Electronic Supplementary Material 1 (ESM1): Isolation by Resistance Across a Complex Coral
 Reef Seascape

- Table S1 Descriptive statistics of 15 sample sites across the Houtman Abrolhos Islands: sample sizes (*N*), number of multi-locus genotypes (*G*), allelic richness ( $A_R$ ), observed ( $H_O$ ) and expected ( $H_E$ ) heterozygosity and inbreeding coefficients ( $F_{IS}$ ). Bold values indicate significance ( $P \le 0.05$ ).
- 9 Table S2 Microsatellite marker information with amplification protocols.
- 1011 Table S3 Biophysical dispersal model parameters.
- 13 Table S4 Allele frequencies per locus at each sample site.
- 15 Table S5 Pairwise *D*<sub>est</sub> values.
- 17 Table S6 Larval migration matrix of standardised dispersal probabilities.
- 19 Table S7 Results from Jackknifing tests across loci.
- Figure S1 Principle component analyses of three measures of genetic differentiation ( $F_{ST}$ ,  $G_{ST}$ ,  $D_{est}$ ).
- Figure S2 Results from GENELAND analysis identifying K = 3 as the most likely numer of clusters in the dataset.
- Figure S3 Scatterplot showing the relationship between genetic distance matrices based on
  subsampled v. entire dataset.
- Figure S4 Matrix of similarity (Nei 1987) based on the forward projected migration matrix standardised migration matrix at t = 0 (above) and when forward projected 10 generations (below). Red indicates high levels of similarity and blue low levels of similarity. The matrix is symmetric and so non-directional.
- Figure S5 Histograms showing distribution of *P*-values from the Mantel tests based on the
  subsampled dataset. Asterisks indicate *p* values using the full dataset.
- 37

12

14

16

18

20

26

- 38 Text SI Details of the calculations for the forward projection matrix
- 39

40 Table 1 Descriptive statistics of 15 sample sites across the Houtman Abrolhos Islands: sample 41 sizes (*N*), number of multi-locus genotypes (*G*), allelic richness (*A*<sub>R</sub>), observed (*H*<sub>O</sub>) and expected 42 (*H*<sub>E</sub>) heterozygosity and inbreeding coefficients (*F*<sub>IS</sub>). Bold values indicate significance 43 (*P*  $\leq$  0.05).

44

| Group    | Site | Latitude | Longitude | N  | G  | $A_{\rm R}$ | H <sub>O</sub> | $H_{\rm E}$ | $F_{\rm IS}$ |
|----------|------|----------|-----------|----|----|-------------|----------------|-------------|--------------|
| Pelsaert | P1   | -28.869  | 113.877   | 16 | 16 | 3.513       | 0.604          | 0.637       | 0.040        |
|          | P2   | -28.898  | 113.923   | 14 | 14 | 3.327       | 0.610          | 0.594       | 0.012        |
|          | P3   | -28.867  | 113.970   | 18 | 18 | 3.693       | 0.572          | 0.668       | 0.175        |
|          | P4   | -28.862  | 113.988   | 14 | 14 | 3.217       | 0.500          | 0.591       | 0.109        |
|          | P5   | -28.815  | 113.948   | 16 | 15 | 3.554       | 0.638          | 0.624       | 0.033        |
| Easter   | E1   | -28.650  | 113.880   | 30 | 29 | 3.879       | 0.533          | 0.653       | 0.181        |
|          | E2   | -28.699  | 113.780   | 25 | 25 | 3.903       | 0.597          | 0.644       | 0.102        |
|          | E3   | -28.716  | 113.789   | 33 | 32 | 3.818       | 0.609          | 0.648       | 0.087        |
|          | E4   | -28.740  | 113.809   | 26 | 26 | 3.810       | 0.600          | 0.654       | 0.091        |
|          | E5   | -28.737  | 113.789   | 30 | 30 | 3.643       | 0.547          | 0.639       | 0.143        |
| Wallabi  | W1   | -28.473  | 113.776   | 38 | 36 | 3.691       | 0.587          | 0.656       | 0.127        |
|          | W2   | -28.480  | 113.784   | 24 | 20 | 3.812       | 0.629          | 0.663       | 0.049        |
|          | W3   | -28.499  | 113.746   | 44 | 44 | 3.730       | 0.576          | 0.669       | 0.152        |
|          | W4   | -28.435  | 113.743   | 37 | 30 | 3.395       | 0.597          | 0.617       | 0.009        |
|          | W5   | -28.407  | 113.719   | 30 | 30 | 3.740       | 0.640          | 0.673       | 0.067        |

