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1 Reduction of Mechanistic Models using Singular Perturbation

In this section, we derive a low order model of total mRNA and protein concentration with
general assumptions, by rigorously applying singular perturbation theory [9, 10] to gene reg-
ulation models. We obtain a ‘reduced” model in the form of a Differential-Algebraic Equation
(DAE), where the terms for transcription and protein degradation are described implicitly,
noting that we present methodology to describe them explicitly in SI 2 and 3. We first present
the prototypical mechanistic model as an Ordinary Differential Equation (ODE) and the pro-
posed reduced model as a DAE. We then prove that the model reduction holds by using a
transformed mechanistic model and a novel non-dimensionalisation to obtain a mechanistic
model in standard singular perturbation form.

The proposed methodology allows more general assumptions than previous methods that
used total TF (Transcription Factor) indirectly [8, 6], necessary to match with known experi-
mental data. This methodology also allows reduction of more complicated mechanistic models
than existing methods, allowing the inclusion of qualitatively important biochemical mecha-
nisms previously ignored for tractability.

The model reduction in this section is analogous to the derivation of Michaelis-Menten
kinetics [10], particularly derivations using a change of variable or ‘total” quasi-steady state
[3], noting that here we transform both ‘slow” and ‘fast’ variables.

Mechanistic Model

We first state the ODEs for the full mechanistic model in Equation 1 in the paper. We model
the output protein Xt and associate forms X7, g7 X2, while we treat the protein X; and as-
sociated forms Xjo, g1 X12 as an input. When modelling the concentrations, we define the
variables Ci7 = [¢7P], Cor = [g7X712], C37 = [mTR]. We assume mass-action kinetics to derive
the ODEs, noting that we assume that the dynamics of X; are equivalent to X, and similarly



with other protein concentrations. The full ODE model is

tiry = —wymrR + (w_g + ws)Car + a2Cyp — yimr

Car = wamtR — (w_4 + ws + yr)Car

Xr = —2weXF + 2w_X12 + w5Car — Bi T

X12 = weX7 — w_cX12 — WsgTX12 + W_8Car — Pr2XT2 (1)
§1 = —w1Pgr + (w_1 + w2)Cir — wsgrX12 + W_8Cor + B4t Cor

Cir = wiPgr — (w_1 + wy)Car

Cor = wsgr X2 — W—8Cor — PreCor

where the definitions of kinetic rates and species can be found in the paper (Equation 1).

The Reduced Model and Quasi-Steady State Approximation

We next derive the reduced model using the quasi-steady state approximation. To complete
this, we set the summed variables
my = mr + Car
xX = X7 +2X7y 4+ 2Cor
2t = 2X12 + 2Co1
xF = X +2X15 4 2Co;

(2)

which equate to the total mRNA concentration, the total protein concentration, and the total
dimer concentration, in both bounds and unbound form. Using the variables zI together with
xI simplifies the application of singular perturbation theory to the mechanistic model, as we
will see below.

We find the reduced model with the proposed slow variables of total mRNA m1 and total
protein x%, while all other variables are assumed fast variables. The proposed slow variables
have dynamics

it = aCrp — yemyp — (vir — 7t) Car
i1 = wsCar — Bixt — (Biz — Br) 21 — 2(Brg — Pr2) Car

and the quasi-steady state approximations together with the conserved quantities are

)

gL+CiL+Cou =g

4 XT = (6 + Br2) X12

wgg1 X12 = (a—g + Big)Cor

a1Pgr = (v_1 +a2)Cyp

wsRmf = (wsR + w_g + ws + 1ir) Car 4)
g7+ Cir + Cor = gF

weX7 = (w6 + Br) X12

wsgTX12 = (W_8 + Btg)Cor

w1Pgr = (w_1 + wy)Cir

We include the degradation/dilution terms f, X1 for operator dissociation and ;,C;;. for
dimer dissociation as this more closely matches experimental measurements for dissociation



[7] and reduces the error. We also include 7R in the ribosome binding quais-steady state for
consistency.
Equation (1) has multiple conserved quantities, including gt + Ci7 + Cor = g% shown
above as well as
R+ C3r =Ry

_ %)
P+ Cir=Pr

However, the Ribosome and Polymerase are used by other genes, and so reduced models in
terms of Rt and Pr in this form are specific to the prototype gene regulation, whereas we
wish to develop a more general methodology. Thus, we treat R = R(t) and P = P(t) as
time-varying parameters. This allows us to easily substitute terms involving all bound forms
of RNAp and ribosomes when modelling gene regulatory networks instead of a single input-
output ‘module’ presented here. As such, we can model the effects from competition of poly-
merase and ribosomes.

We next use the variables Co and Cy;. to reduce the equations, as they are directly related to
expression levels in the model and so act as a proxy. We have the reduced differential-algebraic
equations

it = gL Vi FL — yrmy

T _ 1t T T
Xy = krmp — Brxr

Cor,
F=1-"2
' 4
T
Br = i+ (Bro — B0 1) (g — g2t
Xt XT
_ 2Cor 2Cor (6)
=P+ (B2 — 5t)x§BTg(g{ ~Cor) (Btg — ﬁt)?

j
N
~
N
N
~

and we have the reduced parameters

tl tx
kT = wsAxr, Vi =aAqr

g X6
Brg=——7-(1-Ay), Bo=—"7-
7 a_g+Pig ( ) a6+ B2 7)
Bre=— % (1-Ay), Bp=_—"°0
S et B i) Br=ommg

Y1 =Yt + (iR — Yt) Aot

such that V& is the transcription rate per non-repressed promoter, F, is the fraction of non-
repressed promoters, Bro, Bry are the effective dimerisation association constants,B Lg, BLg are
the effective dimer-operator association constants, yr, Bt are the effective mRNA and protein
degradation rates, Ajr, AiT are the fraction of expressing promoters bound by polymerase,



and Ayt is the fraction of RBS (Ribosome Binding Sites) bound by ribosomes, such that

wlP ZU]P
AL = , Air=
w_1+ w1 P+ w; wP+w_1+ w; ()
ZU4R
Aoy =

W_yg + w5 + wWaR + YR

The parameters Aqr, A1, A1 are used to simplify terms, and are not reduced parameters or
kinetic rates.

We can further simplify the parameters By, B2, Brg, By and At by removing the degra-
dation terms if they are sufficiently small (w_g > Bio, w6 > B or W4P +w_4 + ws >
Big)- The effect of polymerase binding on Bj¢, Bry occurs due to competitive binding for the
operator-promoter in the prototypical mechanistic model between polymerase and transcrip-
tion factor. It can be noted that kt% matches with the model used in the RBS calculator [11]
for the case that w_4 > ws + w4R + ¥z by neglecting degradation, assuming that only a
small fraction of the ribosome binding sites are occupied and assuming that thermodynamic
equilibrium occurs for the ribosome binding/unbinding.

