β0,d,`IdS.

D.2.2 Infection rates

The labelled form of the infection rates is the following

βr,d,i := βς (r) ς (d) ς (i) (1− δr,i)
2n−1∑
p=0

(
min
k∈J1;nK

(
δcd,k,cd,k+cp,k−cd,kcp,k

)
δi,φ(r,p)np

n∏
k=1

(
2δcp,k,1 − 1

)
xd,k +

(
1− δcp,k,1

) n∑̀
=1
xd,`

n∑̀
=1
xd,`

 ,
where

1. β is the constant transmission factor,

2. ς (r) ς (d) ς (i) cancels out if one of the three involved classes is not epidemiological,
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3. (1− δr,i) cancels out if the infection event is trivial (the receiver class is already the output),

4.
2n−1∑
p=0

is the sum over all inocula,

5. min
k∈J1;nK

(
δcd,k,cd,k+cp,k−cd,kcp,k

)
cancels out whenever a genotype belongs to p but not to d (ensuring

that inoculum p can be produced by donor host d),

6. δi,φ(r,p) cancels out whenever host class r does not turn into host class i when infected by inoculum
class p,

7. np is the rank of the inoculum class,

8.
n∏
k=1

is the product over all genotypes (nested in the inocula),

9.

(
2δcp,k,1−1

)
xd,k+

(
1−δcp,k,1

) n∑̀
=1
xd,`

n∑̀
=1
xd,`

is the product of frequencies and complementary frequencies over

all genotypes of d depending on the presence or absence in p.

D.2.3 Recovery rates

The labelled form of the recovery rates is the following

θd,i := θς (d) (1− δd,i)
n∑
k=1

δi,φ(0,cd,k(d−2k−1)),

where

1. θ is the constant recovery factor,

2. ς (d) cancels out if the recovering class is not epidemiologically meaningful,

3. (1− δr,i) cancels out if the recovery event is trivial (the recovering class is already the output),

4.
n∑
k=1

is the sum over all genotypes,

5. δi,φ(0,cd,k(d−2k−1)) cancels out whenever host class d does not turn into host class i when losing
genotype k.

D.2.4 Death rate

The labelled form of the death rates is the following

µi := µ
n∑
k=1

xd,k.

D.2.5 Master equation matrices

Recall that the master equation of between-host dynamics is:

d
dty = Φ. (y⊗ y)− (Ψ.y)� y + (Ξ−Θ−∆) .y.
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The expression of each matrix are the following:



Φ :=
(
βr(j),d(j),i

)
(i,j)∈J0;22n−1KJ0;2n−1K

,

r (j) :=
⌊
j

2n

⌋
, d (j) := mod2n (j) ,

Ψ :=
(

2n−1∑
`=0

βi,j,`

)
(i,j)∈J0;2n−1K2

,

Ξ := (θi,j)(i,j)∈J0;2n−1K2 ,

Θ :=
(
δi,j

2n−1∑
`=0

θi,`

)
(i,j)∈J0;2n−1K2

,

∆ := ((δi,j (1− δi,0)− δi,0)µj)(i,j)∈J0;2n−1K2 .

Note that the Φ matrix has a nested structure (donor host classes are nested into receiver host classes)
that requires arithmetical calculation on indices, whence the r and d functions.

E Basic reproduction numbers calculation

E.1 Next-generation basic reproduction number

The next-generation basic reproduction number, RI
0, is derived from the susceptible steady state

instability. First, we need to calculate the between infected hosts jacobian matrix, denoted by Jb, the
elements of which are found through the following partial derivative

∂

∂Ij

(dIi

dt

)
=

∑
(r,d)∈(E\{i})×E?

βr,d,i
∂IrId

∂Ij
+
∑
d∈E

θd,i
∂Id

∂Ij
− ∂

∂Ij

 ∑
(d,`)∈E?×(E\{i})

βi,d,`Id +
∑

`∈E\{i}
θi,` + µi

 Ii

 ,
=

∑
r∈E\{i}

βr,j,iIr +
∑

d∈E?

βj,d,iId + θj,i − Ii

∑
`∈(E\{i})

βi,j,` −

 ∑
(d,`)∈E?×(E\{i})

βi,d,`Id +
∑

`∈E\{i}
θi,` + µi

 ∂Ii

∂Ij
,

where we used the fact that βj,j,i = 0 since self class infection does not turn into another host class.
If i 6= j, we have

∂

∂Ij

(dIi

dt

)
=

∑
r∈E\{i}

βr,j,iIr +
∑

d∈E?

βj,d,iId + θj,i − Ii

∑
`∈(E\{i})

βi,j,`,

and if i = j,

∂

∂Ii

(dIi

dt

)
=

∑
r∈E\{i}

βr,i,iIr +
∑

d∈E?

