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S1 Methods

All models studied by the TPA are given in terms of well-mixed chemical systems where the system state changes
according to the chemical reactions (2.1) (here, equation label (2.1) refers to the corresponding equation in the
paper). Probability that a reaction occurs is determined by the propensity function

αj(x, kj) = kj α̃j(x), j = 1, 2, . . . ,M, (S1)

with the non-parametric part α̃j(x) given by

α̃j(x) = exp

[(
1−

N∑
i=1

ν−j,i

)
log V

]
N∏
i=1

(ν−j,i)!

(
xi
ν−j,i

)
,

where V is the volume of the reactor. The stationary distribution p
(
x |k

)
, where k = (k1, k2, . . . , kK)T is the

subset of kinetic rate constants for which the parameter analysis is considered, can be computed as the exact solu-
tion of the chemical master equation (CME) [52]. However, for the computational reasons, we will approximate it
by the solution of the stationary chemical Fokker-Planck equation (CFPE) [18], which can be written as

A(x,k) p
(
x |k

)
= 0,

where

A(x,k) p
(
x |k

)
= −

N∑
i=1

∂

∂xi

 M∑
j=1

νj,i αj(x, kj) p
(
x |k

)
+

1

2

N∑
i,i′=1

∂2

∂xi∂xi′

 M∑
j=1

νj,i νj,i′ αj(x, kj) p
(
x |k

) , (S2)

is the parametric Fokker-Planck operator. We use the tensor structures to compute p
(
x |k

)
simultaneously for

ranges of values of reaction rates k. To achieve this, we split the model parameters from the state variables in a
multiplicative way. Considering the definition of propensity functions (S1), we can split the parametric Fokker-
Planck operator (S2) into M terms as

A(x,k) = k1A[1](x) + · · ·+ kMA[M ](x), (S3)

where the non-parametric operator A[j](x) describes the normalised transition properties of the j-th reaction, and
is defined (for any twice differentiable function f ) by

A[j](x) f(x) = −
N∑
i=1

νj,i
∂

∂xi

(
α̃j(x) f(x)

)
+

1

2

N∑
i,i′=1

νj,i′ νj,i
∂2

∂xi∂xi′

(
α̃j(x) f(x)

)
. (S4)
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Let us note that the definition of propensity functions (S1) relies on the law of mass action. However, the TPA
methodology is applicable even for more general definitions [53]. If the propensity functions depend nonlinearly on
the kinetic rates, as in [54] for example, then the TPA methodology can be used provided a multiplicative splitting
(S3) of the parametric Fokker-Planck operator is possible. Such splitting is always possible if the propensities can
be written as a product of two terms, where the first term depends only on kinetic rates, and the second term on
state variables.
The splitting of the parametric Fokker-Planck operator (S3) implies a perfect collinear relationship between the
kinetic rate parameters. In the context of parameter estimation this means that a single constraint (like mean and
variance) restricts the original K-dimensional parameter space to an (K − 1)-dimensional subspace of parameter
values that comply with the constraint. Therefore, if a direct comparison between a model and a sample is not
possible, a necessary condition to statistically infer K ≤ M parameters of a stochastic system is to define at least
K constraints.

S1.1 Tensorization

We consider the state variable x in a bounded domain Ωx ⊂ (0,∞)N . Similarly, the kinetic rates k, which are
varied during the parametric analysis, are considered in Ωk ⊂ [0,∞)K whereK ≤M . In order to utilize the tensor
structures, we assume that Ωx = I1 × · · · × IN and Ωk = J1 × · · · × JK , where Id = (axd , b

x
d), d = 1, 2, . . . , N,

are open intervals and J` = [ak` , b
k
` ], l = 1, 2, . . . ,K, are closed intervals.