The differential-algebraic equations are well defined as 611, 011 are monotonically increas-
ing functions of Cor, Cyr for 0 < Cor < g%, 0< Gy < g{ and so there is one non-negative
solution for each function.

The model (6) can be used directly for numerical simulations, or can be further reduced
to an ODE for either analytical or numerical analysis of the model. In order to find an ODE,
we need to determine the inverse of 011,611 so that we have C;, = Gfll(x{) and similarly
for Crp, = Gfll(xT). This can be carried out numerically, if the parameters are known, or
analytically using various (close) approximations (SI 2 and 3).

A simulation of (6) can be seen in Figure S1, which shows that the reduced DAE model is a
(close) match to the full mechanistic model, assuming that the quasi-steady state approxima-
tion holds.

Nondimensionalisation and Standard Singular Perturbation Form

To determine under which conditions the quasi-steady state approximation holds, we need to
apply singular perturbation theory [9]. The first step in this application is to nondimension-
alise the original model, in order to determine which parameters are large or small.

We first transform the ODE, where the transformed equations with summed variables and
conserved quantities are

iy =az(A1r8] —yi) — vemt — (vir — 7¢)Car
C3T :w4Rm% — (ZU4R +w_gq + ws+ ')’tR)C3T
i1 =wsCar — Pext — (Biz — Pr)z1 — 2(Brg — Pr2) Car

2 1
Z'% =2wg (x% — Z%) —2(w_6+ Br2) (ZZ% — CZT) - 2,3th2]" 9)

. 1
Cor =wg <22% - C2T> (1 — Air)gt +yr — Cor) — (w_s + Btg) Cor
yr =w1PCor — (w1P +w_1+ wz)yT

where yr = Air g% — Cyr is introduced as yr is at a maximum steady state when Cor is maxi-
mum, useful for scaling.



Sjmulations of a Repressilator
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Figure S1: Simulations of the full mechanistic model (1) and reduced Differential Algebraic
Equation (DAE) model (6) for a Repressilator network [5] with a stable equilibrium point. The
reduced DAE model is a close approximation of the full mechanistic model when mRNA and
protein degradation are much ‘slower” than transcription, translation, operator binding and
dimerisation. The parameters used for the simulation are P = 1000, R = 1000,44 = 0.01,a_4 =
1,&5 = 1/“6 = 0.1,El,6 = 1,618 = O.S,a,g = 0.1,611 = 0.01,(1_1 = 1,612 = 1,bL1 = 0.033, bLZ =
0.0167,bre = 0.0167,y.r = 0.1, 7L, = 0.1, with identical parameters for all three genes. The
initial conditions were m% = mlT, = m{ =0, Xr10 = X110 = 10, Xy19 = 20, g{ = g)T, = g% =1,
and other variables set at quasi-steady state (4).



The transformations to total transcription factor, total dimer and bound dimer allow the
rate of change of each fast variable to (primarily) represent the dynamics of one reaction, e.g.
transcription for 7 or dimerisation for zI. This representation allows simplified assumptions
in terms of the individual reactions.

The dynamics of z% and Co1 can be rewritten as

2
Z'% =2wWg (x%) + 2(’(/(),6 + ﬁtZ)CZT

- <2w6 (2x% - z%) Fw_g+ ﬁtz) 28 — 2B1,Cor

L1 ; . (10)
Cor Ziws((l — A1r)8r +Y1)2T

1
- <w8 (22% - C2T> + wg(1 — A17)gT + wsyr + w_g + ,Btg> Cor

Notation: In the following section, Y = Y, Y is used as notation for scaling, where Y is a
variable, Y, is a nondimensionalisation constant and Y is the non-dimensionalised variable.

We nondimensionalise all variables in reference to the maximum steady state over the
range of inputs, which references the maximum gene expression level. Ribosome R and Poly-
merase P are typically referenced against their maximum value, but the initial value can also
be used. It should be noted that m’ is minimum when y! is maximum, and so we are not
nondimensionalising using a particular equilibrium point. Using this reference, we have the
nondimensionalisation parameters

A T
M%:n _ X2 A1L81

YTn
Csrn = AorM7,
XI — wsCary

ﬁTn
CZT” = 0;11 (X%n)
Ziw = 012(Carn) = 012(671 (X1,))) := b13(XT,) 1)

Yirn = A11Corn
Y1 = V(1 — Aor) + 1irA2T
Brn = Bt + (B2 — B)Nm + (Brg — Br2)i7g

n Z%, a _ 2Cory a_ 2Cry

Tm — T 7 77Tg_ T 7 1o = T
XTn XTn ZTn

‘=5

where B is the slow time scale. For simplicity of description, we also use
Xrn = X%n - Z%n
Xron = Z1, — 2Carn (12)
grn = (1= A1) (g1 — Cam)

where Xt is the monomeric transcription factor scaling constant, Xy, is the dimeric tran-
scription factor scaling constant and gt is the free operator-promoter scaling constant.



When referencing x1. against the maximum, the scaling parameters are in implicit form,
where 07! and B are not stated explicitly. However, this approach holds as there is a unique,
well defined, non-negative solution due to monotonically increasing 0r1, 612 and Bty X%n with
respect to X% . The parameters can be determined explicitly through either solving computa-
tionally, if the kinetic parameters are given, or by (close) approximation (see SI 2 and 3).

We can alternatively scale against a lower value for the total transcription factor in order
to obtain a more accurate ‘typical’ maximum, such that

(13)

where 0 < §; < 1is a fraction dependent upon the typical operating range of Cy, and thus
dependent upon the entire gene regulatory network. Equivalently, we can scale against a
reference regulation fraction 0 < Fr s < 1, such that

X%n = XFT,ref =0n1 (g{FT,ref) (14)

where the other parameters are referenced against the new X7, , as per Equation (11).
Nondimensionalising the ODEs results in

ﬁ - T _ Yt _T YTn — Tt
mr=(1—A T C3
YTn r =l 3LyL) YTn M YTn 3T
B .r_~ Bt 1 Br— ﬁt 1 PBig—PBr g
X7 =Czr — X Zr C
,BTn T 3T 5Tn T ,BTn Tm ,BTn 2T

. 1\ 2 - (15)
ew3Zr =A4rAst (XT> + Ayt (1 — As7)Cor

<A6TxT — *A7TZT +1— Aer + A7T> — eu5Car
£0aCor =Agr(Aor + (1 — Aor)i1) 2k

1 - _
— (Along — §A11TC2T + Apriyr +1— Aor + Aur — AlZT) Cor

with parameters

Bcar = waRy +w_y4 + w5 + iR
ﬁy]‘ = wan +w_1+ wy

Bcor = %ws(z%n — 2Com) + ws(1 — A7) (g7 — Comn) +w—s + Pig
= ws X2y + WegTn + W_g + Pig (16)
Bzr = 4ws(Xty — Z1,) +w_6 + Pr2
= 4we Xy + W_6 + Pr2
B _ B B B _ Bighmo

= — € —

Ewl = 5 — w2 = — w3 4 Ews =
w ,BCST, w. ,ByT, w ,BCZT’ w ,BZT’ w. ,BZT




2
2we X 2we (XTI
Asp — C2;n, Agr =1+ We Tn’ Asp = n 6( Tn)
! Bzt 2we (XE,)" +2(w—6 + Br2) Corn
A6T _ 4w6XTn/ Aoy — 4w6ZTn
Bzt Bzt
Agr =1+ wsCory _ wg(1— Air)gr
Beor ' wg(1 — A11)8T + A1rCorn
1 T
~wg”Z 2wgC Y
Aot = 28T Ayp = M, Apr = ©8 1T
Bcar Bcar Bcar

noting that we cancel terms as the nondimensionalisation is based on the maximum steady
state for each variable. We estimate the separate time-scales Bcst, BzT, ByT, Bcor Of the indi-
vidual fast variables from the diagonal of the Jacobian matrix of the fast variables about the
candidate slow manifold.

