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1 Reduction of Mechanistic Models using Singular Perturbation

In this section, we derive a low order model of total mRNA and protein concentration with
general assumptions, by rigorously applying singular perturbation theory [9, 10] to gene reg-
ulation models. We obtain a ‘reduced’ model in the form of a Differential-Algebraic Equation
(DAE), where the terms for transcription and protein degradation are described implicitly,
noting that we present methodology to describe them explicitly in SI 2 and 3. We first present
the prototypical mechanistic model as an Ordinary Differential Equation (ODE) and the pro-
posed reduced model as a DAE. We then prove that the model reduction holds by using a
transformed mechanistic model and a novel non-dimensionalisation to obtain a mechanistic
model in standard singular perturbation form.

The proposed methodology allows more general assumptions than previous methods that
used total TF (Transcription Factor) indirectly [8, 6], necessary to match with known experi-
mental data. This methodology also allows reduction of more complicated mechanistic models
than existing methods, allowing the inclusion of qualitatively important biochemical mecha-
nisms previously ignored for tractability.

The model reduction in this section is analogous to the derivation of Michaelis-Menten
kinetics [10], particularly derivations using a change of variable or ‘total’ quasi-steady state
[3], noting that here we transform both ‘slow’ and ‘fast’ variables.

Mechanistic Model

We first state the ODEs for the full mechanistic model in Equation 1 in the paper. We model
the output protein XT and associate forms XT2, gTXT2, while we treat the protein XL and as-
sociated forms XL2, gLXL2 as an input. When modelling the concentrations, we define the
variables C1T = [gTP], C2T = [gTXT2], C3T = [mTR]. We assume mass-action kinetics to derive
the ODEs, noting that we assume that the dynamics of XL are equivalent to XT, and similarly
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with other protein concentrations. The full ODE model is

ṁT = −w4mTR + (w−4 + w5)C3T + α2C1L − γtmT

Ċ3T = w4mTR− (w−4 + w5 + γtR)C3L

ẊT = −2w6X2
T + 2w−6XT2 + w5C3T − βtT

ẊT2 = w6X2
T − w−6XT2 − w8gTXT2 + w−8C2T − βt2XT2

ġT = −w1PgT + (w−1 + w2)C1T − w8gTXT2 + w−8C2T + βgtC2T

Ċ1T = w1PgT − (w−1 + w2)C1T

Ċ2T = w8gTXT2 − w−8C2T − βtgC2T

(1)

where the definitions of kinetic rates and species can be found in the paper (Equation 1).

The Reduced Model and Quasi-Steady State Approximation

We next derive the reduced model using the quasi-steady state approximation. To complete
this, we set the summed variables

mT
T = mT + C3T

xT
T = XT + 2XT2 + 2C2T

zT
T = 2XT2 + 2C2T

xT
L = XL + 2XL2 + 2C2L

(2)

which equate to the total mRNA concentration, the total protein concentration, and the total
dimer concentration, in both bounds and unbound form. Using the variables zT

T together with
xT

T simplifies the application of singular perturbation theory to the mechanistic model, as we
will see below.

We find the reduced model with the proposed slow variables of total mRNA mT
T and total

protein xT
T , while all other variables are assumed fast variables. The proposed slow variables

have dynamics
ṁT

T = α2C1L − γtmT
T − (γtR − γt)C3T

ẋT
T = w5C3T − βtxT

T − (βt2 − βt)zT
T − 2(βtg − βt2)C2T

(3)

and the quasi-steady state approximations together with the conserved quantities are

gL + C1L + C2L = gT
L

α6X2
L = (α−6 + βl2)XL2

α8gLXL2 = (α−8 + βlg)C2L

α1PgL = (α−1 + α2)C1L

w4RmT
T = (w4R + w−4 + w5 + γtR)C3T

gT + C1T + C2T = gT
T

w6X2
T = (w−6 + βl2)XT2

w8gTXT2 = (w−8 + βtg)C2T

w1PgT = (w−1 + w2)C1T

(4)

We include the degradation/dilution terms βl2XL2 for operator dissociation and βlgC2L for
dimer dissociation as this more closely matches experimental measurements for dissociation
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[7] and reduces the error. We also include γtR in the ribosome binding quais-steady state for
consistency.