We consider homogeneous Dirichlet boundary conditions on the boundary of Ωx. We approximate the stationary
distribution by the (normalized) eigenfunction of A(x,k) corresponding to the eigenvalue closest to zero. Since
the Fokker-Planck operator A(x,k) is an elliptic operator, the largest eigenvalue converges to 0 from below as the
size of Ωx increases to infinity. In particular, if we choose a sufficiently large computational domain Ωx, then the
largest eigenvalue will be close to zero and the Dirichlet boundary conditions will not cause any substantial error.
The chemical Fokker-Planck operator (S4) is discretized in Ωx by the finite difference method. We consider
tensor grids [55] in both Ωx and Ωk. The tensor grid in Ωx has nodes (x1,i1 , . . . , xN,iN ), id = 1, 2, . . . , nd,
d = 1, 2, . . . , N . There are nd points xd,id = axd + idh

x
d , id = 1, 2, . . . , nd, in every Id with the grid size

hxd = (bxd−axd)/(nd+1), d = 1, 2, . . . , N . Similarly, we define tensor grid (k1,j1 , . . . , kK,jK ) in Ωk, where k`,j` =
ak` + (j` − 1)hk` , j` = 1, 2, . . . ,m`, form a uniform partition of J` with the grid size hk` = (bk` − ak` )/(m` − 1),
` = 1, 2, . . . ,K. Note that the boundary points axd and bxd , d = 1, 2, . . . , N , are not present in the tensor grid due
to the Dirichlet boundary conditions.
The values of the stationary distribution p

(
x |k

)
at the nodal points are organized as an (N + K)-dimensional

tensor p̄ ∈ Rn1×···×nN×m1×···×mK with entries

p̄i1,...,iN ,j1...,jK = p(x1,i1 , . . . , xN,iN |k1,j1 , . . . , kK,jK ). (S5)

In the traditional matrix-vector approach, we would organize the entries of p̄ into a long vector. However, the
tensor structure is more natural, because it corresponds to the original physical position of the nodes within the
state and parameter space [56]. Finally, let us note that if n = n1 = · · · = nN and m = m1 = · · · = mK

then there is nNmK entries in the tensor p̄. Thus, the number of memory places to store the tensor p̄ grows
exponentially with N and K. In the next subsection, we present the main idea of the separated representation of
tensors that allows to solve this problem.

S1.2 Separation of dimensions

The main idea of the separated (or low-parametric) representation is to approximate tensor p̄ by the following sum
of rank-one tensors:

p̄ ≈
R∑

r=1

φ
[r]
1 ⊗ · · · ⊗ φ

[r]
N︸ ︷︷ ︸

state space

⊗ ψ[r]
1 ⊗ · · · ⊗ ψ

[r]
K︸ ︷︷ ︸

parameter space

, (S6)

2



where φ[r]d ∈ Rnd , d = 1, 2, . . . , N, and ψ[r]
` ∈ Rm` , ` = 1, 2, . . . ,K, are factor vectors, R is known as the

separation rank, and symbol ⊗ denotes the tensor product of vectors [57]. Let us recall that the tensor product
v1 ⊗ v2 ⊗ · · · ⊗ vN of vectors vd ∈ Rnd , d = 1, 2, . . . , N , is defined as a tensor v̄ ∈ Rn1×n2×···×nN with entries
vi1,i2,...,iN = v1,i1 v2,i2 · · · vN,iN .
Representation (S6) has the potential to solve high-dimensional problems. Indeed, if we consider for simplicity
n = n1 = · · · = nN and m = m1 = · · · = mK then the representation (S6) requires to store (nN + mK)R
numbers only. For moderate values of R this is substantially less than the number of entries of p̄. Moreover, low-
parametric representations such as (S6) enable to perform algebraic operations in an efficient way, see Section S1.4.
The accuracy of the separated representation (S6) depends on the choice of the factor vectors and on the size of
the tensor rank R. Clearly, the higher rank enables higher accuracy, but requires higher computational and storage
costs. In practical computations, the rank R is dynamically controlled using algorithms for tensor truncation,
see Section S1.3. Let us note that the representation (S6) is known as the canonical polyadic decomposition [58].
However, due to reasons connected with the stability of the tensor truncation algorithms, it is not suitable for actual
computation and more stable tensor formats have to be employed [22]. We have introduced the canonical polyadic
decomposition (S6) due to its simplicity to illustrate the main idea of the separate representation of tensors.
For certain simple problems, like birth-death process, the separable representation of the stationary distribution
can be derived explicitly. However, in general, we have to compute the stationary distribution in the form (S6). To
achieve this, we need to express the discretized Fokker-Planck operator in a separable form as well. Based on the
structure of A(x|k) in (S3), the discretization of the parametric Fokker-Planck operator can be divided into two
steps: decomposing the non-parametric part (see Section S1.2.1) and the parametric part (see Section S1.2.2).