To place the system in standard form, we need to estimate a lower bound for the fast
time-scale, which we achieve based on local analysis about the candidate slow manifold. This
lower bound is required to be slower than the individual fast variables, taking any coupling
into account between the variables. Csr is uncoupled from other variables on the fast time
scale, while yT,CZT,zg are coupled. From experimental observations, we can typically assume
that Bcor << Beir [7], and so Bt is effectively decoupled. By using estimates of the minimum
time scale based on the eigenvalue analysis, which hold locally about the quasi-steady state,
we can estimate the lowest fast time scale to be

_ Bzr+Bcor \/(,BZT + Bear

2
coup = 5 7 > — [BearBzr — wegrn(w—6 + Pr2)] -
B

Ewe =
v ,Bcoup

setting €46, as we need B < Boup for time-scale separation to occur. These coupling conditions

ensure that as well as both Co1 and z% being fast variables, all possible local transformations of

the two variables are also fast. If required, we can generalise the assumptions for the case that

yT,CZT,z% are on the same time scale, which we can once again achieve using local analysis.
We estimate the slow time-scale using

B = max (Bru, Y1n) (18)

The ‘slow’ time scale may differ for a network compared to a ‘module” analysed here, with
the network typically slower. However, the network may be faster due to feedback e.g. auto
regulation [1].

In order to obtain useful estimates of fast and slow time-scales, care is required in selecting
total transcription factor scaling X%n using (11) or (13), which should be relevant to the be-
haviour of the entire network. A choice of X7, well above the concentration range relevant for
regulation of expression could result in an overestimate of the speed of dimerisation or oper-
ator binding. For example, for a large X1 where almost all operators are occupied (resulting
in Cy, = 0.999g{) and where there is an excess of free dimeric transcription factor X7, then
the estimated speed of operator binding may be orders of magnitude too high compared to a
lower but still typical level of operator binding (Cor, = 0.8¢7 ~ gI). Similarly, if X%, is too
low, then there may be an unnecessary underestimate. For example, if dimerisation is (con-
servatively) required to be fast for all X% , then the speed of dimerisation may be estimated

8



with a lower bound Bzr > w_¢ + B2 based on very low transcription factor concentrations.
However, this lower bound is often likely to significantly underestimate the dimerisation time
scale at concentrations relevant to regulation, which is typically when Cypr,, ~ g7, depending
upon the allowed error.

We can place (15) in standard singular perturbation form [9]

X1 = f1(t, x1, x2,€)

. (19)
exp = fo(t, x1,x2,€)

by setting x; = (ml,xL), xo = (Csr, 1,2}, Cor), and € = max(ey1, ..., €ws). By symmetry,
the same methodology applies for reactions involving X, X1, g1 X12, 1P, using equivalent
assumptions, which can be used to derive the gene expression of x7..

From the standard form (19), we can see that ¢ is small and thus that Quasi-Steady State
holds under the assumptions

Brn, Yn <K(WaRy + w_g + w5 + Vir), (W1 Py + w_1 + w2),

(20)
(wsXron + WegTn + W-8 + Pig), (4weXrn + W _6 + B12)

as well as
Bighito K 4we Xty + w6+ P2 (21)

and Bcor < Beit together with Bry, 1 < Beoup, Wwhere the last of which can be relaxed to

BeorBzr — wegTn(W—6 + Br2)
Bcar + Bzt

,BTn/ YTn < (22)
when (20) holds.

The conditions in (20) require that the sum of the forward and reverse rates for transcrip-
tion, translation, operator binding and dimerisation are faster than mRNA and protein degra-
dation. For dimerisation and operator binding, this holds if either the forward or the reverse
rates are sufficiently fast compared to degradation. For transcription and translation, this con-
dition holds if ribosome/polymerase binding, unbinding or initiation is sufficiently fast.

Equation (22) holds if (20) holds unless both the reverse rate of operator binding and the
forward rate of dimerisation are relatively small, when the operator is not being fully occupied.
For the case that (22) does not hold, there would be a near zero free dimer concentration
at quasi-steady state, which would limit bound dimer (X712¢7) and monomer (Xr) reaching
(quasi) equilibrium on a fast time scale. This case is typically only possible at concentrations
too low to be of interest for modelling of regulation.

The derived conditions generalise the existing model reduction methodology that uses
total transcription factor indirectly [8, 6], where the generalisation is required to match with
known experimental data. In [7], the isolated forward rate of chromosomal lacI-operator bind-
ing has an associated time-scale of ~ % min, while the reverse rate has an associated time-scale
of ~ 10 min, noting that lacl is a dimer of dimers and that X%n ~ 20 molecules/cell [4]. As
¥t ~ 5 min and Bt has a time scale between 5 min and hours/days [1], then experimental re-
sults indicate that in a typical case for lacl, only the forward rate is fast enough for time-scale
separation to hold generally. As the assumptions used here require either a fast forward or
reverse rate, the current reduced model assumptions are consistent with experimental data for
lacl [4, 7].

The time-scale separation conditions may be conservative for the asymptotic cases X7, <
XL or Xron < XE, or gry < gF, as for these cases the local analysis may not contain a useful

9



estimate of the time-scales. For example, if X7, < X%n holds and Bz1 > Brn, yTn does not
hold, but the latter holds for a hypothetical Xt, ~ X%n, then Xr, typically converges to near
zero sufficiently quickly such that the error in degradation rate of xI and quasi-steady state
of Cor are small. As Cyr is a proxy variable for regulation, the quasi-steady state is a useful
estimate of regulation for this case.
Equivalent time-varying equations may be obtained if R and P are time-varying parame-
ters, such that _
ew1Car = Rif — (AarR + (1 — Aor))Car — €45Car

ewor = PCor — (A1rP + (1 — A1r))ir

In this case, we also require that P and R are slowly time-varying. We require % < land

(23)

% < 1, where 5 is the fast time scale. This is equivalent to the unscaled conditions

eP < BP,, ¢R < BR, (24)

These conditions on parameters R and P in (24) hold locally about the slow manifold, and hold
on the entire domain when there is a sufficiently large number of polymerase/ribosomes such
that binding has little effect on the free polymerase/ribosomes concentration.