Equation (1) has multiple conserved quantities, including gT + C1T + C2T = gT
T shown

above as well as
R + C3T = RT

P + C1T = PT
(5)

However, the Ribosome and Polymerase are used by other genes, and so reduced models in
terms of RT and PT in this form are specific to the prototype gene regulation, whereas we
wish to develop a more general methodology. Thus, we treat R = R(t) and P = P(t) as
time-varying parameters. This allows us to easily substitute terms involving all bound forms
of RNAp and ribosomes when modelling gene regulatory networks instead of a single input-
output ‘module’ presented here. As such, we can model the effects from competition of poly-
merase and ribosomes.

We next use the variables C2T and C2L to reduce the equations, as they are directly related to
expression levels in the model and so act as a proxy. We have the reduced differential-algebraic
equations

ṁT
T = gT

L Vtx
T FL − γTmT

T

ẋT
T = ktl

TmT
T − βTxT

T

FL = 1− C2L

gT
L

βT = βt + (βt2 − βt)
zT

T(C2T)

xT
T

+ (βtg − βt2)
2C2T

xT
T

= βt + (βt2 − βt)
2C2T

xT
T BTg(gT

L − C2T)
+ (βtg − βt)

2C2T

xT
T

xT
L = θL1(C2L) :=

√
C2L√

BL2BLg(gT
L − C2L)

+
2C2L

BLg(gT
L − C2L)

+ 2C2L

xT
T = θT1(C2T) :=

√
C2T√

BT2BTg(gT
T − C2T)

+
2C2T

BTg(gT
L − C2T)

+ 2C2T

(6)

and we have the reduced parameters

ktl
T = w5A2T, Vtx

T = α2A1L

BLg =
α8

α−8 + βlg
(1− A1L), BL2 =

α6

α−6 + βl2

BTg =
w8

w−8 + βtg
(1− A1T), BT2 =

w6

w−6 + βt2

γT = γt + (γtR − γt)A2T

(7)

such that Vtx
T is the transcription rate per non-repressed promoter, FL is the fraction of non-

repressed promoters, BL2, BT2 are the effective dimerisation association constants,BLg, BLg are
the effective dimer-operator association constants, γT, βT are the effective mRNA and protein
degradation rates, A1L, A1T are the fraction of expressing promoters bound by polymerase,
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and A2T is the fraction of RBS (Ribosome Binding Sites) bound by ribosomes, such that

A1L =
w1P

w−1 + w1P + w2
, A1T =

w1P
w1P + w−1 + w2

A2T =
w4R

w−4 + w5 + w4R + γtR

(8)

The parameters A1L, A1T, A1T are used to simplify terms, and are not reduced parameters or
kinetic rates.

We can further simplify the parameters BL2, BT2, BLg, BLg and A2T by removing the degra-
dation terms if they are sufficiently small ( w−8 � βtg, w−6 � βt2 or w4P + w−4 + w5 �
βtg). The effect of polymerase binding on BLg, BTg occurs due to competitive binding for the
operator-promoter in the prototypical mechanistic model between polymerase and transcrip-
tion factor. It can be noted that ktl

T matches with the model used in the RBS calculator [11]
for the case that w−4 � w5 + w4R + γtR by neglecting degradation, assuming that only a
small fraction of the ribosome binding sites are occupied and assuming that thermodynamic
equilibrium occurs for the ribosome binding/unbinding.

The differential-algebraic equations are well defined as θL1, θT1 are monotonically increas-
ing functions of C2T, C2L for 0 ≤ C2T < gT

T , 0 ≤ C2L < gT
L and so there is one non-negative

solution for each function.
The model (6) can be used directly for numerical simulations, or can be further reduced

to an ODE for either analytical or numerical analysis of the model. In order to find an ODE,
we need to determine the inverse of θL1, θT1 so that we have CL2 = θ−1

L1 (xT
L ) and similarly

for CT2 = θ−1
T1 (xT

T). This can be carried out numerically, if the parameters are known, or
analytically using various (close) approximations (SI 2 and 3).

A simulation of (6) can be seen in Figure S1, which shows that the reduced DAE model is a
(close) match to the full mechanistic model, assuming that the quasi-steady state approxima-
tion holds.

Nondimensionalisation and Standard Singular Perturbation Form

To determine under which conditions the quasi-steady state approximation holds, we need to
apply singular perturbation theory [9]. The first step in this application is to nondimension-
alise the original model, in order to determine which parameters are large or small.