S1.2.1 Decomposition of the non-parametric part

We use the finite differences to discretize the derivatives in the non-parametric operators A[j](x) in (S4), see
e.g [59]. The separated tensor representation does not require high-dimensional difference stencils. Instead, just
one-dimensional differences are needed. Further, since the standard finite difference discretizations of differential
operators yield matrices, we organize their entries naturally into tensors. In this situation we speak about tensor
matrices and denote them in capital bold font. The idea is exactly the same as in (S5), where we organized a long
vector into a tensor.
Thus, the finite difference matrix approximating the non-parametric operator A[j](x) in (S4) can be expressed as
the following tensor matrix:

A[j] = −
N∑
i=1

νj,iG
[i;j] +

1

2

N∑
i,i′=1

νj,iνj,i′F
[i,i′;j], j = 1, 2, . . . ,M, (S7)

where tensor matrices G[i;j] and F[i,i′;j] refer to tensor-structured discretizations of the summands in the first and
second sums in (S4), respectively, and are determined by

G[i;j] =ṽj H
[j]
1 ⊗ · · · ⊗DiH

[j]
i ⊗ · · · ⊗H

[j]
N ,

F[i,i′;j] =ṽj H
[j]
1 ⊗ · · · ⊗DiH

[j]
i ⊗ · · · ⊗Di′H

[j]
i′ ⊗ · · · ⊗H

[j]
N , for i < i′,

F[i,i;j] =ṽj H
[j]
1 ⊗ · · · ⊗DiDiH

[j]
i ⊗ · · · ⊗H

[j]
N ,

where the volume scaling coefficient is ṽj = exp
[
(1−

∑N
i=1 ν

−
j,i) log V

]
. Here,H [j]

i ∈ Rni×ni andDi ∈ Rni×ni

for i = 1, 2, . . . , N and j = 1, 2, . . . ,M are matrices and, thus, the tensor product ⊗ works in the same way as
the Kronecker product. Matrix Di is the central difference matrix with entries −1/(2hxi ) and 1/(2hxi ) distributed
along its super- and sub-diagonal, respectively. Matrix H [j]

i is diagonal with diagonal entries

H
[j]
i (`, `) = (ν−j,i)!

(
xi,`

ν−j,i

)
for ` = 1, 2, . . . , ni.
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We observe that tensor matrices G[i;j] and F[i,i′;j] are expressed in a separated representation similar to (S6) with
the separation rankR = 1. Consequently, the non-parametric operator A[j] in (S7) admits separable representation
of rank R = N(N + 1)/2 +N = N2/2 + 3N/2. Thus, any further algebraic operation on A[j] would contribute
to the overall complexity growing quadratically in terms of number of chemical species.

S1.2.2 Decomposition of the parametric part

Having the low-parametric discrete tensor-structured representations (S7) of the non-parametric operators A[j], we
write a discrete tensor-structured representation of the parametric Fokker-Planck operator (S3) as

A = A[1] ⊗K1 ⊗ I2 ⊗ · · · ⊗ IM + A[2] ⊗ I1 ⊗K2 ⊗ · · · ⊗ IM + · · ·+ A[M ] ⊗ I1 ⊗ I2 ⊗ · · · ⊗KM , (S8)

where Kj ∈ Rmj×mj denotes a diagonal matrix whose diagonal entries correspond to the grid nodes of the j-th
parameter, i.e., Kj(`, `) = kj,` for ` = 1, 2, . . . ,mj and j = 1, 2, . . . ,M .
Equation (S8) is a low-parametric tensor representation of the discretized parametric Fokker-Planck operator with
separation rank M(N2/2 + 3N/2). This rank grows linearly with the number of chemical reactions M and
quadratically with the number of chemical species N . Then, the parametric steady state distribution of the form
(S6) is solved as the eigenvector of A corresponding to the eigenvalue closest to zero (see Section S1.3).