| Locus                | Primer Sequence (5'-3')   | Primer vol<br>[10µM] | Flourescent tag | Multiplex |
|----------------------|---------------------------|----------------------|-----------------|-----------|
| Amil2_0181           | F-GCCCTCCTTAGGTGATTTAC    | 0.375                | 6-FAM           | 1         |
|                      | R- ATCGTTTTGAGCAATCAGAC   |                      |                 |           |
| EST_063 <sup>2</sup> | F-TATTGTAGTCGTTACGTAGGCT  | 0.065                | VIC             | 1         |
|                      | R-AACAATCGTGCATACTAGCTCA  |                      |                 |           |
| Amil2_0221           | F-CTGTGGCCTTGTTAGATAGC    | 0.065                | VIC             | 1         |
|                      | R-AGATTTGTGTTGTCCTGCTT    |                      |                 |           |
| Amil2_0021           | F-ACAAAATAACCCCTTCTACCT   | 0.100                | 6-FAM           | 2         |
|                      | R-CTTCATCTCTACAGCCGATT    |                      |                 |           |
| EST_181 <sup>2</sup> | F-TGATTGCTGAGAAAGCTAGAGAT | 0.100                | VIC             | 2         |
|                      | R-GCCTCACCTTGCCTTGTACA    |                      |                 |           |
| EST_254 <sup>2</sup> | F-GGTGACCAATCAGAGTCTTGA   | 0.125                | PET             | 2         |
|                      | RTACACTTGCTATAGTAACTTGCT  |                      |                 |           |
| EST_016 <sup>2</sup> | F-CTATCTGTGTATGATCAGGACTA | 0.100                | 6-FAM           | 3         |
|                      | R-TCCATCTGTTGTGGAAACTGGT  |                      |                 |           |
| WGS_153 <sup>2</sup> | F- TTTCCAAGTTGCTGTGAGTACA | 0.175                | VIC             | 3         |
|                      | R-CGGGTGCTAAGCTTGCTCAA    |                      |                 |           |
| EST_245 <sup>2</sup> | F-CAGAATGATATTTCTGCAGCACT | 0.200                | VIC             | 4         |
|                      | R-CGCAATCGAGATTATAGGAAGA  |                      |                 |           |
| EST_098 <sup>2</sup> | F-ACAAATTGCGCTCAAGTTGATG  | 0.050                | VIC             | 4         |
|                      | R-ACGGCTGCGAAGGAGTCTAGT   |                      |                 |           |

Table S2 Multiplex details and thermocycling conditions for the panel of microsatellite markers

**Thermocycling conditions** for multiplexes are as follows: Initial activation step for 15 min at 95°C, followed by 35 cycles of denaturing for 30sec at 94°C, annealing for 90s at 50°C (Multiplex 1, 2, 3) or 60°C (Multiplex 4) and extension for 90s at 72°C, and a final extension step for 10min at 72°C. Primers from <sup>1</sup>vanOppen et al. (2007) and <sup>2</sup>Wang et al. (2009)

| Parameter            | Setting     | Description                           |  |  |  |  |  |
|----------------------|-------------|---------------------------------------|--|--|--|--|--|
| elSp                 | 1           | Release spacing                       |  |  |  |  |  |
| relSpUnits           | Days        |                                       |  |  |  |  |  |
| relDuration          | 8           | Maximum duration of a release         |  |  |  |  |  |
| relDurationUnits     | Days        |                                       |  |  |  |  |  |
| competencyStart      | 3           | Date of settling eligibility          |  |  |  |  |  |
| competencyStartUnits | Days        |                                       |  |  |  |  |  |
| settleChkFreq        | 1           | Frequency of checking for settlement  |  |  |  |  |  |
| settleChkFreqUnits   | Days        |                                       |  |  |  |  |  |
| outputFreq           | 6           | Frequency of output                   |  |  |  |  |  |
| outputFreqUnits      | Hours       |                                       |  |  |  |  |  |
| vmgrt                | FALSE       | Include vertical migration behaviour? |  |  |  |  |  |
| mrate                | 0.06        | Mortality rate                        |  |  |  |  |  |
| mUnits               | Days        |                                       |  |  |  |  |  |
| mortalityType        | Exponential |                                       |  |  |  |  |  |
| diffusionType        | Simple      |                                       |  |  |  |  |  |
| settlementType       | FloatOver   |                                       |  |  |  |  |  |
| initialPositionType  | Centroid    |                                       |  |  |  |  |  |

