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Proof of Lemma 1. Recall that we assume an infinite population size and that s1 is

strictly greater than s2. We denote by x the frequency of the s2 strategists. Hence, 1 − x
denotes the frequency of the s1 strategists. The individuals compete for two rewards with

value v1 and v2. Since the participants in each auction are chosen randomly from the pop-

ulation, the probability that k out of the n participants in an auction are s1 strategists is(
n
k

)
xn−k(1− x)k.

Following Chatterjee et al. (2012), we prove the expected payoff of an s1 strategist as

follows. Let i be the number of individuals with strategy s1 participating in the same auction

apart from the s1 strategist under consideration. The probability for i = 0 is
(
n−1
0

)
xn−1 in

which case the s1 strategist surely wins reward v1. If 0 < i ≤ n− 1, the expected reward of

the s1 strategist is v1+v2
i+1

. Since the payment of each individual is equivalent to its strategy,

the expected payoff of an s1 strategist is given by

p(s1) =
n−1∑
i=1

(
n− 1

i

)
xn−1−i(1− x)i

v1 + v2
i+ 1

+ v1x
n−1 − s1

=
n−1∑
i=0

(
n− 1

i

)
xn−1−i(1− x)i

v1 + v2
i+ 1

− v2xn−1 − s1

=
v1 + v2
n

n−1∑
i=0

n · (n− 1)!

(i+ 1) · i! · (n− (i+ 1))!
· xn−(i+1) · (1− x)i − v2xn−1 − s1

=
v1 + v2

n · (1− x)

n−1∑
i=0

(
n

i+ 1

)
· xn−(i+1) · (1− x)i+1 − v2xn−1 − s1

=
v1 + v2

n · (1− x)

n∑
i=1

(
n

i

)
· xn−i · (1− x)i︸ ︷︷ ︸

1−xn since
∑n

k=0 (n
k)xn−k(1−x)k=1

−v2xn−1 − s1

=
v1 + v2

n · (1− x)
· (1− xn)− v2xn−1 − s1 (S1)

Next, we calculate the expected payoff of a s2 strategist. The s2 strategist wins the first

reward v1 only in the case there are no s1 strategists chosen for the same auction. In this case

the s2 strategists wins v1 with probability 1/n or wins v2 with probability (1− 1/n)/(n− 1).

In the case of a single s1 bidder participating in the auction, the s2 strategist can only win v2

with probability 1/(n− 1). Accounting for the probabilities of both cases and the payment

of s2 which is independent of the outcome, we derive the following expected payoff of an s2
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strategist:

p(s2) =

(
n

0

)
xn−1(1− x)0

[
v1
n

+

(
1− 1

n

)
v2

n− 1

]
+

(
n

1

)
xn−2(1− x)

v2
n− 1

− s2

= xn−1
[
v1 + v2
n

]
+ xn−2(1− x)v2 − s2 =

xn−1(v1 + v2)

n
+ xn−2(1− x)v2 − s2 . (S2)

Proof of Theorem 1. Using the results of Lemma 1 we can analyze situations in which

a strategy s is beaten by another strategy s′. We distinguish two situations (i.e., s′ has a

higher expected payoff than s):

− s′ < s: Since we want p(s′) to be larger as p(s), the following inequality has to hold:

(v1 + v2)x
n−1

n
+ v2x

n−2(1− x)− s′ > (v1 + v2)(1− xn)

n(1− x)
− v2xn−1 − s

and can be rewritten as:

s− s′ > (v1 + v2)(1− xn−1)
n(1− x)

− v2xn−2 (S3)

− s′ > s: Again we want p(s′) to be larger as p(s) which requires that:

(v1 + v2)(1− xn)

n(1− x)
− v2xn−1 − s′ >

(v1 + v2)x
n−1

n
+ v2x

n−2(1− x)− s

and can be rewritten as:

s′ − s < (v1 + v2)(1− xn−1)
n(1− x)

− v2xn−2 (S4)