S1.3 Solving the stationary CFPE in tensor format

Let A be the tensor-structured parametric Fokker-Planck operator assembled in (S8). Our goal is to approximate
the stationary distribution by the eigenvector p̄ corresponding to the eigenvalue λmin which is closest to zero, i.e.

Ap̄ = λminp̄. (S9)

A standard method to find the required eigenpair of A is the inverse power method, and here we modify the original
algorithm for better implementations in tensor-structured computations.

Adaptive inverse power algorithm. The main building block is the fact that, beginning with an initial guess p̄0

and given a shift value σ, the inverse power scheme,

(A− σI)p̄k+1 =
p̄k

‖p̄k‖
, k = 0, 1, . . . (S10)

would converge to the eigenvector corresponding to the eigenvalue closest to the chosen shift σ, provided that the
eigenvalue is of multiplicity one. Since all eigenvalues of the Fokker-Planck operator have negative real parts, we
choose σ ≥ 0. We do it adaptively based on the performance of the tensor linear solver, i.e. σ ≡ σk in (S10).
We apply the alternating minimum energy method (AMEN) [60] to solve the linear system (S10). Given an initial
N -dimensional tensor p̄, the AMEN method minimises the residual in a single dimension at a time with other
dimensions fixed, and alternates the dimensions from 1 toN . The entire sweep repeats until a convergence criterion
is satisfied. Typically, smaller shift σ makes the whole inverse power method converge faster to the steady state
solution, however, within each inverse iteration (S10), the AMEN may require many sweeps to achieve a reasonable
tolerance. Thus, our strategy is to double the shift value σ when the solver reach certain upper threshold, and half
σ to seek for better convergence for the whole procedure when the AMEN converges with only a few sweeps.
Another extension arises from a feature of tensor-structured data format. The tensor separation rankR can increase
rapidly over successive algebraic operations, making the representation untenable. To avoid uncontrollable growth
of the separation rank throughout the computation, we need to reduce it by adaptively changing the involving factor
vectors while maintaining the required accuracy. This procedure is usually called tensor truncation:

p̄∗ = Γ(p̄), (S11)
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where operator Γ is the truncation operator, and rank(p̄∗) < rank(p̄). Although finding the optimal tensor
separation rank is still an open question of the ongoing research, the tensor train format, together with its SVD-
based tensor truncation algorithm, is a stable and useful prototype for our implementations, and we refer the readers
to [22] for further details.
Consequently, the adaptive inverse power method used in the TPA is summarised as follows:

Step 0. Initialize: initial guess p̄0; shift value σ = σ0; stopping criterion ε; maximum number of AMEN
sweeps in each inverse iterationNmax; thresholds to increase (Nin) and decrease (Nde) the shift value.

Step 1. Solve the k-th tensor-structured inverse iteration (S10) up to Nmax sweeps.

Step 2. Check the number of sweep Ncomp for the AMEN solver to converge:

2a. If Ncomp > Nin, let σ = 2σ and jump back to Step 1.
2b. If Nde < Ncomp ≤ Nin, go to Step 3.
2c. If Ncomp ≤ Nde, σ = σ/2 and go to Step 3.

Step 3. Truncate the tensor separation rank as in (S11).

Step 4. Check the stopping criterion:

4a. If ‖p̄k+1 − p̄k‖ > ε, let p̄k+1 = p̄k and k = k + 1, and jump to Step 1.
4b. If ‖p̄k+1 − p̄k‖ ≤ ε, return p̄k+1 and exit.

Multi-level acceleration. When the dimensionality of the problem is large, the adaptive scheme discussed above
may converge slowly, because on a fixed grid size, the AMEN requires very large shift value σ to solve (S10).
Thus, the TPA makes use of a multi-level scheme to accelerate the solution process for high-dimensional problems.
The system (S9) is first solved on a coarse grid with grid size 2h. The approximated stationary solution is then
interpolated to a fine grid with grid size h and used as an initial guess. The method continues to solve the system
on finer grids until some convergence criteria are achieved.
A key step in the multi-level approach is the interpolation, or prolongation, matrix that transfers the solution on a
coarse grid to a fine grid. The prolongation operator has a rank-one tensor structure. Let N -dimensional tensor
p̄ ∈ Rn1×n2×···×nN contain the function values on an N -dimensional tensor grid with nk, k = 1, 2, . . . , N , grid
points along each direction. The prolongation operator P[k] to the k-th dimension is then defined as