Table S3 Biophysical dispersal model parameters.

|           |                      | Amil2_018  | EST_063    | Amil2_022      | Amil2_002    | EST_181        | EST_245    | EST_016      | WGS_153        | EST_254        | EST_98         |
|-----------|----------------------|------------|------------|----------------|--------------|----------------|------------|--------------|----------------|----------------|----------------|
| P1        | N                    | 16         | 16         | 16             | 16           | 16             | 16         | 16           | 16             | 15             | 16             |
|           | N <sub>A</sub>       | 3          | 3          | /              | 5            | 9              | 9          | 5            | 6<br>F 170     | b<br>4 727     | /              |
|           | IN <sub>E</sub>      | 1.135      | 1.030      | 3.507          | 3.083        | 3.391          | 0.024      | 3.430        | 5.172          | 4.737          | 3.031          |
|           |                      | 0.125      | 0.375      | 0.563          | 0.625        | 0.813          | 0.750      | 0.588        | 0.813          | 0.200          | 0.588          |
|           | H <sub>E</sub>       | 0.119      | 0.389      | 0.715          | 0.729        | 0.705          | 0.834      | 0.709        | 0.807          | 0.789          | 0.725          |
| <b>D2</b> |                      | -0.049     | 0.035      | 0.213          | 0.142        | -0.152         | 0.101      | 0.030        | -0.007         | 0.740          | 0.051          |
| PZ        | IN<br>N              | 14         | 14<br>2    | 14             | 14<br>F      | 14             | 14         | 14           | 12             | 14             | 14<br>7        |
|           |                      | 3          | Z<br>1 /1E | 4              | 5<br>2 1 7 9 | 9<br>4 722     | 10         | 4<br>2 6 2 1 | 5<br>4 05 6    | 4<br>2 465     | 2 062          |
|           | INE                  | 1.150      | 1.415      | 3.039          | 2.178        | 4.723          | 7.080      | 2.031        | 4.050          | 2.405          | 3.003          |
|           | п <sub>0</sub><br>ц  | 0.145      | 0.214      | 0.571          | 0.045        | 0.057          | 0.857      | 0.045        | 0.917          | 0.557          | 0.045          |
|           | E E                  | 0.155      | 0.295      | 0.071          | 0.541        | 0.766          | 0.870      | 0.020        | 0.755          | 0.394          | 0.075          |
| D2        |                      | -0.057     | 19         | 0.140          | -0.169       | -0.067         | 17         | -0.057       | -0.217         | 0.599          | 10.045         |
| гэ        | N                    | 18<br>6    | 2          | 10             | 10           | 10             | 17<br>Q    | 6            | 15             | 17             | 20<br>Q        |
|           | N <sub>A</sub>       | 1 / 27     | 1 906      | 10             | 4<br>2 2 2 0 | 5 4 4 5        | 0<br>5 070 | 3 465        | ,<br>5.000     | 4<br>1 710     | 1310           |
|           | H.                   | 0.167      | 0 333      | 4.233<br>0 778 | 0.389        | 0.667          | 0.874      | 0 722        | 0.600          | 0.176          | 0.667          |
|           | H-                   | 0.299      | 0.335      | 0.764          | 0.505        | 0.816          | 0.803      | 0.722        | 0.800          | 0.170          | 0.007          |
|           | Fic                  | 0.233      | 0.475      | -0.018         | 0.373        | 0.010          | -0.026     | -0.015       | 0.250          | 0.415          | 0.134          |
| P4        | N                    | 14         | 14         | 13             | 14           | 14             | 14         | 14           | 11             | 10             | 14             |
|           | N.                   | 5          | 2          | 7              | 3            | 9              | 9          | 5            | 5              | 4              | 6              |
