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1 The core model for the hybrid histidine kinase

1.1 Model description

We consider a core model for a two component system with hybrid histidine kinase (hybrid
HK) and one Hpt. The hybrid HK consists of two phosphorylable domains. We denote the
phosphorylation state of each site by P if the site is phosphorylated and 0 if it is not, such that
the four possible states of HK are denoted by HK00, HKP0, HK0P, and HKPP. We let Hpt be
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the unphosphorylated His-containing phosphotransfer protein, and HptP the phosphorylated
form.

The reactions we consider are the following:

HK00
k1 // HKP0

k2 // HK0P
k3 // HKPP HK0P + Hpt

k4 // HK00 + HptP

HptP
k6 // Hpt HKPP + Hpt

k5 // HKP0 + HptP.

For notational convenience, we name the rate constants k1, . . . , k6, which differs from the
notation in the main text. We denote the concentration of the species as follows:

x1 := [HK00] x2 := [HKP0] x3 := [HK0P] x4 := [HKPP]
x5 := [Hpt] x6 := [HptP].

Under the law of mass-action, we model the dynamics of the concentrations over time by the
following system of ordinary differential equations:

ẋ1 = k4x3x5 − k1x1

ẋ2 = k5x4x5 + k1x1 − k2x2

ẋ3 = k2x2 − k3x3 − k4x3x5

ẋ4 = k3x3 − k5x4x5

ẋ5 = k6x6 − k4x3x5 − k5x4x5

ẋ6 = −k6x6 + k4x3x5 + k5x4x5,

where we write ẋ∗ = dx∗
dt and omit reference to time t, that is, we write x∗ = x∗(t).

Observe that
ẋ1 + ẋ2 + ẋ3 + ẋ4 = 0 and ẋ5 + ẋ6 = 0.

It follows that the sums of concentrations x1 + x2 + x3 + x4 and x5 + x6 are constant over
time. This leads to the extra equations

x1 + x2 + x3 + x4 = H, x5 + x6 = T. (1)

for some positive total amounts H,T > 0.

1.2 Positive steady states

The positive steady states of the system are the solutions to the equations ẋ1, . . . , ẋ6 = 0,
constrained by the conservation laws (1). Due to the conservation laws, the equation ẋ6 = 0 is
fulfilled provided ẋ5 = 0 is fulfilled, and similarly, ẋ4 = 0 is fulfilled provided ẋ1 = 0, ẋ2 = 0,
and ẋ3 = 0 are fulfilled. Therefore, the equations ẋ6 = 0 and ẋ4 = 0 can be disregarded.

Consider first the system of equations given by ẋ1 = 0, ẋ2 = 0, ẋ3 = 0, and the first
equation in (1). That is, consider the system of equations:

0 = k4x3x5 − k1x1

0 = k5x4x5 + k1x1 − k2x2

0 = k2x2 − k3x3 − k4x3x5 (2)
H = x1 + x2 + x3 + x4.
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This system is linear in x1, x2, x3, x4 with coefficients involving the rate constants and x5.
We solve it and obtain the following algebraic expressions for x1, x2, x3, x4 at steady state,
depending on the value of x5 at steady state:

x1 =
k2k4k5Hx

2
5

(k1 + k2k4)k5x2
5 + k1(k2 + k3)k5x5 + k1k2k3

(3)

x2 =
k1(k4x5 + k3)k5Hx5

(k1 + k2k4)k5x2
5 + k1(k2 + k3)k5x5 + k1k2k3

(4)

x3 =
k1k2k5Hx5

(k1 + k2k4)k5x2
5 + k1(k2 + k3)k5x5 + k1k2k3

(5)

x4 =
k1k2k3H

(k1 + k2k4)k5x2
5 + k1(k2 + k3)k5x5 + k1k2k3

. (6)

These expressions are positive provided x5 is positive. We use the second equation in (1) to
determine the value at steady state of x6. Clearly, we have that x6 = T −x5, which is positive
provided x5 < T .

The steady state polynomial. All concentrations are expressed as functions of x5, and
we have not used the equation ẋ5 = 0. We can replace the equation ẋ5 = 0 by any linear
combination of the steady state equations that involves this one. By doing so, the solutions
to the equations do not change. We replace it by the equation ẋ5 + ẋ1 − ẋ4 = 0. This cancels
out the quadratic terms in the equation ẋ5 = 0, and we obtain the equation

0 = k6x6 − k1x1 − k3x3. (7)

Substituting into (7) the values of x1 and x3 in (3), (5), and further letting x6 = T − x5, we
obtain that, at steady state, it holds

0 = k6(T − x5)− k1k2k4k5Hx
2
5 + k1k2k3k5Hx5

(k1 + k2k4)k5x2
5 + k1(k2 + k3)k5x5 + k1k2k3

. (8)

By clearing denominators, the positive solutions to (8) agree with the positive solutions to the
polynomial

p(x5) = k6(T − x5)((k1 + k2k4)k5x
2
5 + k1(k2 + k3)k5x5 + k1k2k3)− k1k2k4k5Hx

2
5 − k1k2k3k5x5

= (k1 + k2)k4k5k6x
3
5 + (k1(Hk2k4 + k2k6 + k3k6)− T (k1 + k2)k4k6)k5x

2
5

+ (k1k2k3(Hk5 + k6)− Tk1(k2 + k3)k5k6)x5 − Tk1k2k3k6 (9)

The polynomial p(x5) has degree 3. Any zero of the polynomial between 0 and T corresponds
to a positive steady state. From (8), if x5 ≥ T were a positive zero of the polynomial, then we
would have 0 equal to a negative number, which is a contradiction. Therefore, any positive
solution to the polynomial equation must fulfil that x5 < T and hence provide a positive
steady state.

The polynomial p(x5) has at most 3 positive roots. We show below in subsection 2.3 that
there exist choices of rate constants and total amounts such that p(x5) indeed has 3 positive
roots. Therefore, there exist choices of rate constants and total amounts such that the system
has 3 positive steady states.
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1.3 Necessary conditions for bistability

Following Descartes’ rule of signs, a necessary condition for p(x5) to have 3 positive roots is
that the coefficients of the polynomial have alternating signs. Since the leading coefficient is
positive and the independent term is negative, a necessary condition is that the coefficient of
degree 2 is negative and the coefficient of degree 1 is positive, that is:

k1(Hk2k4 + k2k6 + k3k6) < T (k1 + k2)k4k6, k1k2k3(Hk5 + k6) > Tk1(k2 + k3)k5k6.

To derive the necessary condition for bistability stated in the main text, namely k1 < k3

(in the main text, ks1 < ks2), we consider equation (8) again. We rewrite it as

k6T = k6x5 +
k1k2k4k5Hx

2
5 + k1k2k3k5Hx5

(k1 + k2k4)k5x2
5 + k1(k2 + k3)k5x5 + k1k2k3

. (10)

If the right-hand side of the equation, call it ϕ(x5), is an increasing function of x5 for positive
x5, then for any value of T there will be a unique value of x5 such that (10) is fulfilled, and
hence a unique positive steady state. Since (10) is derived from (7), the function ϕ(x5) equals
k6x5 + k1x1 + k3x3, with x1, x3 expressed as in (3) and (5).