Application of Tikhonov’s Theorem

To show that the quasi-steady state approximation holds, we need to show that the conditions
for a version of Tikhonov’s Theorem are met on the domain of interest [9], which for this case
is the set of non-negative values of each concentration below the maximum of each variable.
As stated earlier, the non-dimensionalised quasi-steady state has a unique solution. The well
defined nature of Cy,7 in terms of 32% on the domain of interest implies an isolated root to the
quasi-steady state solution. The functions f; and f; in (19) are polynomial in terms of (x1, x2, €)
and so are sufficiently smooth. Treating R and P as time-varying parameters, function f is
sufficiently smooth with respect to x1. if R and P are continuously differentiable. The inverse
function theorem implies that the function Cor = Gfll(X%nf%)/ Caory is sufficiently smooth
on the domain for the reduced problem to have a well defined solution. Finally, for the fast
dynamics it can be shown that the isolated root is (locally) exponentially stable by using local
eigenvalue analysis. We set

Car
ClT
2T
Cor

fa(t, x1,x2,€) = ¢ (25)

If R and P are time-varying, then they are assumed slowly time-varying and we can set R =
R(0) and P = P(0) for the boundary value problem. The linearisation of the scaled boundary
value problem is

& 0 0 0 -1 0 0 0
dfa 0 £ 0 0 0 -1 0 1
—2%(x1,%2,0) = & 26
aX2(x1 X2 ) O 0 é 0 0 O ]33 ]34 ( )
0 0 0 & 0 Joo Jiz Ju
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where . .
Jas = — (Aerxr — Ayrzr + 1 — At + A7r)

J3s =Asr(1— Asr)

Juio =Ast(1 — Aor)zT — AorCor (27)
Ji3 =Ast(Aor + (1 = Aor)71) — A1orCor

Jas = — (Arorzr — A1irCor + Avarir + 1 — Ator + A1t — A1ar)

The matrix is Hurwitz for the entire domain of interest, and so the isolated root is (locally)
exponentially stable. Thus the conditions for Tikhonov’s Theorem are met internally on the
domain of interest [9].

For the boundary cases, the isolated root is only on the boundary of the domain for x% =
0 or m% = 0, on the assumption that the kinetic rates are positive constants. We note that
xI = 0 implies x = zI = C;r = yr = 0 and so the quasi-steady state approximation holds
trivially for Cor, x%, z%, yt on the boundary of the domain, as well as holding in the limit due
to continuity. This logic similarly holds for m1 = 0. Thus for sufficiently small ¢ in (19) then
the quasi-steady state approximation holds on the domain.

2 Simplified Expression Model

In this section, we simplify the model of expression for gene regulation from an implicit to
an explicit form, which together with simplified degradation (SI 3), enables us to represent
the reduced model as an ODE rather than a DAE (differential-algebraic equation). To derive
an ODE, we need to determine the expression in terms of the total TF (Transcription Factor),
which is an inverse function problem. To solve this, we partition the function into multiple
cases and then use Padé approximations to approximate the inverse function. The two cases
used for the partition are the monomer dominant and multimer dominant regulation, which
indicate the predominant form of the regulating transcription factor at concentrations relevant
for regulation. We use two methods of perturbation theory and interpolation to determine the
Padé approximations and to determine the partitioning of the cases. Using interpolation is
conceptually related to previous interpolation methods for Michaelis-Menten kinetic deriva-
tions [3].
To determine expression explicitly, we need to invert the function 611 (Cyy), where

VCor + 2Cy1

T
XL = QLI(CZL) =
\/BLzBLg(gZ —Car) Bre(s1 — Car)

+2Cy1 (28)

2.1 Perturbation Theory

We initially approximate the inverse for the multimer dominant case, where

2Cyp

T _

e +2C 29
Bro(al — Cor) 2L (29)

T T __
X =z =

and the monomer dominant case, where

x{ ~ XL = CZL
\/BLzBLg(g{ —Car)

(30)

11



before using perturbation theory to both determine when the two cases are valid, and to find
more accurate approximations.

T
We provide the approximation in terms of the multimerisation efficiency 7y, := i—LT, which
L

is the fraction of a protein in its full multimer form. There are alternative approaches to rep-
resent the approximation than using the multimerisation efficiency. However, we use the ap-
proach presented here as it is relatively simple and allows the refined approximations to have
a simple biological interpretation.

2.1.1 Multimer Dominant Regulation

We first look at the multimer dominant case. Using z{ =1 mez, we have

2
Cp = 8Ly Mn¥ o 1 8r ¥y 1T i)
2 4 2Brg 2 4 2Bpg 2 6
2
A 1275 AR SN I /75 AU SR 170 WY 1
2 4 2Brg 4 2By 2 Brg
and so .
-C
L
T 2 . (32)
_ MLy, | 1 1 4 1 MmXp 11
481 2Bl 2)  Busr \ 481 2Bugr 2
We set the initial approximation
FLO(xz) = FL|77Lm:’7Lm0 (33)

where #71,,0 = 1.
More formally, we can write out the non-dimensionalised algebraic equation in (28) using
the scaling approximation Cpr,, = g{ (noting Cp1, = Co1,Cor) to obtain the inverse function

perturbation problem
S Car Car
AqC 1-A = —=A
1CL + ( 1)1_C2L+8L“1_C2L 2

L= Biesi
1+ Bng{
Brgx[
2(1+ Bugg])
VBig

2(1 + Bng{)\/ BLZ

(34)
Ay =

&, =

There is a boundary layer near C;;, = 1if 1 — A; = O(e), but we are only interested in the
outer solution.
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Figure S2: Comparison of Regulation function F;, from the DAE (6) and perturbation approach
(33) for the multimer dominant case. The parameters are ¢f = 1, Bi = 4 and Bi =1
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We transform this perturbation problem to be in terms of the multimerisation efficiency,
such that

Hom A2 + EL\/FLO (MmA2) ' —1= A, 35)

where Fro(imA2) = Fro(umx?).

Padé Approximation - Multimer Case

We next use a Padé approximation to estimate the multimerisation efficiency, as the Padé ap-
proximation is a close approximation for a large range of ¢;. In comparison, a 1% order Taylor
series is much slower to converge and predicts negative solutions for small A; (i.e. small x7),
which is not biologically feasible. For the zeroth order Padé approximation, we have 771,,0 = 1,

which is the ‘multimeric transcription factor only’ case. Using a first order Padé approxima-
ao(Az)

tion nypm = Trea (A7)

and matching to the Taylor series, we have

A
MLm= = 2 - (36)
Az —+€r FLO (Az)i -1

Using the original scaling and variables, we have

MLm1 = (37)

13



Multimer Perturbation Model
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Figure S3: Comparison of Regulation function F; from the DAE (6) and perturbation model
(33) for the multimer dominant case. Parameters are g{ =1, B%g =1, B%z = 16 (molecules/cell)

and ¢, = 1. The parameters chosen give the boundary case ¢, = 1, but the first order Padé
approximation only has a small error from the full mechanistic model.