P[k] = I ⊗ · · · ⊗ I ⊗ P 2nk
nk︸ ︷︷ ︸

k-th mode

⊗ I ⊗ · · · ⊗ I, (S12)

where P 2nk
nk
∈ R2nk×nk is the one-dimensional interpolation matrix defined by

P 2nk
nk

=
1

2


2
1 1

2
1 1

. . .

 .

If tensor p̄ has the rank-R separated representation as (S6) with n = n1 = n2 = · · · = nN , the complexity to
interpolate a single dimension is O(n), and the total complexity of a full interpolation over N -dimensional tensor
grid is O(nN). We summarise the multi-level accelerated adaptive inverse power method as follows:

Step 0. Initialize: initial grid size on the coarsest grid h1; initial guess p̄(1)
0 ; initial error tolerance ε(1); maxi-

mum number of grid levels Lmax; and let ` = 1.
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Step 1. Solve the eigenvalue problem (S9) on the `-th level with initial guess p̄(`)
0 , using the adaptive inverse

power method. Return the solution p̄
(`)
k that satisfies the error tolerance ‖p̄(`)

k − p̄
(`)
k−1‖ ≤ ε(`).

Step 2. If ` < Lmax, interpolate the solution p̄
(`)
k to a finer grid by successive application of the prolongation

operator P[k] in (S12) to each dimension. Let p̄(`+1)
0 = p̄

(`)
k , ε(`+1) = ε(`)/2, ` = `+ 1. Go to Step 1.

Step 3. If ` = Lmax, return the solution p̄
(`)
k and exit.

Multi-level approach is used in Section S2.4 to analyse the 20-dimensional chemical system (S17). CPU times for
each grid size are shown in Table S8. In general, the operators of both the CME and CFPE are non-symmetric and
ill-conditioned, and challenging to handle using tensor-structured solvers [61,62]. Although it can be improved by
shortening the time-step [48], the CFPE has a distinctive advantage over the CME for its flexibility in choosing the
grid size, which enables to control the accuracy and use of acceleration strategies, such as the presented multi-level
approach.

Implementation. The TPA, implemented in MATLAB, is included in the Stochastic Bifurcation Analyzer tool-
box available at http://www.stobifan.org. The source code relies on the Tensor Train Toolbox [22].
Simulations are performed on a 64-bit Linux desktop equipped with Quad-Core AMD OpteronTM Processor 8356
× 16 and 63 GB RAM.

S1.4 Elementary tensor operations

The computation of the tensor-structured parametric solution p̄ has been described in Section S1.3. In this section,
we discuss computational details of post-processing the solution in the form (S6) for parametric analysis. This
analysis is based on high-dimensional integration, implemented using the k-mode product described below.

Tensor multiplication: the k-mode product [63]. Let p̄ ∈ Rn1×n2×···×nN be an N -dimensional tensor, the
k-mode product of p̄ with a vector q ∈ Rnk is denoted by p̄×k q and is a tensor of size n1 × nk−1 × 1× nk+1 ×
· · · × nN . Elementwise, we have

(p̄×k q)i1,...,ik−1,1,ik+1,...,iN =

nk∑
jk=1

p̄i1,...,ik−1,jk,ik+1,...,iN qjk . (S13)

Further, if p̄ can be written as a rank-R tensor, i.e., p̄ =

R∑
r=1

φ
[r]
1 ⊗ · · · ⊗ φ

[r]
N , then the k-mode product can be

evaluated through R one-dimensional inner products:

p̄×k q =

R∑
r=1

φ
[r]
1 ⊗ · · · ⊗ φ

[r]
k−1 ⊗ 〈φ

[r]
k ,q〉 ⊗ φ

[r]
k+1 ⊗ · · · ⊗ φ

[r]
N .