Clearly, k6x5 is increasing in x5. The derivative of k1x1 + k3x3 with respect to x5 is

Hk1k
2
2k5((k1 − k3)k4k5x

2
5 + 2 k1k3k4x5 + k1k

2
3)

((k1 + k2k4)k5x2
5 + k1(k2 + k3)k5x5 + k1k2k3)2

.

The derivative is not necessarily positive for x5 > 0. However, if k1 > k3 then the derivative of
ϕ(x5) is positive, implying that ϕ is an increasing function, and, as a consequence, bistability
cannot arise for any value of T .

To summarise, k1 > k3 implies that there is no bistability, and therefore, a necessary
condition for bistability is that k3 > k1.

1.4 Necessary and sufficient conditions for bistability

The conditions given above are only necessary for bistability, but their fulfilment does not
guarantee bistability. We provide here necessary and sufficient conditions on all the parameters
of the system for bistability. The parameters include the reaction rate constants and the total
amounts. To obtain them, we apply Sturm’s Theorem:

Theorem 1 (Sturm). Let p(x) be a real polynomial. Define recursively the Sturm sequence
by

p0(x) = p(x), p1(x) = p′(x), and pi+1(x) = −rem(pi−1, pi),

for i ≥ 1, where rem(pi−1, pi) denotes the reminder of pi−1 divided by pi. The sequence stops
when pi+1 = 0. Let pm be the last nonzero polynomial.

For c ∈ R, let σ(c) be the number of sign changes in the sequence p0(c), . . . , pm(c). Let
a < b and assume that neither a nor b are multiple roots of p(x). Then σ(a) − σ(b) is the
number of distinct roots of p(x) in the interval (a, b].

We are interested in the positive roots of the polynomial p(x) = p(x5) in (9). In this
case, a = 0, and we need to take b large enough, which is equivalent to considering instead
of the sequence p0(b), . . . , pm(b), the leading coefficients of the polynomials p0, . . . , pm. This
sequence is written as p0(+∞), . . . , pm(+∞). Observe that a = 0 is not a root of p(x).
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According to the theorem, σ(0) − σ(+∞) equals the number of distinct positive roots of
p(x). Since σ(0), σ(+∞) ≥ 0, the number of distinct roots will be 3, that is, we will have three
positive steady states, if and only if σ(0) = 3 and σ(+∞) = 0.

We computed in Maple the Sturm sequence p0(x), . . . , p3(x) (p4(x) = 0). For a generic
polynomial of degree 3, p0(x) = a0x

3 + a1x
2 + a2x+ a3, the sequence is:

p0(x) = a0x
3 + a1x

2 + a2x+ a3

p1(x) = 3a0x
2 + 2a1x+ a2

p2(x) = −6a0a2x− 2a2
1x− 9a0a3 − a1a2

9a0

p3(x) = −9a0(27a2
0a

2
3 + 18 a0a1a2a3 + 4a0a

3
2 − 4a3

1a3 − a2
1a

2
2)

4(3a0a2 − a2
1)2

.

In our case, the coefficients are:

a0 = (k1 + k2)k4k5k6 > 0
a1 = (k1(Hk2k4 + k2k6 + k3k6)− T (k1 + k2)k4k6)k5 (11)
a2 = (k1k2k3(Hk5 + k6)− Tk1(k2 + k3)k5k6)
a3 = −Tk1k2k3k6 < 0.

Hence, p0(0) = a3 < 0. Therefore, for σ(0) = 3, we need p1(0) > 0, p2(0) < 0 and p3(0) > 0.
On the other hand,

p0(+∞) = a0 > 0 and p1(+∞) = 3a0 > 0.

Therefore, for σ(+∞) = 0 we require p2(+∞), p3(+∞) > 0.
The polynomial p3(x) has degree zero, and hence p3(0) = p3(+∞). Therefore, we are left

with 4 conditions on the parameters that fully characterise the region of the parameter space
with three steady states, namely p1(0), p3(0), p2(+∞) > 0 and p2(0) < 0. Using that a0 > 0
and a3 < 0, these conditions simplify to the following conditions, where a0, . . . , a3 need to be
substituted by their expressions in (11):

a2 > 0 (p1(0) > 0)
9a0a3 + a1a2 < 0 (p2(0) < 0)

27a2
0a

2
3 + 18a0a1a2a3 − 4a0a

3
2 + 4a3

1a3 − a2
1a

2
2 < 0 (p3(0) > 0)

−6a0a2 + 2a2
1 > 0 (p2(+∞) > 0).

That is, the system has three positive steady states if and only if the 4 inequalities above are
satisfied.

2 The core model for n hybrid HKs competing for the same
Hpt

2.1 Model description

We study here the core system consisting of n hybrid HKs competing for the same Hpt.
We call such a system an nHK-Hpt system for short. In this case, there are n hybrid HKs,
which we denote by HKi, for i = 1, . . . , n, and we use subindices 00,P0, 0P,PP to denote the
phosphorylation state of each of them.
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The set of reactions given in the previous subsection are reproduced for the n hybrid HKs.
That is, for i = 1, . . . , n, the reactions for the transfer of phosphate group are as follows:

HKi
00

ki,1 // HKi
P0

ki,2 // HKi
0P

ki,3 // HKi
PP HKi

0P + Hpt
ki,4 // HKi

00 + HptP

HKi
PP + Hpt

ki,5 // HKi
P0 + HptP

and there is further the dephosphorylation reaction

HptP
k6 // Hpt.

We denote the concentration of the species as follows:

xi,1 := [HKi
00] xi,2 := [HKi

P0] xi,3 := [HKi
0P] xi,4 := [HKi

PP]
x5 := [Hpt] x6 := [HptP],

for i = 1, . . . , n. Under the law of mass-action, we model the dynamics of the concentrations
over time by the following system of ordinary differential equations:

ẋi,1 = ki,4xi,3x5 − ki,1xi,1
ẋi,2 = ki,5xi,4x5 + ki,1xi,1 − ki,2xi,2
ẋi,3 = ki,2xi,2 − ki,3xi,3 − ki,4xi,3x5

ẋi,4 = ki,3xi,3 − ki,5xi,4x5

ẋ5 = k6x6 −
n∑
j=1

(kj,4xj,3x5 + kj,5xj,4x5)

ẋ6 = −k6x6 +
n∑
j=1

(kj,4xj,3x5 + kj,5xj,4x5),

for i = 1, . . . , n. The system has n+ 1 conservation laws. Namely, for i = 1, . . . , n we have

xi,1 + xi,2 + xi,3 + xi,4 = Hi (12)

for some Hi > 0, and for T > 0,
x5 + x6 = T. (13)

2.2 Positive steady states

The positive steady states of the system are the solutions to the equations ẋi,1 = 0, ẋi,2 =
0, ẋi,3 = 0, ẋi,4 = 0, for i = 1, . . . , n, together with ẋ5 = 0, ẋ6 = 0, constrained by the
conservation laws (12) and (13). We reason as in the previous section to disregard the steady
state equations ẋ6 = 0 and ẋi,4 = 0, for i = 1, . . . , n.