2.1.2 Monomer Dominant Regulation

We next look at the monomer dominant case. Using x; = (1 — 7 Lm)x{, we have

Vo,
(1= Lm)x] = = (38)
\/BLZBLg(gL —Ca1)
and so T
81 —Cur 1
FL((1 = num)x]) = = (39)
" g{ 1+ BLgBLQ(l — an)Zx{Z
We again set
FLO ('xz) = FL |77Lm:’7LmO (40)

but use 17,0 = 0.
We find the non-dimensionalised algebraic equation in (6) using the approximation Cpr,, =
¢! to obtain the perturbation problem

Car - CaL
=t AC 1—-A = =A
1_C2L+€Ls< 1Cor + ( 1)1_C2L> 2
Ay — Bng{
1= T
1—|—BngL (41)

Az = x{, / BLZBLg

Bio 1
ers = 2(1+ BLg‘g{)U Big =

14



Monomer Perturbation Model
1 :
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Figure S4: Comparison of Regulation function F; from the DAE (6) and perturbation model
(39) for the monomer dominant case. Parameters are gz = 1, B%g = 1.5, B%Z = 150
(molecules/cell) and ¢ ~ 3.1.

For leading order behaviour of order 1 as Cor — 0, we square the perturbation problem, such
that

(42)

B} C 2
4 SZLS A1Cop + (1 — Al) ZE = A%
1-GCyp

Using X% = thZZ, we have
hA3 + 261/ ds (A1 = F) + (1 A (FT = 1)) N
+ e, (Al(l—F)Jr(l—Al)(F*l—1))2:A§ “
Solving this, we have hry = 1 as expected, as well as
Ar
Ap + 2ep (A1(1 — R+ (1— Ay)(Fy ' — 1))

hiy = (44)
With original scaling and parameters, this becomes

X
f +4 (gl (1-R) + 5= (K1 - 1))

hiy = (45)

and we set hip; = (1 — 1701)>
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2.1.3 Alternative to Monomer Dominant Case

We can describe the expression term in Equation 2 (main paper) in an alternative represen-
tation by using the overlapping cases of predominantly multimer and predominantly free
monomer/dimer, such that

W%+ 1 _WL/ ngl

BngI]:
Fp = 1
Brg —\d e > 1
15 (V8B ] 1) (46)
WL = Wme{ 1 _ 1 e = BLg
4g]  2Breg] 2 2(1+ Brgg ) VB2

where the free transcription factor fraction hy, replaces the multimerisation efficiency 77y,.
However, here we use the original regulation term (Equation 3 in the paper), at least for

lower order approxations, for simplicity and for the ability to more easily relate the pro-

posed regulation term to traditional models. It can be noted that modelling the total free

monomer/dimer concentration is of use to determining reduced models for tetrameric TF.
For the free monomer/dimer case, we use the perturbation problem

| Ca Car -
A = 1-A = Cpr=A4A
1 1_C2L+( 1)1_C2L+€Lu 2L = Az

1
Al = ————
1+2,/5.
Lg
BLg T 1 (47)
A2 - Tx B
Dr2
1+2 B
r /Br2Brg
fw =L T
1+2 B
noting that e, < e15 = %, and so (47) covers the case of monomer dominant regulation.

Using overlapping perturbation problems allows a non-unique partitioning, and so we can
also replace e; with 1/¢y,, if required.
Solving, we have
hio=1 (48)

Using the same methodology as the multimer dominant case, the first order (unscaled) Padé
approximation is

T
XL

 xl+2¢7(1 - Fro)

hia (49)
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Alternate Monomer Perturbation Model
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Figure S5: Comparison of Regulation function F; from the DAE (6) and perturbation model
(46) for the free transcription factor case. Parameters are g = 1, B%g = 14, BLLZ = 10.2

(molecules/cell) and e ~ 0.78.

2.2 Interpolation

We also use interpolation to determine the Padé approximation and to determine the required

case, such that
t t
ki = Vi FL

W2+ L — Wi, im0 > 3

BL g
F = S8
1 1
S S <1 50
l+BLgBL2thZZ T]Lmo 2 ( )
T
LmX 1 1
W, = 1l

4g]  2Brggf 2

This test determines the predominant form of transcription factor when half of the operators
are occupied.

To approximate multimerisation efficiency for the multimer dominant case, we use the
point Gy = 1¢ for a one point interpolation, such that

B
) \/ 55 (2+ 81 Big) 51
Lm0 =
1+ /52 (2 + 81 Brg)

Similarly, for the first order rational case, we interpolate the points Co; = 0, Co = g, and
Cyg — &, which gives

)
(52)
1 1+ BBing (2 + g{BLg)
ALm =

© Wumon/Br2Brg  Bra(2+ g7 Brg)
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Multimer Interpolation Model
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Figure S6: Comparison of DAE model (6) and multimer interpolation model (50), using pa-

rameters g{ =1, B%q =14, Bim = 10.2 (molecules/cell), where 71,0 = 0.50.

Monomer Interpolation Model
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Figure S7: Comparison of DAE model (6) and monomer interpolation model (50), using pa-
rameters g{ =1, B%g =14, B%z = 101 (molecules/cell), where 171,,0 = 0.24.
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For the monomer dominant case, we use an identical zeroth order approximation to the
multimer case, where

hio = (1= Himo)? (53)
However, for the first order case, we use
A
hpp = %
Apm +x L (54)
AL, hro 1

B 1—hpo \/BZBLg%—B%g—Fg{
T

asusinghp; = (1—9 Lml)z results in erroneous asymptotic behaviour of F; as x; — oo.

Here, we interpolate at Co; = 3 as we are analysing a module and have no information
about the network. However, we can also interpolate at or near an equilibrium point for the
network, or at a typical operating point.

3 Simplified Degradation Model

We next simplify the model of degradation from an implicit to an explicit form, which together
with SI 2 enables the model of to be written as an ODE. We split degradation into the two cases
of uniform and non-uniform degradation, where we define uniform degradation as occurring
when different forms of the protein have the same degradation rate. For a transcription fac-
tor (TF) in the prototypical model with uniform degradation, the degradation rates of the
monomer, free and bound dimer are equal. This differs from two distinct proteins having the
same degradation rate. In many cases we can assume uniform degradation of proteins in order
to simplify the protein degradation term in the ODEs (e.g. dilution only). This assumption is
biologically reasonable in many cases, and more generally is a useful first approximation for
the non-uniform case. If non-uniform degradation is required to be modelled, then we can use
equivalent approximations to those used for simplifying regulation in SI 2.