|           | N <sub>r</sub>       | 1 352      | 1 324      | 2 541          | 1 840        | 5 091          | 6 3 2 3    | 2 722        | 3 408          | 2 667          | 4 356          |
|           | H                    | 0.286      | 0.286      | 0.385          | 0.500        | 0.714          | 0.857      | 0.500        | 0.545          | 0.100          | 0.429          |
|           | <sub>0</sub><br>H₌   | 0.260      | 0.245      | 0.607          | 0.457        | 0.804          | 0.842      | 0.633        | 0.707          | 0.625          | 0.770          |
|           | Fie                  | -0.098     | -0.167     | 0.366          | -0.095       | 0.111          | -0.018     | 0.210        | 0.228          | 0.840          | 0.444          |
| P5        | N                    | 13         | 15         | 15             | 15           | 15             | 15         | 15           | 15             | 13             | 15             |
|           | N۸                   | 2          | 4          | 6              | 6            | 9              | 8          | 5            | 6              | 6              | 9              |
|           | NE                   | 1.080      | 1.320      | 3.879          | 4.286        | 4.787          | 5.625      | 3.435        | 3.913          | 3.159          | 3.659          |
|           | Ho                   | 0.077      | 0.267      | 0.867          | 0.533        | 0.867          | 0.733      | 0.800        | 0.733          | 0.308          | 0.867          |
|           | HF                   | 0.074      | 0.242      | 0.742          | 0.767        | 0.791          | 0.822      | 0.709        | 0.744          | 0.683          | 0.727          |
|           | Fis                  | -0.040     | -0.101     | -0.168         | 0.304        | -0.096         | 0.108      | -0.129       | 0.015          | 0.550          | -0.193         |
| E1        | N                    | 28         | 29         | 28             | 29           | 29             | 29         | 29           | 29             | 28             | 29             |
|           | NA                   | 4          | 3          | 8              | 6            | 12             | 10         | 5            | 7              | 5              | 8              |
|           | N <sub>E</sub>       | 1.456      | 1.503      | 2.266          | 2.905        | 6.728          | 6.007      | 3.831        | 5.965          | 2.761          | 4.237          |
|           | $H_{o}$              | 0.250      | 0.276      | 0.429          | 0.483        | 0.862          | 0.690      | 0.655        | 0.448          | 0.214          | 0.655          |
|           | $H_{\text{E}}$       | 0.313      | 0.335      | 0.559          | 0.656        | 0.851          | 0.834      | 0.739        | 0.832          | 0.638          | 0.764          |
|           | $F_{IS}$             | 0.202      | 0.176      | 0.233          | 0.264        | -0.013         | 0.173      | 0.113        | 0.461          | 0.664          | 0.142          |
| E2        | Ν                    | 25         | 25         | 25             | 25           | 25             | 24         | 25           | 20             | 22             | 25             |
|           | $N_A$                | 4          | 2          | 6              | 6            | 10             | 11         | 5            | 8              | 6              | 9              |
|           | N <sub>E</sub>       | 1.130      | 1.523      | 4.072          | 2.694        | 5.388          | 6.698      | 3.086        | 6.154          | 3.006          | 4.386          |
|           | $H_{o}$              | 0.080      | 0.280      | 0.840          | 0.560        | 0.880          | 0.833      | 0.640        | 0.700          | 0.182          | 0.560          |
|           | $H_{E}$              | 0.115      | 0.343      | 0.754          | 0.629        | 0.814          | 0.851      | 0.676        | 0.838          | 0.667          | 0.772          |
|           | Fis                  | 0.306      | 0.184      | -0.113         | 0.109        | -0.081         | 0.020      | 0.053        | 0.164          | 0.728          | 0.275          |