Using the equations ẋi,1 = 0, ẋi,2 = 0, ẋi,3 = 0 and (12), namely

0 = ki,4xi,3x5 − ki,1xi,1
0 = ki,5xi,4x5 + ki,1xi,1 − ki,2xi,2
0 = ki,2xi,2 − ki,3xi,3 − ki,4xi,3x5 (14)
Hi = xi,1 + xi,2 + xi,3 + xi,4,
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we obtain the algebraic expressions for xi,1, xi,2, xi,3, xi,4 at steady state, depending on the
value of x5 at steady state, analogous to the expressions (3)-(6):

xi,1 =
ki,2ki,4ki,5Hix

2
5

(ki,1 + ki,2ki,4)ki,5x2
5 + ki,1(ki,2 + ki,3)ki,5x5 + ki,1ki,2ki,3

(15)

xi,2 =
ki,1(ki,4x5 + ki,3)ki,5Hix5

(ki,1 + ki,2ki,4)ki,5x2
5 + ki,1(ki,2 + ki,3)ki,5x5 + ki,1ki,2ki,3

(16)

xi,3 =
ki,1ki,2ki,5Hix5

(ki,1 + ki,2ki,4)ki,5x2
5 + ki,1(ki,2 + ki,3)ki,5x5 + ki,1ki,2ki,3

(17)

xi,4 =
ki,1ki,2ki,3Hi

(ki,1 + ki,2ki,4)ki,5x2
5 + ki,1(ki,2 + ki,3)ki,5x5 + ki,1ki,2ki,3

. (18)

These expressions are positive provided x5 is positive. From (13) we have that x6 = T − x5,
which is positive provided x5 < T .

We replace the steady state equation ẋ5 = 0 by ẋ5 +
∑n

i=1(ẋi,1 − ẋi,4) = 0, and we obtain
the equation

0 = k6x6 −
n∑
i=1

(ki,1xi,1 + ki,3xi,3). (19)

Substituting into (19) the values of xi,1 and xi,3 in (15), (17), and further letting x6 = T −x5,
we obtain that, at steady state, it holds

0 = k6(T − x5)−
n∑
i=1

ki,1ki,2ki,4ki,5Hix
2
5 + ki,1ki,2ki,3ki,5Hix5

(ki,1 + ki,2ki,4)ki,5x2
5 + ki,1(ki,2 + ki,3)ki,5x5 + ki,1ki,2ki,3

. (20)

By clearing denominators, that is, by multiplying equation (20) by

n∏
i=1

(ki,1 + ki,2ki,4)ki,5x2
5 + ki,1(ki,2 + ki,3)ki,5x5 + ki,1ki,2ki,3,

we obtain a polynomial of degree 2n+1 in x5. Any zero of the polynomial, that lies between 0
and T , corresponds to a positive steady state. We argue again that, if x5 ≥ T were a positive
zero of the polynomial, equation (20) would give a contradiction. Therefore, any positive
solution to the polynomial equation must fulfill that x5 < T and hence provide a positive
steady state.

2.3 Existence 2n + 1 positive steady states.

We have shown that the positive steady states of the nHK-Hpt system are determined by
the positive solutions to (20). Solving for the positive solutions to this equation is equivalent
to solving for the positive solutions to a polynomial of degree 2n + 1. By the fundamental
theorem of algebra, a polynomial of degree 2n + 1 has 2n + 1 complex roots counted with
multiplicity. Therefore, such a polynomial can at most have 2n+1 distinct positive real roots.

We show in this section that there exist choices of rate constants k∗ and total amounts Hi, T
such that the polynomial has exactly 2n + 1 distinct positive real roots. As a consequence,
this proves that the nHK-Hpt system admits 2n+ 1 positive steady states for some choice of
rate constants and total amounts.

The proof consists of a series of simplifications and constructions. A key ingredient of the
proof is the following theorem:
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Theorem 2 (Kurtz [5]). Let m ≥ 1 and let p(x) = x2m+1−c1x2m+c2x2m−1+· · ·+c2mx−c2m+1

be a polynomial of odd degree 2m+ 1 and with ci ≥ 0 for all i. Let c0 = 1. If

c2i − 4ci−1ci+1 > 0 (21)

for all i = 1, . . . , 2m, then p(x) has 2m+ 1 distinct positive real roots.

For clarity, we provide the main arguments of our proof here in the form of lemmas, which
are proven in the next section.

First of all observe that the steady states of the system are invariant by multiplication of
all rate constants by some scalar λ > 0. Therefore, we assume that k6 = 1. For simplicity we
write x for x5.

We let

αi,1 = ki,1ki,2ki,4ki,5Hi (22)
αi,2 = ki,1ki,2ki,3ki,5Hi (23)
αi,3 = (ki,1 + ki,2)ki,4ki,5 (24)
αi,4 = ki,1(ki,2 + ki,3)ki,5 (25)
αi,5 = ki,1ki,2ki,3, (26)

such that we write

ki,1ki,2ki,4ki,5Hix
2 + ki,1ki,2ki,3ki,5Hix

(ki,1 + ki,2ki,4)ki,5x2
5 + ki,1(ki,2 + ki,3)ki,5x5 + ki,1ki,2ki,3

=
αi,1x

2 + αi,2x

αi,3x2 + αi,4x+ αi,5
.

Lemma 1. For any positive values αi,1, . . . , αi,5 > 0, there exist ki,1, . . . , ki,5 > 0 and Hi > 0
such that (22)-(26) are fulfilled.

As a consequence of Lemma 1, there exist rate constants and total amounts such that (20)
holds if we can find αi,1, . . . , αi,5 > 0 such that

0 = −T + x+
n∑
i=1

αi,1x
2 + αi,2x

αi,3x2 + αi,4x+ αi,5
. (27)

With this notation, we want to determine the positive real roots of the polynomial obtained
by clearing denominators in (27):

q(x) = (x−T )
n∏
i=1

(αi,3x2 +αi,4x+αi,5)+
n∑
i=1

(
(αi,1x2 +αi,2x)

∏
j 6=i

(αj,3x2 +αj,4x+αj,5)
)
. (28)

The coefficient of degree 2n + 1 of q(x) is
∏n
i=1 αi,3 and the independent term of q(x) is

−T
∏n
i=1 αi,5. We would like to apply Theorem 2 to such a polynomial. To this end, the

coefficients of monomials with even degree should be negative and those of odd degree should
be positive. The latter is guaranteed if αi,4 = 0, while the former if αi,1 = 0. Setting these
two constants to zero, for i = 1, . . . , n, does not change the degree of the polynomial.