3.1 Uniform Degradation Model

The uniform degradation assumption in the mechanistic model is

Dilution/Degradation

Xr ﬁ g, Xm @ g, grXm ﬁj ST

Uniform Rates
Br =Bt = P = Pig

Biologically, this is a lumped mechanistic model, as the term is composed of both dilution and
degradation. The dilution terms are uniform for all conditions. Uniform degradation can be
represented by

Degradation

2 2
Xr ﬁ—tg g, X ﬁ—%d Xr, 81XT2 %’d gr + Xt

Uniform Rates

Br = Brd = Brog = ,Btg,d
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The doubled kinetic rate assumes that the protease has two sites to bind on the dimer X, or
g7 X12. Equations of either form lead to the same reduced, deterministic equations, and so we
lump the degradation and dilution biochemical equations.
Assuming uniform degradation of proteins, we can simplify the differential equation for
proteins to
+f = Kl ]

where BT is a constant, rather than a function of x%.

Similar to proteins, mRNA degradation can be treated as uniform as a first approxima-
tion, where the degradation rate is the same with or without a bound ribosome. Using the
approximation of uniform mRNA degradation simplifies the degradation rate of mRNA to a
constant yr = 7+ = g, which is otherwise dependent on the often time-varying ribosome
concentration.

Mathematically, uniform degradation is similar to and thus named after uniform damping
approximations used in power systems and oscillator networks [2].

3.2 Non-Uniform Degradation Model

If non-uniform degradation is required to be modelled, then we can use the approximation of
Tm found in an identical fashion to 771, and Rt (see SI 2), where we have

2¢+(1 — Rro(yrmxt))

T
Xt

Br(x1) = Bt + (Brz — B)nrm + (Brg — Br2) (55)

We can also use interpolation of the degradation rate directly, where for a zeroth order
Padé approximation with interpolation at Cor = 1/2¢71, we have

By 8T 8t
Pr=ptPo-P)—1 5 st Bs—Po)1 5 1 (56)
\/BrgBrz ~ Brg 8T /BrgBrz  Brg 81

We can similarly use interpolation to find higher order approximations (see SI 2).

4 Model Reduction of Activator

We next find the reduced model for an activator, in a similar manner to the repressor. For the
case of activation, the transcription reactions in the full mechanistic model need to be replaced
by the following biochemical equation:

Transcription (activator)

N @
gLXLZ + P T] gLXLZP 3 gLXLZ + P+ my
Degradation (Activation)

grX12P B gr+P
Operator Binding

og —
gL+ Xi2 ﬁ 91 X12, Q1X1oP = gL+ X2+ P
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where for simplicity we assume uniform transcription factor-operator dissociation and degra-
dation, with or without bound polymerase, noting that this assumption is generalisable.

We use equivalent derivation and nondimensionalisation as for the repressor, only show-
ing the nondimensionalisation for the altered equations.

We set the summed variables for the transcription factor

xt = x1 +2X1y +2Cor +2C17
zh = 2X7p 4 2Co1 + 2Ci7 (57)
yr = Cor + Ci1

Thus the slow variables are

firk = aaCip — yimy — (yir — 1) Car

T T (58)
i1 = wsCar — Pixt — (B2 — Br)z1 — 2(Brg — P2yt
and the quasi-steady state approximations together with the conserved quantities are
gL +Cip+Cor = gF
CiL+CoL =y[
aX7 = (a_6 + Br2) X12
wsgr X2 = (a—s + Prg)y]
0(1PC2L = (Dé_l “+ ar + ,BLg)ClL
wyRmY = (wyR + w_g + w5 + Y1r)Car
Solving, we have the reduced differential-algebraic equations
ity = gLV FL — yrmy
it = Kfmy — Brt
vi
FL ==
8l
zr(y7) 2yt
Br=pi— (B — 1) T~ (Bg— )7
XT Xr (59)
T
yr 2yt
xL — 9L1 yL + B ;{L T +2y{
\/BLZBLg -yh g(81 —yL)
T
Yr 2y~
xt = 01 (yg) = s +2yt

\/BTZBTg g ]/T) BTg(g% _]/%)
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2yt

where z7(yl) = + 2yL is a function of yr and where

BTg(g%_ﬂ)
ktl _ ZU5ZU4R
T W_yg + ws + wyR + Yir
b o1 P
T n_q +061P+062+5Lg
ng L 73
Bpg=————, Bpp=——"—- 60
£ a_g+Pig &6+ P2 (60)
ws We
Bro=— 8 Brp=-°__
87w gt Btg 7 w6+ o
(7R — 7t)waR
= v+
= (ZU4R +w_q+ ZU5)

such that V}x is the transcription rate per non-repressed promoter, Bry, Bty are the effective
dimerisation association constants, and Bpg, Br, are the effective dimer-operator association
constants. We can further simplify the parameters By, Bro and By, Bty by removing Big and
B2 if required, as per the case of the repressor (SI 1).

The model can be further simplified in an identical fashion to the repressor case in order to
derive an ODE (SI 2 and 3).

Assumptions

To determine the conditions under which the reduced model holds, we again need to apply
singular perturbation theory. We rewrite the differential equations which are altered from the
repressor case

g1 = —wsgrX12 + W_8Cor + W_8Ci1 + BgtCor + BrgCir
Cir = w1PCor — w_sCir — (w1 + wp + Brg)Cir (61)
Cor = wsgr X2 — W—_8Cor — W1 PCor + (w1 + w2 + Prg)Cir

For the activator, we have the transformed differential equations

Cir = w1 Pyt — (wiP+w_1 +wy + Big)Cir
. 1
i = (575 —vF ) (85— vF) - Co-s + iyl

which can be rewritten

(62)

o 1 1
35 = Jughel — (Jun(el - vh) +ungh + s+ ) (63

We have the nondimensionalisation
Y]rn = 9;11 (XZ)
w1 P (64)
Yoru
w1P +w_ 1+ w2+ Pig

Citn =

which results in
ew2Car :g% —Cir

. 1 (65)
waT =AsTZF — <A9T2¥ — EAloTy_% +1— Aot + A10T> v
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where
Bcir = wi1Py + w1+ w2 + Prg

1
ﬂyT = 7w8(Z7]:n - ern) + w8(g% - ern) +w-_g+ ,Btg

2
= ws X2y + WegTn + W-_g + Pig
B (66)
€w2 = o €Ewsa = 5 —
Bcir Byt
YT ws 7T YT
Agr =1+ 2800 pgp— 2200 0 — D870
ﬁyT ﬁyT ﬁyT
where g1, = g% — YTT,1 and Xy, = %(Z%n — YTTH).
Using a similar singular perturbation form for the activator, we have the conditions
Brn, Y1n <K(WaRy + w_yg + ws + yir), (w1 Py +w_1 + w2 + Big), )
(wsXron + wegTn + W_g + Pig), (4w Xy + w_6 + Pr2)
as well as
Bighto < 4we Xty + w6 + P2 (68)

and similarly to the repressor case, we need (22). We also need to assume that if R and P are
time-varying, then they are slowly time varying, as per (24).