βi,d,iId + θi,i − Ii

∑
`∈(E\{i})

βi,i,` −

 ∑
(d,`)∈E?×(E\{i})

βi,d,`Id +
∑

`∈E\{i}
θi,` + µi

 ,
=

∑
r∈E\{i}

βr,i,iIr −
∑

(d,`)∈E?×(E\{i})
βi,d,`Id −

∑
`∈E\{i}

θi,` − µi,

where we used the fact that βi,i,` = 0 (see above), and βi,d,i = 0 and θi,i = 0 both because these
events do not correspond to a flow between compartments.

In a fully susceptible host population, that is to say when ∀i ∈ E?, Ii = 0 and I∅ = S = s◦, the
expression are simplified as
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∂

∂Ij

(dIi

dt

)
=

β∅,j,is
◦ + θj,i, i 6= j,

β∅,j,is
◦ − θi,• − µi, i = j,

and the between infected hosts jacobian matrix evaluated at susceptible steady state can be written
as

Jb
(
0|E?|

)
=
(
β∅,j,is

◦ +
(
1− I{i=j}

)
θj,i − I{i=j} (θi,• + µi)

)
(i,j)∈E?2

,

where • stands for the sum over the given index. Note that at this point there is still no need to order
the classes (the diagonal holds whatever the order).

The next-generation theorem, as given in [41], is the following equivalence

∀ (F,V) ∈M (R)×GLn (R) ,



J = F−V,

F ≥ 0,

s (−V) < 0,

V−1 ≥ 0,

⇐⇒
(
s (J) S 0⇔ ρ

(
F.V−1

)
S 1

)
,

where the spectral bound is defined as s (M) := max {< (λi) , λi ∈ Sp (M)} and the spectral radius as
ρ (M) := max {|λi| , λi ∈ Sp (M)}.

In our case, the following matrices satisfy the assumptions of the next-generation theorem,

F :=
(
β∅,j,is

◦ +
(
1− I{i=j}

)
θj,i

)
(i,j)∈E?2

,

V :=
(
I{i=j} (θi,• + µi)

)
(i,j)∈E?2

.

V is diagonal, so its inverse is directly

V−1 =
(

δi,j

θi,• + µi

)
(i,j)∈E?2

,

and the product of F with V−1 is

F.V−1 =
(
β∅,j,is

◦

θj,• + µj

)
(i,j)∈E?2

.

A straightforward calculation of the spectrum of F.V−1 requires to order the classes. To do so we
use the labelling previously defined and replace bold indices by light indices with no loss of information.
In this case, β∅,j,i becomes β0,j,i with (i, j) ∈ J0; 2n − 1K2. Therefore we have β0,j,i = 0 for all j < i.

Indeed, if a susceptible is infected by a donor j, the resulting class i can only contain genotypes
that donor j already has. Using the presence coefficients, we have

∀k ∈ G, ci,k ≤ cj,k,

ci,k2k−1 ≤ cj,k2k−1,

then by summing over all k, it follows that i < j, from the presence coefficient property (see C.1).
The inequality i < j is a necessary condition for the event ’turning a susceptible into a host i
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through infection by j’ to occur. As a consequence, such an event does not occur if j > i, leading to
β∅,j,i = 0 in this case. Thus, F.V−1 is a triangular matrix the eigenvalues of which are its diagonal
terms

Sp =
{
β∅,i,is

◦

θi,• + µi

}
i∈E?

.

Following the next-generation theorem, the basic reproduction number according to this method
is then

RI
0 = max

i∈E?

(
β∅,i,is

◦

θi,• + µi

)
.

Explicitation of the infection, recovery and death rates finally gives

β∅,i,is
◦

θi,• + µi
= βs◦ (|i| θ + µxi,•)−1 ∑

p∈℘(i)
φ(∅,p)=i

|p|
∏
k∈p

xi,k

xi,•

∏
k∈d\p

(
1− xi,k

xi,•

)
.

E.2 Endemic basic reproduction number

An epidemic reaches an endemic state if and only if the sum of the infected host densities is positive
at steady state. Such a condition is an alternative definition of the basic reproduction number, which
we note RII

0 . Let us call J the sum of the infected host densities, J :=
∑

i∈E?
Ii. The time derivative of

J is then

dJ
dt =

∑
i∈E?

dIi

dt = S
∑
i∈E?

∑
d∈E?

β∅,d,iId −
∑
i∈E?

Ii

∑
d∈E?

βi,d,∅Id −
∑
i∈E?

θi,∅Ii −
∑
i∈E?

µiIi,

= J

S∑
i∈E?

∑
d∈E?

β∅,d,i
Id

J
−
∑
i∈E?

Ii

∑
d∈E?

βi,d,∅
Id

J
−
∑
i∈E?

θi,∅
Ii

J
−
∑
i∈E?

µi
Ii

J

 .
We used here both the fact that the derivative is linear and that the only flows that come or leave
the infected compartment J as a whole are the ones related to the susceptibles, that is infection of
the susceptibles, ultrainfection, recovery to the susceptibles and deaths. The last expression is written
such that infection, recovery and death rates can be seen as weighted by the frequency of the associated
hosts (for a given index). Using the marginal arithmetic mean notation, as in y•,j :=

∑
i
yi,jfi, we get

at steady state

Ĵ

Ŝ∑
i∈E?