| E3        | Ν                    | 31         | 31         | 31             | 32           | 32             | 31         | 32           | 29             | 30             | 32             |
|           | N <sub>A</sub>       | 6          | 4          | 6              | 6            | 12             | 12         | 6            | 7              | 4              | 8              |
|           | N <sub>E</sub>       | 1.405      | 1.569      | 3.668          | 2.260        | 5.737          | 7.479      | 3.871        | 5.570          | 2.899          | 2.805          |
|           | Ho                   | 0.194      | 0.323      | 0.677          | 0.438        | 0.844          | 0.903      | 0.688        | 0.724          | 0.033          | 0.688          |
|           | H <sub>E</sub>       | 0.288      | 0.363      | 0.727          | 0.558        | 0.826          | 0.866      | 0.742        | 0.820          | 0.655          | 0.644          |
|           | Fis                  | 0.329      | 0.110      | 0.069          | 0.215        | -0.022         | -0.043     | 0.073        | 0.117          | 0.949          | -0.068         |
| E4        | N                    | 25         | 26         | 26             | 26           | 26             | 26         | 26           | 20             | 20             | 26             |
|           | NA                   | 4          | 2          | 6              | 6            | 10             | 9          | 5            | /              | 4              | /              |
|           | IN <sub>E</sub>      | 1.397      | 1.649      | 3.808          | 2.174        | 4.678          | 7.596      | 3.431        | 5.517          | 2.484          | 4.036          |
|           | H <sub>0</sub>       | 0.240      | 0.385      | 0.769          | 0.346        | 0.769          | 0.769      | 0.769        | 0.700          | 0.250          | 0.654          |
|           | H <sub>E</sub>       | 0.284      | 0.393      | 0.737          | 0.540        | 0.786          | 0.868      | 0.709        | 0.819          | 0.598          | 0.752          |
|           |                      | 0.155      | 0.023      | -0.043         | 0.359        | 0.022          | 0.114      | -0.086       | 0.145          | 0.582          | 0.131          |
| ED        | IN<br>NI             | 30         | 3U<br>4    | 30<br>7        | 3U<br>6      | 3U<br>10       | 3U<br>10   | 3U<br>6      | 20<br>10       | 29<br>6        | 3U<br>0        |
|           | IN <sub>A</sub>      | 4          | 4          | /<br>2 005     | 0            |                | 10<br>10   | 0<br>/ 120   | C 200          | ס<br>2 ח2ר     | 0<br>2 726     |
|           |                      | 1.200      | 1.410      | 2.885          | 2.4/9        | 5.114<br>0.767 | 0.228      | 4.138        | 0.288          | 3.025          | 2.730          |
|           | H <sub>0</sub>       | 0.200      | 0.333      | 0.033          | 0.433        | 0.707          | 0.700      | 0.00/        | 0.092          | 0.103          | 0.500          |
|           | rt <sub>E</sub>      | 0.330      | 0.291      | 0.023          | 0.59/        | 0.804          | 0.839      | 0.758        | 0.841          | 0.009          | 0.034          |
| \\/1      | r <sub>is</sub>      | 0.405      | -0.147     | 24             | 0.274<br>26  | 25             | 24         | 26           | 0.1//<br>22    | 0.845<br>20    | 25             |
| VV T      | IN<br>NI             | 5          | 50<br>2    | 34<br>10       | 50<br>A      | 55<br>11       | 54<br>10   | 50<br>7      | 52<br>6        | 50<br>6        | 55<br>Q        |
|           | INA<br>NI            | J<br>1 461 | 2<br>1 564 | 10<br>2 275    | +<br>2 20F   | E 601          | 10         | 2 165        | 0<br>1 79F     | 2 200          | 4 000          |
|           | INE<br>H             | 0.250      | 0.250      | 0.570          | 2.290        | 0.820          | 0.904      | 0.778        | 4.703<br>0.688 | 2.299<br>0.167 | 4.005<br>0.620 |
|           | н <sub>о</sub><br>На | 0.316      | 0.230      | 0 704          | 0.564        | 0.824          | 0.856      | 0.778        | 0.000          | 0.107          | 0.029          |