By the continuity of the isolated roots of a polynomial as functions of the coefficients of the
polynomial, if we can find αi,2, αi,3, αi,5 > 0 such that with αi,4 = 0, αi,1 = 0, the polynomial
q(x) has 2n + 1 distinct positive real roots, then for αi,4, αi,1 small enough, the polynomial
q(x) still has 2n+ 1 distinct positive real roots.
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This is what we do next. We set αi,4 = 0, αi,1 = 0 and further αi,3 = 1 for all i = 1, . . . , n,
and T = 1. To ease the notation, we write ai = αi,2 and bi = αi,5, such that the polynomial
of interest is

p(x) = (x− 1)
n∏
i=1

(x2 + bi) +
n∑
i=1

(
aix
∏
j 6=i

(x2 + bj)
)
. (29)

We denote by [n] = {1, . . . , n}. In the next lemma we describe the coefficients of p(x).
The form of the coefficients depends on the parity of the degree of the coefficient. Therefore
the coefficients take two different forms, one for even subindices, that is i = 2k, and one for
odd subindices, that is i = 2k + 1.

Lemma 2. Let the polynomial (29) be written as p(x) = c0x
2n+1 + c1x

2n + c2x
2n−1 + · · · +

c2nx+ c2n+1. Then it holds:

c2k+1 = −
∑

{j1,...,jk}⊆[n]

k∏
`=1

bj`

c2k =
∑

{j1,...,jk}⊆[n]

k∏
`=1

bj` +
n∑
i=1

ai
∑

{j1,...,jk−1}⊆[n]\{i}

k−1∏
`=1

bj`

for k = 0, . . . , n, with the convention that the sum and the product over the empty set equals
1.

For example, for n = 1 we have

p(x) = x3 − x2 + (a1 + b1)x− b1,

while for n = 2 we have

p(x) = x5 − x4 + (a1 + a2 + b1 + b2)x3 − (b1 + b2)x2 + (a1b2 + a2b1 + b1b2)x− b1b2.

All that is left is to show that we can find bi, ai such that the polynomial p(x) satisfies
the inequalities in Theorem 2. This is the content of the following lemmas. We provide in
Lemma 3 a choice of constants bi such that the inequalities (21) are fulfilled for even indices
i, that is, i = 2k for some k. In Lemma 4 we provide a choice of constants ai such that the
inequalities (21) are fulfilled for odd indices i, that is, i = 2k + 1 for some k.

Lemma 3. Fix arbitrary a1, . . . , an > 0 and define bi = a2
i
4 for i = 1, . . . , n. Then,

c22k − 4c2k−1c2k+1 > 0

for all k = 1, . . . , n.

Lemma 4. Let M > 0 and an > 0. For i = 1, . . . , n, define ai = an

M i−1 and bi = a2
i
4 . Then,

for M large enough and an small enough, it holds

c22k+1 − 4c2kc2k+2 > 0

for all k = 0, . . . , n− 1.

We are ready to prove the main result on the number of positive steady states.
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Theorem 3. For any n ≥ 1, there exists a choice of rate constants k6 > 0, ki,1, ki,2, ki,3, ki,4 >
0 and total amounts T,Hi > 0, for i = 1, . . . , n, such that the nHK-Hpt system has 2n + 1
distinct positive steady states.

Proof. Pick an,M > 0 and define bi, ai, for i = 1, . . . , n, as in Lemma 4. By lemmas 4
and 3, by choosing M large enough and an small enough, the inequalities (21) hold. We
set αi,2 = ai, αi,5 = bi, αi,3 = 1, for i = 1, . . . , n, and T = 1. Then p(x) in (29) has 2n + 1
distinct positive real roots. We choose αi,1, αi,4 > 0 small enough such that the polynomial
q(x) in (28) has 2n+1 distinct positive real roots. We set k6 = 1. By construction, any choice
ki,1, ki,2, ki,3, ki,4 > 0 and Hi > 0 such that (22)-(26) are fulfilled provides a set of parameters
with 2n+ 1 distinct positive steady states. Such a choice exists by Lemma 1.

Observe that the proof is constructive. It gives a procedure to find sets of parameters with
the maximal number of steady states. The several checks that the proof requires are easily
implemented using most available mathematical software to solve equations (e.g. Maple,
Mathematica).

In general, we have observed that given any polynomial u(x) with 2n+ 1 distinct positive
real roots we can find ai, bi such that the coefficients of u(x) agree with ci in Lemma 2, even if
u(x) does not fulfill the conditions of Theorem 2. Such ai, bi can be found using mathematical
software.

2.4 n unstable steady states

In the subsection we show that, considering the 2n+ 1 steady states ordered increasingly by
their value x = x5, then the steady states number 2, 4, . . . , 2n are unstable relative to the
stoichiometric compatibility class they belong to, that is, relative to the invariant subspaces
described by the conservation laws (12) and (13).

Since the nHK-Hpt system has 4n+ 2 variables and n+ 1 conservation laws, the Jacobian
of f in ẋ = f(x) always has n+ 1 zero eigenvalues. The remaining 3n+ 1 eigenvalues (which
could include zero) have corresponding eigenvectors in the stoichiometric subspace and dictate
the dynamics around the steady state and within the stoichiometric compatibility class. If
the steady state is locally stable relative to the stoichiometric compatibility class, then the
product of these 3n + 1 eigenvalues has sign (−1)3n+1. Therefore, if the sign of the product
of these eigenvalues is (−1)3n, then the steady state is necessarily locally unstable relative to
the stoichiometric compatibility class. We argue in the proof of the next theorem that this is
the case for the steady states in even position 2, 4, . . . , 2n.

Theorem 4. The 2, 4, . . . , 2n-th steady states are unstable relative to the stoichiometric com-
patibility class.

Proof. We order the variables of the system as x1,1, x1,2, x1,3, x1,4, . . . , xn,1, xn,2, xn,3, xn,4, x6, x5.
It follows from [6, Prop. 5.3] that the product of the 3n+ 1 eigenvalues of the Jacobian with
eigenvectors in the stoichiometric space agrees with the determinant of the Jacobian of the
function g : R4n+2 → R4n+2 where

g4(i−1)+1(x) = xi,1 + xi,2 + xi,3 + xi,4 −Hi

g4(i−1)+2(x) = ki,5xi,4x5 + ki,1xi,1 − ki,2xi,2
g4(i−1)+3(x) = ki,2xi,2 − ki,3xi,3 − ki,4xi,3x5

g4(i−1)+4(x) = x5 + ki,3xi,3 − ki,5xi,4,
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for i = 1, . . . , n and

g4n+1(x) = x5 + x6 − T,

g4n+2(x) = k6x6 −
n∑
j=1

(kj,4xj,3 + kj,5xj,4)x5.