β∅,•,i −
∑
i∈E?

Îiβi,•,∅ − θ•,∅ − µ•

 = 0. (E.1)

Because infection flows are quadratic, another sum can be performed for the infection-related
terms. While the second sum in (E.1) is straightforward, it is worth pointing out that in the first one,
sums over the third index of βa,b,c do not need to be weighted since the overall infection flow does not
depend on the density of the outcoming class of the infections (the total infection flow is given by the
formula

∑
a

∑
b
βa,b,cIaIb) but only on their number, which is |E?|. Assuming that Ĵ 6= 0, we have
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|E?|β∅,•,•Ŝ − β•,•,∅Ĵ − θ•,∅ − µ• = 0.

Then, by using the fact that the population size is constant, that is Ŝ + Ĵ = s◦, it follows that

Ĵ =
|E?|β∅,•,•s◦ − θ•,∅ − µ•
|E?|β∅,•,• + β•,•,∅

, (E.2)

and this steady-state density is positive if and only if the following quantity, which defines RII
0 , is

greater than one,

RII
0 =

|E?|β∅,•,•s◦

θ•,∅ + µ•
.

Note that the three marginal arithmetic means involved in the latter formula depend on the
densities of infected hosts at steady-state so they cannot be calculated directly from the parameters.

E.3 Epidemiological feedback sensitiviy

In order to see that the basic reproduction numbers can capture the epidemiological feedback, we
arbitrarily decide to derive them twice with respect to the constant transmission factor β, as if it were
a variable. If the second derivative is 0, the basic reproduction number responds linearly to a change
in epidemiological parameters, and hence cannot capture epidemiological feedbacks.

The next-generation basic reproduction number gives

∂RI
0

∂β
= s◦max

i∈E?

(|i| θ + µxi,•)−1 ∑
p∈℘(i)
φ(∅,p)=i

|p|
∏
k∈p

xi,k

xi,•

∏
k∈d\p

(
1− xi,k

xi,•

) ,
then

∂2RI
0

∂β2 = 0.

RI
0 cannot capture epidemiological feedbacks in any case.

The endemic basic reproduction number gives

∂RII
0

∂β
= |E?| s◦

 1
θ•,∅ + µ•

∂β∅,•,•
∂β

+ β∅,•,•
∂

∂β

(
1

θ•,∅ + µ•

) .
Under the assumption of ∂Îi

∂β = 0, we have

∂RII
0

∂β
= |E?| s◦

θ•,∅ + µ•

β∅,•,•
β

,

and
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∂2RII
0

∂β2 = |E?| s◦

θ•,∅ + µ•

 ∂

∂β

β∅,•,•
β

 ,
= |E?| s◦

θ•,∅ + µ•

β∅,•,•
β2 −

β∅,•,•
β2

 ,
= 0.

The contraposition of this result is

∂2RII
0

∂β2 6= 0 =⇒ ∂Îi

∂β
6= 0.

In other words, if we observe a non zero second derivative of RII
0 with respect to β in certain cases,

RII
0 does capture the epidemiological feedback.

E.4 Basic reproduction numbers for n = 1

Let us consider only one parasite genotype (n = 1), arbitrary denoted 1. Because of assumption (3.2),
{1} is an epidemiological host class, carrying x{1},1 > 0 units of parasite load.

The between-host dynamics are at their simplest form because there are only two compartments,
S and I{1}. The ODE the latter satisfies is sufficient to characterize these dynamics because of the
constant population size assumption S + I{1} = s◦. We have

dI{1}
dt = β∅,{1},{1}SI{1} − θ{1},∅I{1} − µ{1}I{1},

and, by explicitating infection, recovery and death rates, we get

dI{1}
dt = βSI{1} − θI{1} − µx{1},1I{1},

=
(
β
(
s◦ − I{1}

)
− θ − µx{1},1

)
I{1}. (E.3)

The jacobian matrix of the system is reduced to a single quantity, which is

∂

∂I{1}

(dI{1}
dt

)
= −2βI{1} + βs◦ − θ − µx{1},1.

The next-generation basic reproduction number RI
0 is defined from the condition that this quantity

evaluated at the disease-free equilibrium, that is I{1} (0) = 0, is positive (unstable equilibrium), whence

∂

∂I{1}

(dI{1}
dt

)
(0) > 0⇐⇒ RI

0 > 1,RI
0 = βs◦

θ + µx{1},1
.

On the contrary, the endemic basic reproduction number involves the endemic steady-state value
of I{1}. At the endemic steady-state, dI{1}

dt = 0 and Î{1} 6= 0, (E.3) then gives
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β
(
s◦ − Î{1}

)
− θ − µx{1},1 = 0,

Î{1} = s◦ −
θ + µx{1},1

β
,

and the endemic basic reproduction number is defined from the condition that this quantity is positive,
whence

Î{1} > 0⇐⇒ RII
0 > 1,RII

0 = βs◦

θ + µx{1},1
.

We have proved that for n = 1 the two methods lead to the same basic reproduction number,

RI
0 = RII

0 .
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