The (i1, i2, . . . , iN )-th order moment computation in equation (3.3). For tensor-structured parametric solu-
tion in (S6), integral (3.3) can be simultaneously approximated for all parameter sets through successive application
of the mode product introduced in (S13) as

µ[i1,...,iN ](k
∗) ≈ hx1hx2 · · ·hxN

(
p̄×1 x

i1
1 ×2 x

i2
2 ×3 · · · ×N xiN

N

)
, (S14)

where xid
d = (xidd,1, x

id
d,1, . . . , x

id
d,nd

)T and hxd is the grid size, defined in Section S1.1. The computational com-
plexity of (S14) is O(nNR), where n = max{n1, n2, . . . , nd}.
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Computation of integral in equation (3.6) in the paper. Given the distributions of parameters qj(kj) for j =
1, 2, . . . ,K, the integral in equation (3.6) can be efficiently computed using the tensor-structured solution (S6) by

p̄x = hk1h
k
2 . . . h

k
K (p̄×N+1 q1 ×N+2 q2 ×N3

· · · ×N+K qK) , (S15)

where the entries of vectors qj for j = 1, 2, . . . ,K, represent the values of qj(kj) at the discrete node points
kj,1, kj,2, . . . , kj,mj

and hk1 , h
k
2 , . . . , h

k
K are grid sizes in the parameter space, defined in Section S1.1. If

m = m1 = m2 = · · · = mK = m then the complexity of evaluating the approximation (S15) of the K-
dimensional integral (3.6) isO(mKR), which scales linearly with the separation rankR, the number of parameters
K, and the number of grid nodes m along each dimension in the parameter space.

Computing transition probability and oscillation amplitude. In the parameter estimation (Figure 2) and sen-
sitivity analysis (Figure S1), we illustrate the results based on the transition probability and oscillation amplitude
that are extracted from tensor-structured parametric solution. For example, the probability that, in steady state
distribution, the `-th chemical species stays below a certain threshold x̃`, is estimated as follows. We first integrate
out all the other dimensions in the state space, and integrate the `-th dimension up to x̃`, i.e.,

p(x` ≤ x̃` |k) =

∫ bx1

ax
1

· · ·
∫ bx`−1

ax
`−1

∫ x̃`

ax
`

∫ bx`+1

ax
`+1

· · ·
∫ bxN

ax
N

p(x |k) dx.

In tensor structure, we use N -mode products to compute p(x` ≤ x̃` |k) simultaneously for all parameter combi-
nations by

hx1h
x
2 · · ·hxN (p̄×1 1×2 1×3 · · · ×`−1 1×` 1x̃`

×`+1 1×`+2 · · · ×N 1) ,

where 1 denotes a vector of all ones. Entries of 1x̃`
are equal to 1 if the corresponding grid point is smaller or

equal to x̃`, while its other entries are zero.

S1.5 Sensitivity analysis

The sensitivity indicator for an observable quantity Θ with respect to a parameter k is often computed as a finite
difference [64]

S(Θ) ≈ ‖Θ(k + ∆k)−Θ(k)‖
∆k

k

‖Θ(k)‖
, (S16)

where ‖ ·‖ represent a suitable norm, and ∆k is a change in the value of k. The model is sensitive to the parameter,
if a small ∆k yields a large value of S(Θ). For deterministic models, the observable Θ is usually the steady-state
mean concentration. In stochastic setting, we have more options.
For example, let us consider the cell cycle model described in Figure 4(a). We will study the sensitivity with respect
to the parameter k1 for the following three observables Θ: mean concentration of the MPF (Θm), the oscillation
amplitude (Θa) and the steady state distribution (Θp). In the case of the oscillation amplitude, we quantify Θa as
the probability that the molecular population of the active MPF exceeds 400.
In the TPA framework, Θm and Θa are evaluated for all considered values of k1 with computational cost scaling
linearly with N . More importantly, the tensor-structured data enable direct comparison of two steady state prob-
abilities in the 6-dimensional state space. Namely, the norm ‖Θp(k1 + ∆k1) − Θp(k1)‖, needed in (S16), can
be directly computed. The results are plotted in Figure S1. We observe that, within the considered range of k1
(see Table S5), the sensitivity in the steady state distribution (blue curve) dominates in magnitude over S(Θm)
and S(Θa). The steady state distribution contains a global information about the system and is more sensitive to
parameter changes than derived quantities, like Θm and Θa.
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S2 Description of models used in the illustrative TPA computations