We now apply the method described in [2] (see the Electronic Supplementary Material), to
determine the sign of the determinant of the Jacobian of g from iterative eliminations. One can
check that the expressions in (15)-(18) are obtained from iteratively eliminating xi,1, . . . , xi,4
from the equations g4(i−1)+1(x) = · · · = g4(i−1)+4(x) = 0, which are equivalent to (14), and
which correspond to the conservation law together with ẋi,2 = ẋi,3 = ẋi,4 = 0.

Let q(x5) be the polynomial obtained after clearing denominators in (20). Then, by [2],
the sign of the determinant of the Jacobian of g at a steady state agrees with the sign of the
derivative of q(x5), q′(x5), times (−1)3n. Therefore, if q′(x5) is positive, then the corresponding
steady state is locally unstable. Since q(0) is positive, the first real root of q(x5) has negative
derivative, and then the signs alternate. Therefore, the steady states corresponding to the
2, 4, . . . , 2n-th roots are locally unstable relatively to the stoichiometric compatibility class.

3 Multiple phosphorelays with a common RR

3.1 The core model for M hybrid phosphorelays competing for an RR

In the previous section we showed that unlimited multistationarity arises by increasing the
number of hybrid HKs that compete for the same Hpt. In this section we show that the
same statement holds when the competition occurs at the level of the response regulator RR.
For example, we show that the system consisting of two core hybrid phosphorelays, complete
with their own Hpt, competing for the same RR can have up to 9 steady states. This system
consists of two 1HK-Hpt systems, where the two independent Hpt’s donate their phosphate
group to the same RR.

We study such a system with full generality. We allow each of the phosphorelays to have
multiple hybrid HKs, as studied in the previous sections. For example, consider a system
with two His-containing phosphotransfer proteins Hpt1 and Hpt2 that transfer the phosphate
group to the same RR. Assume, for instance, that Hpt1 receives the phosphate group from two
hybrid HKs, HK1,1 and HK1,2, and that Hpt2 receives the phosphate group from one hybrid
HK, HK2,1. The first upper index of HKi,j indicates the Hpt index, and the second index
indicates the index of the HK in the nHK-Hpt subsystem. By using the notation introduced
in the previous section to denote phosphorylated sites, the reactions of this example system
are as follows:

(i) Reactions within each HK:

HK1,1
00

k1,1,1 // HK1,1
P0

k1,1,2 // HK1,1
0P

k1,1,3 // HK1,1
PP

HK1,2
00

k1,2,1 // HK1,2
P0

k1,2,2 // HK1,2
0P

k1,2,3 // HK1,2
PP

HK2,1
00

k2,1,1 // HK2,1
P0

k2,1,2 // HK2,1
0P

k2,1,3 // HK2,1
PP

11



(ii) Phosphotransfer from HK1,1 and HK1,2 to Hpt1, and phosphotransfer from HK2,1 to
Hpt2:

HK1,1
0P + Hpt1

k1,1,4 // HK1,1
00 + Hpt1P HK1,1

PP + Hpt1
k1,1,5 // HK1,1

P0 + Hpt1P

HK1,2
0P + Hpt1

k1,2,4 // HK1,2
00 + Hpt1P HK1,2

PP + Hpt1
k1,2,5 // HK1,2

P0 + Hpt1P

HK2,1
0P + Hpt2

k2,1,4 // HK2,1
00 + Hpt2P HK2,1

PP + Hpt2
k2,1,5 // HK2,1

P0 + Hpt2P

(iii) Phosphotransfer from Hpt1 and Hpt2 to RR:

Hpt1P + RR
k1,6 // Hpt1 + RRP Hpt2P + RR

k2,6 // Hpt2 + RRP

(iv) Dephosphorylation reaction for RR:

RRP
k7 // RR.

3.2 Multiple positive steady states

In general, consider M multiple hybrid phosphorelays competing for the same RR. We let
ni be the number of hybrid HKs of the ith system. That is, each phosphorelay consists of a
niHK-Hpt system with a further phosphotransfer to RR.

In the above example, we have M = 2 and n1 = 2, n2 = 1. We let HKi,j denote the jth
hybrid kinase of the ith multiple HK-Hpt system, where j runs from 1 to ni, and we let Hpti

denote the Hpt of the system. We denote the reaction rates by ki,j,∗ for those involving HKi,j ,
the dephosphorylation reaction for Hpti by ki,6 and the dephosphorylation reaction for RR by
k7. The system has conserved total amounts of HKi,j , Hpti and RR.

We denote the concentration of the species as follows:

xi,j,1 := [HKi,j
00 ] xi,j,2 := [HKi,j

P0] xi,j,3 := [HKi,j
0P] xi,j,4 := [HKi,j

PP]

xi,5 := [Hpti] xi,6 := [HptiP], x7 = [RR], x8 = [RRP]

for i = 1, . . . ,M , j = 1, . . . , ni.
Under the law of mass-action, we model the dynamics of the concentrations over time by
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the following system of ordinary differential equations:

ẋi,j,1 = ki,j,4xi,j,3xi,5 − ki,j,1xi,j,1
ẋi,j,2 = ki,j,5xi,j,4xi,5 + ki,j,1xi,j,1 − ki,j,2xi,j,2
ẋi,j,3 = ki,j,2xi,j,2 − ki,j,3xi,j,3 − ki,j,4xi,j,3xi,5
ẋi,j,4 = ki,j,3xi,j,3 − ki,5xi,j,4xi,5

ẋi,5 = ki,6xi,6x7 −
ni∑
`=1

(ki,`,4xi,`,3 + ki,`,5xi,`,4)xi,5

ẋi,6 = −ki,6xi,6x7 +
ni∑
`=1

(ki,`,4xi,`,3 + ki,`,5xi,`,4)xi,5,

ẋ7 = k7x8 −
M∑
`=1

k`,6x`,6x7

ẋ8 = −k7x8 +
M∑
`=1

k`,6x`,6x7,

for i = 1, . . . ,M , j = 1, . . . , ni. Further, we have the following conservation law equations:

xi,j,1 + xi,j,2 + xi,j,3 + xi,j,4 = Hi,j , xi,5 + xi,6 = Ti, x7 + x8 = R.

For each i, j, solving for ẋi,j,1 = 0, ẋi,j,2 = 0, ẋi,j,3 = 0 and the conservation law with Hi,j ,
we get equalities analogous to (15)-(18), where we replace the subindex i by the pair i, j. The
steady state concentrations xi,j are expressed in terms of xi,5 and are positive provided xi,5 is
positive.