Next, we assume that the frequency of the invaders with strategy s′ is ε → 0 and the

frequency of the s strategists is (1− ε). Similar as in Chatterjee et al. (2012), higher order

terms of ε are ignored. The mutant strategy s′ can invade a strategy s if p(s′) > p(s). In the

case of s′ < s, we replace x by ε and obtain:

s− s′ > (v1 + v2)(1− εn−1)
n(1− ε)

− v2εn−2 ≈
v1 + v2
n

. (S5)
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In the case of s′ > s, we replace x by 1− ε and obtain:

s′−s < (v1 + v2)(1− (1− ε)n−1)
nε

−v2(1−ε)n−2 ≈
(n− 1)(v1 + v2)

n
−v2 = v1−

v1 + v2
n

. (S6)

Theorem 1 follows from Eq. (S5) and Eq. (S6).

Proof of Theorem 2. We prove the mixed equilibria for two rewards with n = 2 and

n = 3 as follows. For both values of n we differentiate Equation (3) with respect to s and

set it to zero. In the case of n = 2, we get

δE(s, I)

δs
= (v1 − v2) · p(s)− 1 = 0 .

and hence obtain p(s) = 1
v1−v2 . In the case of n = 3, we get

δE(s, I)

δs
= 2p(s) [P (s)(v1 − 2v2) + v2]− 1 = 0,

rewriting and integrating w.r.t. s gives (v1−2v2)P (s)2+2v2P (s) = s. We solve this quadratic

equation for P (s) and obtain the two possible solutions:
−v2±
√

v22+s(v1−2v2)
v1−2v2 . Since only in

the plus case the solution for the probability density function provides positive values for

0 ≤ s ≤ v1, we can disregard the minus case. We obtain p(s) = 1

2
√

v22+s(v1−2v2)
for n = 3 and

hence we have proven that both probability density functions given in Theorem 2 are indeed

mixed equilibria. Next we check if the derived probability density functions are also ESS.

We let I be a mixed strategy and J be some pure strategy. Similar as in Chatterjee et al.

(2012), we denote by E(X, (Y i,Zj)) the expected payoff of the strategy X playing against

i individuals with strategy Y and j individuals with strategy Z, where X,Y ,Z ∈ I, J , and

i + j = n − 1. A mixed strategy I is an ESS iff one of the following two conditions holds

for all strategies J different from I (Maynard Smith and Price, 1973; Maynard Smith, 1974,

1982; Haigh and Cannings, 1989):

1. E(I, (In−1, J0)) > E(J , (In−1, J0)); or

2. E(I, (In−1, J0)) = E(J , (In−1, J0)) and E(I, (In−2, J1)) > E(J , (In−2, J1)).

In the case of n = 2, we need to calculate the following four payoffs where I is the mixed

equilibrium strategy in Equation (4) and J is a pure strategy with value s in [0, v1 − v2]:
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− E(I, (In−1, J0)) = E(I, (I1, J0)): Since both players use the same strategy their ex-

pected reward is (v1+v2)/2. The expected payment of a strategy uniformly distributed

in [0, v1 − v2] is
∫ v1−v2
0

x · p(x) dx = (v1 − v2)/2 and hence the expected payoff is v2.

− E(J , (In−1, J0)) = E(J , (I1, J0)): The expected payoff of J against I is (v1 − v2) ·∫ s

0
p(x) dx+ v2 − s = v2.

− E(I, (In−2, J1)) = E(I, (I0, J1)): The probability of I to win v1 is given by 1 −∫ s

0
p(x) dx. Therefore, the expected reward is (v1 − v2)[1− s/(v1 − v2)] + v2 = v1 − s.

The expected payment is
∫ v1−v2
0

x · p(x) dx = (v1 − v2)/2 and hence the payoff is

(v1 + v2)/2− s.

− E(J , (In−2, J1)) = E(J , (I0, J1)): The expected payoff in this case is (v1 + v2)/2− s.