S2.1 Schlögl model

The Schlögl system is defined by chemical reactions listed in Table S1. This table also shows the true values of
parameters k1, k2, k3 and k4. Using this system, we illustrate the capabilities of the TPA for the parameter esti-
mation and identifiablity. Table S2 provides the values of the first three statistical moments and the corresponding
weights. The moments have been computed from a time series obtained by a long-time stochastic simulation with
the values of parameters given in Table S1. A short segment of the time series is illustrated in Figure 1(a). We then
assume that the values of parameters k1, k2, k3 and k4 are unknown. The TPA enables to evaluate the moment
matching distance function given in the paper in equation (3.1), for all values of parameters within the parameter
space given in Table S3. The resulting data are stored in the tensor format which enables efficient manipulations
and post-processing.
Having the values of the distance function stored in the tensor format, we can easily and quickly obtain further
pieces of information. For example, we can find those parameter values which do not fit the moments exactly, but
with certain accuracy. More precisely, we consider tolerance JTOL = 0.25 % and visualize in Figures 2(a)–(d)
parameter values with distance function J less than JTOL. Alternatively, if the values of moments are not available,
we can utilize the TPA for different experimental data – see Figure 1(b) and equation (3.4) in the paper.
Note that all four values of parameters k1, k2, k3 and k4 cannot be estimated solely from the steady state distribu-
tion, because it does not inform us how fast the system reaches the steady state. In particular, if {ki}i=1,2,3,4 fit
the pseudo-experimental data, then {Cki}i=1,2,3,4 for any C > 0 fit these data as well. Therefore, in Figures 1(b)
and 2, we fix one of the parameters at its true value and estimate values of the other three.

Table S1: Reactions and parameters of the Schlögl model.
Index Reaction Kinetic ratea True value

1 3X → 2X k1/V
2 k1 = 2.5× 10−4

2 2X → 3X k2/V k2 = 0.18
3 ∅ → X k3 V k3 = 2250
4 X → ∅ k4 k4 = 37.5

aThe reacting volume is set to V = 1 unit.

Table S2: Moments estimated from stochastic simulation of the Schlögl model.
Moment order Value Weight

1 µ̂1 = 261.32 β1 = 1
2 µ̂2 = 2.03× 104 β2 = 100
3 µ̂3 = −2.04× 105 β3 = 0.001

S2.2 Cell cycle model

The cell cycle model consists of six chemical species (see Table S5) which are subject to chemical reactions listed
in Table S4, see also Figure 4(a) in the paper. We have used this model to show how the TPA can be used to analyse
bifurcations for high-dimensional problems, see Figures 4(b), 4(c) and 5 in the paper. In addition, we have used
this system to discuss the sensitivity of various quantities in the stochastic model, see Figure S1 and Section S1.5.
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Table S3: Properties of molecular and rate variables in the Schlögl model.
Type Notation Range No. of nodes

Species X [0, 1000] 1024
Rate k1 [2.43× 10−4, 2.58× 10−4] 128
Rate k2 [0.17, 0.19] 128
Rate k3 [2134, 2266] 128
Rate k4 [36.08, 38.63] 128

Table S4: Reactions and parameters of the cell cycle model.
Index Reaction Kinetic ratea Parameter(s)

1 M → C2 + Y P k1 bifurcation parameter
2 ∅ → Y k2 V k2 = 0.015
3 CP + Y → pM k3/V k3 = 200

4 pM →M k′4 + k4 (M/V )
2

k4 = 180, k′4 = 0.018
5 M → pM k5 tP k5 = 0, tP = 0.001
6 Y → ∅ k6 k6 = 0
7 Y P → ∅ k7 k7 = 0.6
8 C2 → CP k8 tP k8 = 1000
9 CP → C2 k9 k9 = 1000

aThe volume corresponds to a single cell and is set to V = 5× 103 units.