We further have xi,6 = Ti − xi,5. The equation ẋi,5 +
∑ni

j=1(ẋi,j,1 − ẋi,j,4) = 0 replaces
ẋi,5 = 0 and leads to the steady state equation

0 = ki,6x7xi,6 −
ni∑
j=1

(ki,j,1xi,j,1 + ki,j,3xi,j,3), (30)

which transforms, as in (20), into the equation

0 = ki,6x7(Ti−xi,5)−
ni∑
j=1

ki,j,1ki,j,2ki,j,5Hi,jxi,5(ki,j,4xi,5 + ki,j,3)
(ki,j,1 + ki,j,2)ki,j,4ki,j,5x2

i,5 + ki,j,1(ki,j,2 + ki,j,3)ki,j,5xi,5 + ki,j,1ki,j,2ki,j,3
,

(31)
for i = 1, . . . ,M .

Finally, using the total amount R and ẋ7 = 0, we obtain:

x7 =
k7R

k7 +
∑M

`=1 k`,6x`,6
=

k7R

k7 +
∑M

`=1 k`,6(T` − x`,5)

x8 =
R
∑M

`=1 k`,6x`,6

k7 +
∑M

`=1 k`,6x`,6
=

R
∑M

`=1 k`,6(T` − x`,5)

k7 +
∑M

`=1 k`,6(T` − x`,5)
.

Observe that both x7, x8 are positive provided xi,5 < Ti for all i. By substituting the expression
for x7 into (31), we deduce that the steady states of the system are found by finding the positive
solutions to (31) in x1,5, . . . , xM,5. The value at steady state of the other concentrations are
found using the expressions above. Recall that, as seen in the previous section, a positive
solution to (31) must satisfy xi,5 < Ti and hence xi,6 is positive.
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Theorem 5. Consider the system with M multiple hybrid phosphorelays competing for the
same RR, and let ni be the number of hybrid HKs of the ith system. Then there exists a
choice of rate constants and total amounts such that the system has

∏M
i=1 2ni + 1 positive

steady states.

Proof. For each i = 1, . . . ,M , fix parameters ki,j,1, . . . , ki,j,5, Hi,j , Ti such that the niHK-Hpt
system has 2ni + 1 steady states, when the dephosphorylation rate constant for Hpti in the
isolated system is set to one. By Theorem 3 such a choice exists. With this choice, let

Ai :=
ni∑
j=1

ki,j,1ki,j,2ki,j,5Hi,jxi,5(ki,j,4xi,5 + ki,j,3)
(ki,j,1 + ki,j,2)ki,j,4ki,j,5x2

i,5 + ki,j,1(ki,j,2 + ki,j,3)ki,j,5xi,5 + ki,j,1ki,j,2ki,j,3
,

which only depends on xi,5. Consider the map

ϕ : R× RM → RM

(S, x1,5, . . . , xM,5) 7→

(
(Ti − xi,5)

1 + S
∑M

`=1(T` − x`,5)
−Ai

)
i=1,...,M

.

For S = 0, the ith component of ϕ(0, x1,5, . . . , xM,5) = 0 is Ti − xi,5 − Ai = 0, which is the
steady state equation (20) for the i-th system HKi,∗ and Hpti with our choice of rate constants.
By the above choice, such equation has 2ni + 1 positive solutions. Since the ith component of
ϕ(0, x1,5, . . . , xM,5) depends only on xi,5, it follows that the equation ϕ(0, x1,5, . . . , xM,5) = 0
has

∏M
i=1 2ni + 1 positive solutions.

The Jacobian of ϕ(0, x1,5, . . . , xM,5) at a solution (x∗1,5, . . . , x
∗
M,5) is a diagonal matrix,

whose ith entry is

∂

∂xi,5
ϕi(0, x1,5, . . . , xM,5) =

∂

∂xi,5
(Ti − xi,5 −Ai)

evaluated at x∗i,5. Since for each i, our set of positive solutions to Ti−xi,5−Ai = 0 is maximal
in number, there are no multiple solutions and such a derivative is nonzero.

Therefore, the Jacobian of ϕ(0, x1,5, . . . , xM,5) at a solution is nonsingular. This allows us
to apply the implicit function theorem to ensure that for S > 0 small enough, the equation
ϕ(0, x1,5, . . . , xM,5) = 0 has precisely

∏M
i=1 2ni + 1 positive solutions.

Fix any such S > 0 and define ki,6 = S, R = 1
S , and k7 = 1. Then

(Ti − xi,5)

1 + S
∑M

`=1(T` − x`,5)
=

k7ki,6R(Ti − xi,5)

k7 +
∑M

`=1 k`,6(T` − x`,5)
,

which corresponds to the steady state equation (31). With this choice, the system has∏M
i=1 2ni + 1 positive steady states.

The proof gives a constructive way to find sets of parameters with
∏M
i=1 2ni + 1 positive

steady states. We fix parameters for the individual nHK-Hpt systems that have 2ni+1 steady
states, when the dephosphorylation rate constant for Hpti in the isolated system is set to one.
Then, let k7 = 1, ki,6 = 1/R and increase R until the system has the desired number of steady
states.
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4 From core to full models

In the previous sections we have analysed several systems based on a core model. That is, we
have disregarded reverse reactions, hydrolysis reactions, and even complex formation in the
phosphotransfer reactions. We provide here arguments that guarantee that the properties on
the number of steady states of the different core models that we have considered extend to
the full models.

4.1 Theoretical results

The results concerning the number of steady states extend to the full models. Two mathe-
matical results, valid for mass-action kinetics, are used for this claim ([3], [4]):

[3] Assume that a network has N (nondegenerate) positive steady states. If complex forma-
tion is taken into account, that is, a reaction is split into two by adding an intermediate,
then the new extended network also has N (nondegenerate) positive steady states for
some choice of rate constants and total amounts.

[4] Assume that a network has N (nondegenerate) positive steady states. If reactions are
added to the network, in such a way that the conservation laws of the system are pre-
served, then the new network also has N (nondegenerate) positive steady states for some
choice of rate constants and total amounts.

The nondegeneracy condition means that the Jacobian is nonsingular relative to the sto-
ichiometric compatibility class described by the conservation laws (cf. Subsection 2.4). This
requirement is fulfilled in our case.

4.2 Full hybrid HK

The full model of a hybrid HK with reversible reactions and hydrolysis reactions, consists of
the reactions:

HK00
k1 // HKP0

k2 // HK0P
k3 // HKPP HK0P + Hpt

k4 // HK00 + HptP
k7

oo

HK0P
k9 // HK00 HKPP

k10 // HKP0 HKPP + Hpt
k5 // HKP0 + HptP
k8

oo

RRP
k13 // RR HptP + RR

k11 // Hpt + RRP.
k12

oo

(32)

One might also consider complex formation, that is, substitute each phosphotransfer reac-
tion of the form A+B // C +Doo by

A+B //
Y

//oo C +Doo .