Table S4 Diversity indices of the microsatellite markers at each sample site.

|    | $F_{IS}$       | 0.208  | 0.307  | 0.248  | 0.163  | -0.005 | 0.004  | -0.093 | 0.131 | 0.705 | 0.168  |
|----|----------------|--------|--------|--------|--------|--------|--------|--------|-------|-------|--------|
| W2 | Ν              | 20     | 20     | 19     | 20     | 20     | 19     | 20     | 16    | 17    | 20     |
|    | NA             | 3      | 3      | 7      | 5      | 11     | 10     | 6      | 8     | 4     | 8      |
|    | NE             | 1.227  | 1.629  | 3.438  | 3.162  | 7.407  | 6.748  | 3.361  | 5.278 | 2.388 | 4.420  |
|    | $H_{o}$        | 0.200  | 0.350  | 0.579  | 0.450  | 0.950  | 0.895  | 0.750  | 0.688 | 0.118 | 0.800  |
|    | HE             | 0.185  | 0.386  | 0.709  | 0.684  | 0.865  | 0.852  | 0.703  | 0.811 | 0.581 | 0.774  |
|    | $F_{IS}$       | -0.081 | 0.094  | 0.184  | 0.342  | -0.098 | -0.050 | -0.068 | 0.152 | 0.798 | -0.034 |
| W3 | Ν              | 41     | 42     | 43     | 44     | 44     | 40     | 44     | 36    | 43    | 44     |
|    | N <sub>A</sub> | 6      | 3      | 9      | 5      | 11     | 10     | 8      | 8     | 4     | 8      |
|    | N <sub>E</sub> | 1.431  | 1.946  | 3.587  | 2.484  | 4.593  | 6.987  | 3.975  | 4.809 | 2.387 | 3.759  |
|    | $H_{o}$        | 0.220  | 0.357  | 0.605  | 0.614  | 0.795  | 0.875  | 0.727  | 0.556 | 0.163 | 0.432  |
|    | $H_{\rm E}$    | 0.301  | 0.486  | 0.721  | 0.597  | 0.782  | 0.857  | 0.748  | 0.792 | 0.581 | 0.734  |
|    | $F_{IS}$       | 0.271  | 0.265  | 0.162  | -0.027 | -0.017 | -0.021 | 0.028  | 0.299 | 0.720 | 0.412  |
| W4 | Ν              | 29     | 30     | 30     | 30     | 30     | 28     | 30     | 29    | 27    | 29     |
|    | NA             | 4      | 2      | 6      | 4      | 11     | 8      | 7      | 7     | 5     | 7      |
|    | N <sub>E</sub> | 1.285  | 1.471  | 2.894  | 2.016  | 5.590  | 5.873  | 2.970  | 5.224 | 2.651 | 3.564  |
|    | $H_{o}$        | 0.241  | 0.333  | 0.600  | 0.600  | 0.867  | 0.786  | 0.667  | 0.552 | 0.074 | 0.621  |
|    | $H_{\text{E}}$ | 0.222  | 0.320  | 0.654  | 0.504  | 0.821  | 0.830  | 0.663  | 0.809 | 0.623 | 0.719  |
|    | $F_{IS}$       | -0.088 | -0.042 | 0.083  | -0.191 | -0.055 | 0.053  | -0.005 | 0.318 | 0.881 | 0.137  |
| W5 | Ν              | 30     | 30     | 30     | 30     | 30     | 30     | 29     | 23    | 28    | 29     |
|    | NA             | 6      | 3      | 8      | 6      | 7      | 11     | 6      | 6     | 5     | 8      |
|    | N <sub>E</sub> | 1.542  | 1.542  | 3.711  | 3.719  | 4.569  | 5.844  | 3.780  | 4.831 | 2.667 | 4.123  |
|    | $H_{0}$        | 0.200  | 0.367  | 0.733  | 0.633  | 0.767  | 0.800  | 0.828  | 0.739 | 0.214 | 0.690  |
|    | HE             | 0.352  | 0.352  | 0.731  | 0.731  | 0.781  | 0.829  | 0.735  | 0.793 | 0.625 | 0.757  |
| _  | $F_{IS}$       | 0.431  | -0.043 | -0.004 | 0.134  | 0.018  | 0.035  | -0.125 | 0.068 | 0.657 | 0.089  |

Table S5 Values of genetic differentiation  $(D_{est})$  for 15 sample sites across the Houtman Abrolhos Islands. Significance values are above diagonal and bold values indicate significance based on a Bonferroni adjusted *P*-value of 0.005.  $D_{est}$  was strongly correlated with  $G'_{ST}(R = 0.998, P = 0.001)$ .