Table S5: Properties of molecular and rate variables in the cell cycle model.
Type Name Notation Range No. of nodes

Species cdc2 C2 [2230, 4990] N/Aa

Species cdc2-P CP [10, 70] 256
Species p-cyclin-cdc2-p pM [0, 1500] 256
Species p-cyclin-cdc2 M [0, 1200] 256
Species cyclin Y [20, 70] 256
Species p-cyclin YP [0, 700] 256

Rate degradation rate of active MPF k1 [0.25, 0.4] 64
aDiscretisation of cdc2 is not applicable here, since this variable is eliminated by the conservation law of cdc2

assumed by the original author.

S2.3 FitzHugh-Nagumo model
The FitzHugh-Nagumo model consists of five chemical reactions between two chemical species. It is illustrated in
Figure 6(a) in the paper and the parameter ranges and mean values are provided in Tables S6 and S7. This model
is used to show how the TPA can assess the influence of the extrinsic noise, see Figure 6 in the paper.

S2.4 A chemical reaction system in 20 dimensions
We consider a reaction chain of 20 molecular species:

∅ k0−→ X1

k1−→←−
k−1

X2

k2−→←−
k−2

· · ·
k18−→←−
k−18

X19

k19−→←−
k−19

X20
k20−→ ∅, (S17)
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Figure S1: Sensitivity indicators S(Θ) calculated by (S16) for 32 equidistant nodes within the range [0.25, 0.4]
of parameter k1 (see Table S5 and Section S1.5). Three observables are considered: stationary distribution
Θp (blue), oscillation amplitude Θa (red) and average number Θm of active MPF (orange). The dot-dashed
and dashed lines indicate parameter values for which Figures 4(b) and 4(c) in the paper were computed, i.e.
k1 = 0.2694 (deterministic bifurcation point) and k1 = 0.3032, respectively.

Table S6: Properties of molecular and rate variables in the FitzHugh-Nagumo model.
Type Notation Range No. of nodes

Species X1 [0, 1800] 256
Species X2 [0, 700] 256

Rate k1 [0.17, 0.23] 128
Rate k2 [0.952, 0.1288] 128
Rate k3 [2.125, 2.875] 128
Rate k4 [0.0892, 0.1207] 128

Table S7: Reactions and parameters of the FitzHugh-Nagumo model.
Index Reaction Kinetic ratea Mean value

1 X1 → 2X1 (X1 − k1 V )(V −X1) k1 = 0.2
2 X1 → ∅ X2 N/A
3 ∅ → X1 k2 V k2 = 0.112
4 X2 → ∅ k3 k4 k3 = 2.5
5 X1 → X1 +X2 k4 k4 = 0.105

aThe system volume is V = 2× 103 units.

where k0 = 12, ki = 0.2 for i = 1, 2, . . . , 20, and k−j = 0.1 for j = 1, 2, . . . , 19. A multi-level approach is
implemented to solve the underlying CFPE, where the steady state distribution is first approximated on a coarse
grid, and then interpolated to a finer grid (see Section S1.3). The approximate solution on the initial coarsest level
is plotted in Figure 7(a), and the solution on the finest grid level is plotted in Figure 7(b). We also note that the CME
for the reaction chain, as a monomolecular reaction system, can be solved explicitly. Its steady state distribution is
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Table S8: Multi-level discretisation for the 20-dimensional reaction chain (S17).
Level 1 2 3 4 5 6 7

No. of nodes n 8 16 32 64 128 256 512
Grid size h 20 10 5 2.5 1.25 0.625 0.3125

CPU time† (×103 sec) 2.82 7.02 2.84 2.3 2.25 0.08 0.10
† The computational time that the simulation spent on each grid level. The numbers correspond to the segments of

the time axis in Figure 7(c) separated by the dashed lines.

a product Poisson distribution [15]. This means that the marginal probability distribution of the i-th species is

pi(xi) =
φxi
i

xi!
exp(−φi), i = 1, 2, . . . , 20,

where φi is the corresponding steady state solution of the i-th species in the deterministic reaction rate equation.
Thus, we can evaluate the accuracy of the computed steady state distribution in the tensor format by computing
its marginal distribution, interpolating to the integer states, and comparing with the exact solution. The error
convergence is plotted in Figure 7(c).
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