For the case of the activator we do not need Bcor < Bcit, as the dynamics of Ci1 have
no effect on the dynamics of C,7. Biologically, this is due to the lack of competition between
polymerase and transcription factor for DNA binding sites.

5 Model Reduction - Protein Only

In this section, we determine the reduced model and assumptions for the case that only protein
is modelled. We can remove the need to model mRNA if protein degradation/dilution is much
smaller than mRNA degradation. For this case, the reduced biochemical equations are

T
gt W gl +od < B0 ©9)

tl
where k, are the expression rates per gene, which is kr, (x{) = %VE" Fr.

We can determine conditions for this model to hold be setting 8 = Br, and e,7 = Bra in

0
(15), which leads to the alternative mRNA equation !
ewrtiit = V(g — Cor) — yrmi
We can therefore replace (20) with the assumptions
Brn <YTn, (WaRy 4wy + ws + Yir), (W1 Py +w_1 +w2), 70)
(wsXton + WegTn + W_8 + Pig), (4we X1y + W _6 + B12)
as well as
Bighto K 4we Xty + w6 + P2 (71)
and Bcor < Peit together with
Bry < BearBzr — wsgTn(w—6 + Br2) 72)

Bcar + Bzt
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6 Model Reduction - Basal Expression

In this section, we find the reduced model for gene regulation when basal expression is in-
cluded. For basal expression, we introduce the extra biochemical equations

Basal Transcription (Repression)
X1p Koy

81X+ P = g1PX1» = g1 X2 + P +my
—1r

gLPXLZ ﬁiP)L %]

This biochemical reaction is a lumped reaction representing the different effects such that Xp,
bound to gr is only partially effective in repression.
For this case, we represent the modified transcription rate in (6) as

k% = Vlty,crep + (V]t"x - Vit"icrep)FL
where

(XZrD‘er
X1y + lxer + oy

tx
VT,rep -

The assumptions for the singular perturbation can be found in an equivalent manner to SI 1,
while TF degradation rate in the reduced models can be found in a similar manner to that
described in SI 3.

7 Model Reduction - Inducers

In this section, we include a prototypical mechanistic model of the effect of inducers on the
transcription factors. We use a relatively simple biochemical model of inducer binding to
illustrate the methodology, noting that more complicated biochemical models can also be used
if required. We include the extra biochemical reactions

Inducer

kn
Xi+1 — Xi1

k_n

ki
X +21 = X;o21

k1

k
g1 X12 + 21 =3 X121 + g1
Degradation
x 18
X021 22 01

in Equation (1) in the paper. We have the total protein concentration

xI = Xp +C; +2Xp5 +2Cpp +2Cy1 (73)
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where C; = [XI] and Cy; = [X[2I]. The quasi-steady state approximations are

BioX? = X2
CaL
Xpp= s~
Brg(gl — Car) (74)
C; = B/IX],
Cr = BpI*(Xi2 + Cor)
where N
B, — 8 1—A
BT a g+ Big + kIZIZ( i)
K K (75)
Bj=—L  Bp=_—_-12__
k_1+Bi k-1 + Bz
See SI 1 for further information on Ay, and Bj,. Thus
2l =(14 B;) Xy, +2(1 + BppI?) X1 + 2(1 + BpI?)Coy
1+ B;I C 2(1+ BpI?)C
_(I+BI)  VCo (1+ Bpl?) 2L 421 4 Bpl?)Cay (76)

 /B2Brg \/(8{ — Car) Brg(g] — Cor)

We assume that the free inducer concentration is a constant. However, the non-constant in-
ducer case can be treated using Padé approximations as per the methodology in SI 2.
Now (76) has the same form as the non-inducer case, but with altered parameters. Thus
we have
W24 Lo —W g <1

Bng{
FL = 1 er > 1
1+— L BoByx? L
(+By1)2 "L2PLLL
T
HLmX] 1 1 (77)

— -|- —
4(1+ BpI?)gr 2Bng[ 2

(1 + B[I), /BLg
2(1+ BpI?)(1+ Brggt)v/Bia
For the multimer dominant case, we have

£, =

o =1
T
— L (78)
" xT 4 O£BD) |/ (xT)_1 -1
L /BB, Lo
For the monomer dominant case, we have
hpo=1
T
x
hp = L @)

x| +4(1+ Bpl?) (B%g(FL_ol ~1)+g7(1- FLOWZ)))
The degradation term for the model can be determined using a similar methodology to SI

3. The assumptions for the singular perturbation can be found in an equivalent manner to SI
1.
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8 Model Reduction - Unbound Dimer Only

In this section, we find a simplified version of the regulation term for the multimer dominant
case. We start with the proposed model’s multimer dominant regulation term

2
T T
HLmXp 1 1 1 NLmX], 1 1
Fp = + -5 + - + - (80)
( 481 2Buggi 2)  Bugr \ 480 2Biggp 2
and assume that ¢! < B%q, for which the system is predominantly unbound dimer for all

concentrations of x{, ignoring monomer by using the previous assumptions. Using BLigz > 1,
then

2
T
HimX] 1 1 1
- — ] > —= (81)
< 4gf 2B1eg] 2) Bregl
and so we have
Nomx! 1 1 BngT
F = I 1 8SL -1
k 4¢T * 2Brogt 2 N Nmx] 1 1)
( gf T 2Bregl N i)
1
7’/me{ 1 1 BngZ (82)

T T
481 2Biggr 2|\, (’75;;;5{ + ZBngT _ %)
L 8SL

1

B
1 + 772Lm x{

9 Model Reduction - Multiple Operators

In this section, we determine reduced models of gene regulation when additional operators are
included. The effect of additional operators can be important for the multimer dominant case
of regulation, while for the monomer dominant case, the effect of adding additional operators
is typically smaller. To incorporate the additional operators in the reduced models, we can
once again split the model into multiple cases and use perturbation theory. For the multimer
dominant case, we initially analyse the three special cases of extra operators with much higher,
equal and much weaker affinity, when compared to the primary operator. We then use Padé
approximations to describe regulation functions for cases in between the three asymptotic
cases. Here we use perturbation theory to determine Padé approximations, although we can
alternatively use interpolation. The extra operator has no affect on the monomer dominant
case for the initial approximation, but is included in higher order approximations through the
multimerisation efficiency.
For the case of a second operator, we have the added biochemical equation

X9
Or + X12 ﬁ X201 (83)
along with relevant degradation term. Setting C4; = [X1201], we have the modified total

protein equation
x] = X +2Xp2 +2Cy +2Cyy,
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along with the quasi-steady state
Car = BroOLX12 (84)

where B, = ;‘—_99 Now we have the conserved quantity Cy + O = O{ and so Cy4 =

OTMLZZ. Thus we have

L 14+Br, Xy,
en 2Cy1
+ T_C
\/BLZBLg(g{ —Car) BLg(gL —Car)

Br,Cor

T
X; =
k (g7 — Cor) + BroCar (85)

+2Cy 4207
BLg

The perturbation problem for the dimer dominant regulation is

- CQL Car Cor
AqC A — — 1—-A1—Ap)—=— — =A
1Cor + 01—C2L+SEZC2L+( 1 O)l—C2L+8L . ’
A — BngZ
Y 14 BreT + B,OT
+ ngL+ LoY]
BL,Of 86
A0 = 1B, T 1 BLOT (56
+ Brg81 + broUp
A2 — BLgX}:

2(1 + Bng{ + BLOO{)

/Big

2(1+ Bng{ + B,OF)v/Br2

From this we can see that a system with extra operators is more likely to be multimer domi-
nant. The assumptions for the singular perturbation can be found in an equivalent manner to
SI'1, noting that the coupling condition equivalent to (17) requires three variables to be taken
into account, rather than two.