|    | P1     | P2     | P3    | P4    | P5    | E1     | E2     | E3     | E4     | E5    | W1    | W2    | W3    | W4    | W5    |
|----|--------|--------|-------|-------|-------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|
| P1 |        | 0.402  | 0.018 | 0.001 | 0.404 | 0.554  | 0.806  | 0.034  | 0.140  | 0.447 | 0.158 | 0.314 | 0.142 | 0.248 | 0.628 |
| P2 | 0.003  |        | 0.033 | 0.010 | 0.005 | 0.420  | 0.759  | 0.631  | 0.752  | 0.628 | 0.852 | 0.236 | 0.404 | 0.374 | 0.289 |
| P3 | 0.046  | 0.041  |       | 0.476 | 0.001 | 0.022  | 0.008  | 0.000  | 0.001  | 0.001 | 0.012 | 0.013 | 0.007 | 0.000 | 0.004 |
| P4 | 0.091  | 0.053  | 0.000 |       | 0.000 | 0.008  | 0.001  | 0.000  | 0.000  | 0.001 | 0.009 | 0.001 | 0.001 | 0.000 | 0.003 |
| P5 | 0.002  | 0.054  | 0.091 | 0.101 |       | 0.008  | 0.085  | 0.001  | 0.001  | 0.003 | 0.003 | 0.013 | 0.000 | 0.002 | 0.244 |
| E1 | -0.004 | 0.002  | 0.037 | 0.052 | 0.048 |        | 0.647  | 0.030  | 0.116  | 0.476 | 0.690 | 0.313 | 0.041 | 0.144 | 0.457 |
| E2 | -0.012 | -0.010 | 0.044 | 0.070 | 0.020 | -0.005 |        | 0.613  | 0.859  | 0.354 | 0.894 | 0.429 | 0.157 | 0.314 | 0.454 |
| E3 | 0.026  | -0.005 | 0.073 | 0.096 | 0.070 | 0.022  | -0.003 |        | 0.717  | 0.120 | 0.588 | 0.070 | 0.156 | 0.022 | 0.017 |
| E4 | 0.016  | -0.010 | 0.064 | 0.086 | 0.064 | 0.014  | -0.011 | -0.006 |        | 0.064 | 0.701 | 0.181 | 0.700 | 0.043 | 0.067 |
| E5 | 0.000  | -0.006 | 0.060 | 0.071 | 0.054 | -0.001 | 0.003  | 0.011  | 0.018  |       | 0.438 | 0.146 | 0.014 | 0.127 | 0.087 |
| W1 | 0.013  | -0.014 | 0.039 | 0.048 | 0.056 | -0.006 | -0.011 | -0.003 | -0.005 | 0.001 |       | 0.067 | 0.306 | 0.081 | 0.311 |
| W2 | 0.007  | 0.011  | 0.047 | 0.079 | 0.043 | 0.006  | 0.002  | 0.018  | 0.013  | 0.013 | 0.020 |       | 0.037 | 0.075 | 0.189 |
| W3 | 0.015  | 0.002  | 0.043 | 0.073 | 0.079 | 0.020  | 0.010  | 0.009  | -0.006 | 0.024 | 0.004 | 0.025 |       | 0.004 | 0.005 |
| W4 | 0.008  | 0.003  | 0.102 | 0.101 | 0.058 | 0.011  | 0.004  | 0.022  | 0.019  | 0.011 | 0.014 | 0.019 | 0.032 |       | 0.096 |
| W5 | -0.005 | 0.008  | 0.051 | 0.064 | 0.009 | 0.000  | 0.001  | 0.026  | 0.018  | 0.015 | 0.004 | 0.011 | 0.030 | 0.013 |       |

Table S6 Migration Matrix of standardized probabilities of dispersal between sampling locations. Particles were considered to recruit to a sample site if they fell within a 1km buffer around each location within the recruitment eligibility window. Source of larvae are in columns and sinks are in rows. Data is from spawning across 4 years (2009-2012) and standardized across each sink sample site. Diagonal values represent self-recruitment.