By Subsection 3.2, the core phosphorelay with a hybrid HK can have 3 positive steady states.
Adding reversibility to some reactions does not change the conservation laws, nor does includ-
ing hydrolysis reactions. Therefore, by [4], the full phosphorelay model with a hybrid HK can
have 3 positive steady states for some choice of rate constants and total amounts. This holds
true even if hydrolysis reactions are added on the other phosphorylation sites (that is, the
first domain of the hybrid HK and Hpt). By [3], adding complex formation also maintains the
maximal number of steady states. In both cases, however, a higher number of steady states
might be achievable.

The same argument holds for all the models considered in the previous sections.
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4.3 Unorthodox HK

Consider now the core model with unorthodox HK, obtained by removing some hydrolysis
reactions and reversibility. HK has now three phosphorylable domains. The reactions of the
system are as follows:

HKPP0 k5
((QQQQQQ

HK000
k1 // HKP00

k2 // HK0P0

k3 66mmmmmm

k4
((QQQQ

QQ
HKP0P

k7 // HK0PP
k8 // HKPPP

HK00P
k6

66mmmmmm

HK00P + RR
k9 // HK000 + RRP HKP0P + RR

k10 // HKP00 + RRP

HK0PP + RR
k11 // HK0P0 + RRP HKPPP + RR

k12 // HKPP0 + RRP

RRP
k13 // RR

We show here that this model is essentially obtained by adding iteratively species and
reactions to the core hybrid HK model in Subsection 1.1, in the sense allowed by [4] and [3].

Not to confuse notation, we write the model in Subsection 1.1 with the different labels for
the species:

A1
// A2

// A3
// A4

A3 +B1
// A1 +B2 A4 +B1

// A2 +B2 B2
// B1.

We perform the following modifications to the model:

(i) Add species C1, C2:

A1
// C1

// A2
// A3

// C2
// A4

A3 +B1
// A1 +B2 A4 +B1

// A2 +B2 B2
// B1.

(ii) Add a reaction from C1 to A3:

A2

))TTTTTTTTTTT

A1
// C1

//

55jjjjjjjjjjj
A3

// C2
// A4

A3 +B1
// A1 +B2 A4 +B1

// A2 +B2 B2
// B1.

(iii) Add a species between C1 and A3:

A2

**UUUUUUUUUUU

A1
// C1

44iiiiiiiiiii

**UUUUUUUUUUU A3
// C2

// A4

C3

44iiiiiiiiiii

A3 +B1
// A1 +B2 A4 +B1

// A2 +B2 B2
// B1.
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(iv) Add two reactions:

A2

**UUUUUUUUUUUU

A1
// C1

44iiiiiiiiiii

**UUUUUUUUUUU A3
// C2

// A4

C3

44iiiiiiiiiiii

A3 +B1
// A1 +B2 A4 +B1

// A2 +B2 B2
// B1

C3 +B1
// A1 +B2 C2 +B1

// C1 +B2.

By either [4] or [3], each step preserves the number of positive steady states of the network of
the previous step.

The network in (iv) is not exactly the core model of an unorthodox HK, but almost. The
core model of the unorthodox HK requires an extra species C5, a reaction C5 → A1, and the
reaction C3 +B1 → A1 +B2 must be substituted by C3 +B1 → C5 +B2. That is, the network
we would like to have is

A2

))SSSSSSSSS

C4
η1 // A1

// C1

44iiiiiiiiiiii

**UUUUUUUUUUUU A3
// C2

// A4

C3

55kkkkkkkkk

A3 +B1
// A1 +B2 A4 +B1

// A2 +B2 B2
// B1

C3 +B1
η2 // C4 +B2 C2 +B1

// C1 +B2.

The new species C4 is not an intermediate, but behaves exactly like one. Consider the ODE
system associated to this network. The steady state equation for [C4] gives at steady state

[C4] =
η2

η1
[C3][B1].

Plugging this value back into the ODE system to eliminate [C4], we obtain the ODE system
associated to the network in item (iv). This is the only characteristic of the intermediates that
allows one to prove that the number of steady states is maintained. Therefore, the arguments
given in [3] hold also for C4.

We conclude that the core model of the unorthodox HK has at least 3 positive steady
states for some choice of rate constants and total amounts, because this is the case for the
core model for the hybrid HK. This has also been confirmed using the CRNT Toolbox [1].

This procedure applies as well to conclude that the system with n unorthodox HKs com-
peting for the same RR can have 2n + 1 positive steady states. Finally, the result holds as
well if reactions are made reversible, hydrolysis reactions are added, or complex formation are
considered.
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5 Proof of the lemmas

5.1 Proof of Lemma 1

To simplify the notation, we prove that for all α1, . . . , α5 > 0 there exist k1, . . . , k5, H > 0
such that

α1 = k1k2k4k5H α2 = k1k2k3k5H (33)
α3 = k1k4k5 + k2k4k5 α4 = k1k2k5 + k1k3k5 α5 = k1k2k3. (34)

Using (34) we solve iteratively for k3, k5 and k4 and obtain:

k3 =
α5

k1k2
, k5 =

α4k2

k1k2
2 + α5

, k4 =
α3(k1k

2
2 + α5)

α4k2(k1 + k2)
. (35)

Using the first equation in (33), we have

H =
α2

k1k2k4k5
=
α2(k1 + k2)
α3k1k2

. (36)

Finally, using the second equation in (33), we have

0 = α2 − k1k2k3k5H = α2 −
α2(k1 + k2)α4α5

α3k1(k1k2
2 + α5)

,

which is equivalent to

0 = α2α3k
2
2k

2
1 + α2α5(α3 − α4)k1 − α2α4α5k2. (37)

Fix any k2 > 0. Since the polynomial (37) is a polynomial in k1, with positive leading
coefficient and negative independent term, it has a unique positive real root. As a consequence,
for any k2 > 0, (33) and (34) hold with k1 defined such that (37) holds, and k3, k4, k5, H > 0
as in (35), (36).

5.2 Proof of Lemma 2

We have that

p(x) = (x− 1)
n∏
i=1

(x2 + bi) +
n∑
i=1

(
aix
∏
j 6=i

(x2 + bj)
)

=
n∏
i=1

(x2 + bi) + x
( n∏
i=1

(x2 + bi) +
n∑
i=1

(
ai
∏
j 6=i

(x2 + bj)
))
.

If we write

p1(x) =
n∏
i=1

(x2 + bi) = β0x
2n + · · ·+ β2n−2x

2 + β2n,

then a standard computation shows that

β2k =
∑

{j1,...,jk}⊆[n]

k∏
`=1

bj` , and β2k+1 = 0,
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for k = 0, 1, . . . , n. In particular, only coefficients of even degree are nonzero. The second
summand of p(x),

p2(x) = x
( n∏
i=1

(x2 + bi) +
n∑
i=1

(
ai
∏
j 6=i

(x2 + bj)
))
,

has only terms of odd degree. Therefore, c2k+1 = α2k as claimed and c2k is the coefficient of
degree 2n+ 1− 2k of p2(x). Note that the polynomial p2(x) can be written as:

p2(x) = xp1(x) + x

n∑
i=1

(
ai
∏
j 6=i

(x2 + bj)
)
.