&, =

9.1 Multimer Dominant Case

For the multimer dominant case, we analyse the three special cases of By, > Brg, Br, ~ B,
and B, < Bpg. We then use Padé approximations to represent the cases in-between these
asymptotic cases, so that the reduced models can be determine for all values of By,.

We have the total dimer concentration

2Cyr

Brg(gi — Car)

Bro,Car,

T
Z =
t Brg(gl — Caor) + BLoCar

+2Cyr + 207

In the following, we treat the multimerisation efficiency and the effect of added operators
as two separate perturbation problems. This minor informality is sufficient for the zeroth and
first order approximations determined here, but more care is required for higher order terms
or determining error bounds if ¢ and the small parameters in this section are of the same
order of magnitude.
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Figure S8: Comparison of DAE models with (85) and without (6) secondary operators as well
as the perturbation model (87), for the case of a weak secondary operator-binding site. Param-
eters are g =10, O] =100, Bz = 0.0667, B;> = 10, By, = 0.005.

9.1.1 Low Affinity Extra Operator

If B, < Brg then we use the form

A
PL = FL()(JC{) = W2 + ——— WL
t BngZ
 imx] A 1
WL = T T o
487 2Brggr (87)
1
A =1+ B,0f
Mt e (T —1)
e _ BLo
Lo BLg
For the first order approximation, we have
A= Ay=1+B,0! (88)

Brg

Adding more weak operators effectively weakens the binding affinity (7> of the primary

operator. An example of this is due to non-specific binding.
For a higher order approximation, using a Padé approximation, we have

1
1+ Be(pt—1)

Brg

A= A; =1+Brgl (89)
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9.1.2 Equal Affinity Extra Operator

For an equal affinity extra operator, we have

1
F = ,/W?+ s
b B Agl
x! 1 1
Wi = T TL + T o
4Ag;  2BgLAg; (90)
T
A—14 B1,0O; 1
Bng 1+ SLO(]. — FL)
Bro — Brg
€Lo = TLg
For a zeroth order approximation, we can use
BL,Of
Ag=1+ L, Fo=Filaca, (91)
Bregr

Thus adding more equal affinity operators effectively increases the gene copy number in
the regulation term (A gL)
For a first order approximation, we can use

BL,Of 1
A=A =1+ A , Fui=Fla-a, (92)
Bregl 1+ Pk 2(1 — Frp)
9.1.3 High Affinity Extra Operator
If B, > Brg then we have
1
W? - Wr
t Brg {
W emxt — A 1 1
k 10T 2Br.gl 2
3L Lg8L (93)
1
A =20;
B
€Lz = BLg
[

There is a boundary layer near C;;, = 0, and we have the zeroth order outer solution
A= AO,out = ZOZ (94)

It can be noted that a higher affinity extra operator effectively removes transcription factor.
For a rough solution, we can use the estimate

T (95)

A 201 ifx] > 207
= AQout = .
o X otherwise
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Equal Affinity Extra Operator
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Figure S9: Comparison of DAE models with (85) and without (6) secondary operators as well
as the perturbation model (90), for the case of an approximately equal secondary operator-
binding site. Parameters are g{ =10, O{ =50, Brg = 0.0667, B> = 10, By, = 0.05.
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Figure S10: Comparison of DAE models with (85) and without (6) secondary operators as
well as the perturbation model (93), for the case of a strong secondary operator-binding site.
Parameters are g{ =10, O{ =10, Brg = 0.0667, By, = 10, B, = 0.5.
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Simulations of Full and Reduced Mechanistic Models
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Figure S11: Simulation of full and reduced mechanistic models for a genetic toggle switch with
additional TF binding sites for one TF. The TF concentration for one half of the toggle switch is
shown. A close match between the full and reduced models can be seen. The parameters used
match those in Figure 4 in the main section (see Materials and Methods). The kinetic rates not
discussed in Materials and Methods are P = 100, R = 100,44 = 0.03,a_4 = 0.8,a5 = 2,44 =
0.5125,a_¢ = 1,a3 = 1.845,a_g = 1,a9 = 5.125,a_9 = 1,7 = 0.03,a_1 = 1,ap = 2. wy =
O.OZ,w,4 = 08, w5 = 2, We = 0.5125,w_6 = 1,wg = 0.82,w_g = 1,ZU1 = 0.03,71),1 = 1,71)2 = 2.

by noting that saturation of A with increasing x{ occurs when Cy; < g{ and so any error is
relatively small.

For a more accurate estimate across a range of parameters, it is simpler to use the low affin-
ity case to determine the dimer bound to second operator, using (87) with Bj,, O swapped
with Brg, g{ to obtain Fp. From this, we obtain

A= Ay =20! (1 - Fop)

9%
A=A =20l (1-Fo) o)

9.2 Monomer Dominant Case

For the monomer dominant case, the regulation term is not affected by the extra operators for
the zeroth order approximation. However, for higher order approximations there is an effect.
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Using an equivalent methodology to the single operator case, we have

hro = (1 —1mo)* =1

x{ 97)

T T 4 -1 T BrogT (1-Fio)
x]{ +4g] (1 —Fpo) + BTg(FL —1)+40; BngsziBmg{(liFw)

hpy = (1—ypm)? =

10 Regulation Efficiency

In this section, we discuss regulation efficiency, an important concept in gene regulation. We
define the regulation efficiency to be the fraction of transcription factor, in monomer units,
which is bound to an operator. The efficiency of regulation 7., for the transcription factor is
defined here as

(98)

noting the 2 is required as there are two monomer units in a dimer, and also noting that regu-
latory (17¢) and multimerisation (17.,) efficiency are distinct. The efficiency of regulation 77
for the dimer can be estimated by

27(1—F
Mg = gL(xz L) (99)

where Fj, is given in Equation 3 in the paper.
For the case of multiple operators, the efficiency is defined by

281 X120 +2X120,

Mg = 7 (100)

and the efficiency can be estimated by

_28j(1-F)  20{(1 - Fo)
TN B

(101)

where F;, and Fp are the regulation functions for the respective promoters, found using Equa-
tion 3 in the main section, with relevant corrections as described in SI 9.
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