|      | SOURC | СE    |       |       |       |       |       |       |       |       |       |       |       |       |       |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| SINK | P1    | P2    | P3    | P4    | P5    | E1    | E2    | E3    | E4    | E5    | W1    | W2    | W3    | W4    | W5    |
| P1   | 0.000 | 0.021 | 0.634 | 0.180 | 0.009 | 0.031 | 0.037 | 0.004 | 0.008 | 0.000 | 0.010 | 0.010 | 0.027 | 0.014 | 0.015 |
| P2   | 0.000 | 0.066 | 0.731 | 0.159 | 0.004 | 0.000 | 0.007 | 0.000 | 0.000 | 0.000 | 0.020 | 0.004 | 0.004 | 0.000 | 0.004 |
| P3   | 0.000 | 0.697 | 0.082 | 0.000 | 0.042 | 0.042 | 0.000 | 0.000 | 0.000 | 0.000 | 0.138 | 0.000 | 0.000 | 0.000 | 0.000 |
| P4   | 0.000 | 0.555 | 0.000 | 0.305 | 0.140 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| P5   | 0.000 | 0.911 | 0.015 | 0.056 | 0.000 | 0.015 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 |
| E1   | 0.140 | 0.210 | 0.185 | 0.071 | 0.136 | 0.005 | 0.009 | 0.116 | 0.100 | 0.028 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 |
| E2   | 0.126 | 0.025 | 0.001 | 0.123 | 0.113 | 0.161 | 0.000 | 0.000 | 0.024 | 0.007 | 0.130 | 0.111 | 0.084 | 0.063 | 0.031 |
| E3   | 0.437 | 0.029 | 0.118 | 0.246 | 0.008 | 0.027 | 0.002 | 0.012 | 0.001 | 0.006 | 0.025 | 0.024 | 0.031 | 0.019 | 0.016 |
| E4   | 0.002 | 0.016 | 0.102 | 0.116 | 0.001 | 0.084 | 0.001 | 0.141 | 0.213 | 0.260 | 0.008 | 0.013 | 0.016 | 0.017 | 0.009 |
| E5   | 0.035 | 0.093 | 0.199 | 0.268 | 0.000 | 0.017 | 0.000 | 0.109 | 0.026 | 0.186 | 0.011 | 0.008 | 0.024 | 0.017 | 0.006 |
| W1   | 0.113 | 0.000 | 0.000 | 0.000 | 0.000 | 0.044 | 0.070 | 0.118 | 0.150 | 0.125 | 0.133 | 0.086 | 0.138 | 0.017 | 0.006 |
| W2   | 0.171 | 0.000 | 0.000 | 0.000 | 0.000 | 0.035 | 0.022 | 0.059 | 0.204 | 0.079 | 0.140 | 0.067 | 0.138 | 0.083 | 0.002 |
| W3   | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.179 | 0.065 | 0.015 | 0.012 | 0.047 | 0.337 | 0.207 | 0.057 | 0.046 | 0.035 |
| W4   | 0.073 | 0.000 | 0.000 | 0.000 | 0.000 | 0.023 | 0.131 | 0.119 | 0.080 | 0.091 | 0.099 | 0.058 | 0.170 | 0.151 | 0.005 |
| W5   | 0.036 | 0.000 | 0.000 | 0.000 | 0.000 | 0.016 | 0.036 | 0.084 | 0.040 | 0.146 | 0.153 | 0.048 | 0.165 | 0.170 | 0.107 |

| Loci Removed | Mantel <i>r</i> | Р     |
|--------------|-----------------|-------|
| Amil_018     | 0.37263         | 0.004 |
| EST_63       | 0.36209         | 0.002 |
| Amil_022     | 0.39531         | 0.003 |
| Amil_002     | 0.23407         | 0.020 |
| EST_181      | 0.38652         | 0.003 |
| EST_245      | 0.38265         | 0.005 |
| EST_016      | 0.38154         | 0.004 |
| wgs_153      | 0.36847         | 0.003 |
| EST_98       | 0.38915         | 0.003 |
|              |                 |       |

Table S7 Results from Mantel tests between DOR and  $F_{ST}$  when jacknifing across all loci.



Figure S1 Principle component analyses of three measures of genetic differentiation  $(F_{\rm ST}, G_{\rm ST}, D_{\rm est})$ 

Figure S2 Results from GENELAND identifying K = 3 as the most likely number of clusters in the dataset. Results from 10 independent runs sorted by posterior probabilities are also provided.





Figure S3 Scatterplot showing the relationship between genetic distance matrices based on subsampled v. entire dataset.

Figure S4 Matrix of similarity (Nei 1987) based on the forward projected migration matrix standardised migration matrix at t = 0 (above) and when forward projected 10 generations (below). Red indicates high levels of similarity and blue low levels of similarity. The matrix is symmetric and so non-directional.



Figure S5 Histograms showing distribution of P values from the Mantel tests based on the subsampled dataset. Asterisks indicate P values using the full dataset.



Derived oceanc resistance 20 4 Frequency 8 20 6 0 7 0.0 0.1 0.2 0.3 0.4 0.5 Mantel p-value

Text SI Details of the calculations for the forward projection matrix

The migration matrix was projected forward in time to examine the probability of populations being connected over multiple generations using the formula  $Q_t = \overline{AK}t$ , where  $A = \overline{MB + 1}$  (the top bar indicates row-normalisation) and  $Q_t$  is a state matrix representing the constitution of each adult population at each adult population at time t (rows) in terms of the relative contribution from each source population at t = 0 (columns), B is a diagonal matrix of per capita birth rates, K is a diagonal matrix of relative carrying capacity and I is an identity matrix with the same dimension as M, and t is the number of generations projected [62]. The forward-projected matrix was calculated using t = 10, and identity matrices were applied for B and K since turnover rates were assumed constant at one juvenile per individual per generation, and all populations were assumed to be equal in size. When using higher birth rates the matrix rapidly converged to the eigenvalues and so higher values were avoided. The projection model does not take into account post-settlement mortality, which would act to slow the rate of convergence; however, without any spatial biases the relative patterns would not be affected.