As above, if we write
∏n
j 6=i(x

2 + bj) = γi,0x
2n−2 + · · ·+ γi,2n−4x

2 + γi,2n−2, then

γi,2k =
∑

{j1,...,jk}⊆[n]\{i}

k∏
`=1

bj` , and γ2k+1 = 0,

for k = 0, 1, . . . , n− 1. The coefficient of degree 2n+ 1− 2k of p(x) is then

c2k = β2k +
n∑
i=1

aiγi,2k−2,

as claimed.

5.3 Proof of Lemma 3

To simplify the presentation, we denote by Pk(n) the set of all subsets of [n] with k elements.
Similarly, given i ∈ [n], we denote by Pk−1(n, i) the set of all subsets of [n] with k−1 elements
that do not contain i. We want to show that if we define bi = a2

i
4 for i = 1, . . . , n, then,

c22k − 4c2k−1c2k+1 > 0

for all k = 1, . . . , n. Recall that we defined

c2k+1 = −
∑

L∈Pk(n)

∏
`∈L

b`, c2k =
∑

L∈Pk(n)

∏
`∈L

b` +
n∑
i=1

ai
∑

J∈Pk−1(n,i)

∏
j∈J

bj .

It is clear that if k ≥ 1, then

c22k >
( n∑
i=1

ai
∑

J∈Pk−1(n,i)

∏
j∈J

bj

)2

>

n∑
i=1

∑
J∈Pk−1(n,i)

a2
i

∏
j∈J

b2j + 2
n∑
i=1

∑
J,L∈Pk−1(n,i)

J 6=L

a2
i

∏
j∈J

bj
∏
`∈L

b`. (38)
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On the other hand,

4c2k+1c2k−1 = 4

 ∑
L∈Pk(n)

∏
`∈L

b`

 ∑
J∈Pk−1(n)

∏
j∈J

bj

 = 4
∑

L∈Pk(n)
J∈Pk−1(n)

∏
`∈L

b`
∏
j∈J

bj



= 4

 n∑
i=1

∑
J∈Pk−1(n,i)

bi
∏
j∈J

b2j

+ 4
∑

L∈Pk(n)
J∈Pk−1(n),J 6⊆L

∏
`∈L

b`
∏
j∈J

bj

 . (39)

If we set bi = a2
i
4 , then the first two summands of (38) and (39) agree:

n∑
i=1

∑
J∈Pk−1(n,i)

a2
i

∏
j∈J

b2j = 4
n∑
i=1

∑
J∈Pk−1(n,i)

a2
i

4

∏
j∈J

b2j = 4

 n∑
i=1

∑
J∈Pk−1(n,i)

bi
∏
j∈J

b2j

 .

We let

B1 =
n∑
i=1

∑
J,L∈Pk−1(n,i)

J 6=L

a2
i

∏
j∈J

bj
∏
`∈L

b` = 4
n∑
i=1

∑
J,L∈Pk−1(n,i)

J 6=L

bi
∏
j∈J

bj
∏
`∈L

b`

B2 = 2
∑

L∈Pk(n)
J∈Pk−1(n),J 6⊆L

∏
`∈L

b`
∏
j∈J

bj

 .

Then, to show that c22k > 4c2k+1c2k−1 it is enough to show that B1
4 ≥

B2
2 . To this end, observe

that given any pair of sets L ∈ Pk(n) and J ∈ Pk−1(n), such that J 6⊆ L, we can choose i ∈ L
such that L′ := L \ {i} satisfies L′ 6= J . Therefore, every summand of B2 is a summand of B1

as well. This finishes the proof.

5.4 Proof of Lemma 4

Let δk = c22k+1 − 4c2kc2k+2. For M > 0 and a1 > 0, we let ai = an

M i−1 and bi = a2
i
4 . Therefore,

we have that

bi =
a2

1

4M2(i−1)
,

for i = 1, . . . , n. With these substitutions, δk = δk(a1) becomes a polynomial in a1. If there
exists a choice of M > 0 such that the coefficient of smallest degree of δk is positive for all
k, then δk(a1) > 0, for a1 small enough and all k. Therefore, we compute the coefficient of
smallest degree of δk in a1.

We use the notation introduced in the proof of Lemma 3. By definition, we have that

c22k+1(a1) =

 ∑
J∈Pk(n)

∏
j∈J

a2
1

4M2(j−1)

2

= a4k
1

 ∑
J∈Pk(n)

∏
j∈J

1
4M2(j−1)

2

c2k(a1) =
∑

J∈Pk(n)

∏
j∈J

a2
1

4M2(j−1)
+

n∑
i=1

a1

M i−1

∑
J∈Pk−1(n,i)

∏
j∈J

a2
1

4M2(j−1)

= a2k
1

 ∑
J∈Pk(n)

∏
j∈J

1
4M2(j−1)

+ a2k−1
1

 n∑
i=1

1
M i−1

∑
J∈Pk−1(n,i)

∏
j∈J

1
4M2(j−1)


20



The polynomial c22k+1(a1) consists of one term of degree 4k in a1. The polynomial c2k(a1)
is a sum of a term of degree 2k and one of degree 2k − 1. Similarly, the polynomial c2k+2(a1)
is a sum of a term of degree 2k + 2 and one of degree 2k + 1. Hence, the product c2kc2k+2 is
a polynomial with lowest degree 4k. If the coefficient of degree 4k of δk is nonzero, then it is
the coefficient if smallest degree. By denoting the coefficient of degree 4k by βk, we have:

βk =

 ∑
J∈Pk(n)

∏
j∈J

1
4M2(j−1)

2

− 4

 n∑
i=1

1
M i−1

∑
J∈Pk−1(n,i)

∏
j∈J

1
4M2(j−1)

 n∑
s=1

1
M s−1

∑
L∈Pk+1(n,s)

∏
`∈L

1
4M2(`−1)

 .

For M > 1, the largest summand in the positive summand of βk is given by the choice of set
J = {1, . . . , k} ∈ Pk(n) and takes the value

X1 :=
k∏
j=1

1
16M4(j−1)

=
1

42kM4
Pk−1

`=0 `
=

1
42kM2k2−2k

.

The largest summand in the negative summand of βk is given by the choice i = k, s = k+2,
J = {1, . . . , k − 1} ∈ Pk−1(n, i), and L = {1, . . . , k + 1} ∈ Pk+1(n, s). Proceeding as above,
the term takes the value

X2 := 4
(

1
Mk−1

1
4k−1M (k−1)(k−2)

)(
1

Mk+1

1
4k+1M (k+1)k

)
=

1
42k−1M2k2+2

.

For M large enough, X1 > X2. It follows that for M large, X1 dominates, and hence βk is
positive. This finishes the proof.
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