We observe that the first ESS condition is not satisfied because E(I, (I1, J0)) = E(J , (I1, J0)) =

v2. Since the second ESS condition does also not hold becauseE(I, (I0, J1)) = E(J , (I0, J1)) =

(v1 + v2)/2− s, the mixed equilibrium given in Equation (4) is not an ESS.

In the case of n = 3, we calculate the following expected payoffs to prove that Equation (5)

is an ESS. Suppose strategy I is given by Equation (5) and J is any other pure strategy with

value s ≥ 0:

− E(I, (In−1, J0)) = E(I, (I2, J0)): Since all three participants in the auction use the

same strategy, their expected payoff has to be identical. Their expected reward is
v1+v2

3
and their expected payment is given by

∫ v1
0
x p(x)dx. Evaluating both terms

gives that:

E(I, (I2, J0)) =
v1 + v2

3
−
√
v21 − 2v1v2 + v22 · (v21 − 2v1v2 − 2v22) + 2v32

3(v1 − 2v2)2
= 0 .

− E(J , (In−1, J0)) = E(J , (I2, J0)): The J-strategist wins reward v1 iff both I-strategists

bid less than s, which happens with probability (
∫ s

0
p(x)dx)2. The J-strategist wins

reward v2 iff one of the two I-strategists bids more than s. The probability of this

happening is 2(
∫ s

0
p(x)dx)(1−

∫ s

0
p(x)dx). Thus, the expected payoff E(J , (In−1, J0))

is equal to v1(
∫ s

0
p(x)dx)2 + 2v2(

∫ s

0
p(x)dx)(1 −

∫ s

0
p(x)dx) − s, which simplifies to

(v1 − 2v2)P (s)2 + 2v2P (s) − s. However, from the proof of the mixed equilibrium

we know that this term evaluates to zero if s is in the support of I. We follow that

E(J , (In−1, J0)) is zero if s ≤ v1 and is negative if s > v1.
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− E(I, (In−2, J1)) = E(I, (I1, J1)): Again we denote by P (s) =
∫ s

0
p(x)dx. Hence, the

expected payoff is given by

E(I, (I1, J1)) =
v1 + v2

2
[1− P (s)]2 +

2v1
2
P (s)[1− P (s)] +

v2
2
P (s)2 −

∫ v1

0

x p(x)dx .

− E(J , (In−2, J1)) = E(J , (I1, J1)): Similarly as above we obtain for the expected payoff:

E(J , (I1, J1)) =
v1 + v2

2
P (s) +

v2
2

[1− P (s)]− s .

Since E(I, (I2, J0)) = E(J , (I2, J0)) = 0, the first ESS condition does not hold and we

focus on the second condition: E(I, (I1, J1)) > E(J , (I1, J1)) which evaluates to:

v1 + v2 − 3s

6
>
v1

(√
v1s+ v22 − 2v2s− 2s

)
− 2v22 + 4v2s

2(v1 − 2v2)

4v22 + v1(v1 + 3s)− v2(v1 + 6s)− 3v1
√
v22 + v1s− 2v2s

6(v1 − 2v2)
> 0.

To check whether this condition is met, we take the first and second derivative of f(s) to

find the minimum of this function:

f ′(s) =
3v1 − 6v2 − 3v1(v1−2v2)

2
√

v1s+v22−2v2s

6(v1 − 2v2)

f ′′(s) =
v1(v1 − 2v2)

8
√

(v1s+ v22 − 2v2s)
3

.

We observe that f ′′(s) is positive iff v2 < v1/2 and is negative iff v2 > v1/2. Hence, f(s)

at s∗ is a minimum iff v2 < v1/2 and a maximum iff v2 > v1/2. We obtain s∗ = v1+2v2
4

via

setting f ′(s∗) = 0. Plugging s∗ into our original function we get that f(s∗) = v1−2v2
24

which

is positive iff v1 > 2v2. Therefore, the mixed equilibrium given in Equation (5) is an ESS iff

v1 > 2v2 holds which completes the proof of Theorem 2.
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