We first transform the ODE, where the transformed equations with summed variables and
conserved quantities are

ṁT
T =α2(A1TgT

L − yT
L)− γtmT

T − (γtR − γt)C3T

Ċ3T =w4RmT
T − (w4R + w−4 + w5 + γtR)C3T

ẋT
T =w5C3T − βtxT

T − (βt2 − βt)zT
T − 2(βtg − βt2)C2T

żT
T =2w6

(
xT

T − zT
T

)2
− 2(w−6 + βt2)

(
1
2

zT
T − C2T

)
− 2βtgC2T

Ċ2T =w8

(
1
2

zT
T − C2T

)
((1− A1T)gT

T + yT − C2T)−
(
w−8 + βtg

)
C2T

ẏT =w1PC2T − (w1P + w−1 + w2)yT

(9)

where yT = A1TgT
T − C1T is introduced as yT is at a maximum steady state when C2T is maxi-

mum, useful for scaling.
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Figure S1: Simulations of the full mechanistic model (1) and reduced Differential Algebraic
Equation (DAE) model (6) for a Repressilator network [5] with a stable equilibrium point. The
reduced DAE model is a close approximation of the full mechanistic model when mRNA and
protein degradation are much ‘slower’ than transcription, translation, operator binding and
dimerisation. The parameters used for the simulation are P = 1000, R = 1000, a4 = 0.01, a−4 =
1, a5 = 1, a6 = 0.1, a−6 = 1, a8 = 0.5, a−8 = 0.1, a1 = 0.01, a−1 = 1, a2 = 1, bL1 = 0.033, bL2 =
0.0167, bLg = 0.0167, γLR = 0.1, γLu = 0.1, with identical parameters for all three genes. The
initial conditions were mT

T = mT
Y = mT

L = 0, XL10 = XT10 = 10, XY10 = 20, gT
L = gT

Y = gT
T = 1,

and other variables set at quasi-steady state (4).
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The transformations to total transcription factor, total dimer and bound dimer allow the
rate of change of each fast variable to (primarily) represent the dynamics of one reaction, e.g.
transcription for ẏT or dimerisation for żT

T. This representation allows simplified assumptions
in terms of the individual reactions.

The dynamics of zT
T and C2T can be rewritten as

żT
T =2w6

(
xT

T

)2
+ 2(w−6 + βt2)C2T

−
(

2w6

(
2xT

T − zT
T

)
+ w−6 + βt2

)
zT

T − 2βtgC2T

Ċ2T =
1
2

w8((1− A1T)gT
T + yT)zT

T

−
(

w8

(
1
2

zT
T − C2T

)
+ w8(1− A1T)gT

T + w8yT + w−8 + βtg

)
C2T

(10)

Notation: In the following section, Y = YnȲ is used as notation for scaling, where Y is a
variable, Yn is a nondimensionalisation constant and Ȳ is the non-dimensionalised variable.

We nondimensionalise all variables in reference to the maximum steady state over the
range of inputs, which references the maximum gene expression level. Ribosome R and Poly-
merase P are typically referenced against their maximum value, but the initial value can also
be used. It should be noted that mT

T is minimum when yT
L is maximum, and so we are not

nondimensionalising using a particular equilibrium point. Using this reference, we have the
nondimensionalisation parameters

MT
Tn =

α2A1LgT
L

γTn

C3Tn = A2T MT
Tn

XT
Tn =

w5C3Tn

βTn

C2Tn = θ−1
T1 (XT

Tn)

ZT
Tn = θT2(C2Tn) = θT2(θ

−1
T1 (XT

Tn)) := θT3(XT
Tn)

Y1Tn = A1TC2Tn

γTn = γt(1− A2T) + γtR A2T

βTn = βt + (βt2 − βt)η
n
Tm + (βtg − βt2)η

n
Tg

ηn
Tm =

ZT
Tn

XT
Tn

, ηn
Tg =

2C2Tn

XT
Tn

, ηn
To =

2C2Tn

ZT
Tn

t =
τ

β

(11)

where β is the slow time scale. For simplicity of description, we also use

XTn = XT
Tn − ZT

Tn

XT2n = ZT
Tn − 2C2Tn

gTn = (1− A1T)(gT
T − C2tn)

(12)

where XTn is the monomeric transcription factor scaling constant, XT2n is the dimeric tran-
scription factor scaling constant and gTn is the free operator-promoter scaling constant.
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When referencing xT
T against the maximum, the scaling parameters are in implicit form,

where θ−1
T1 and β are not stated explicitly. However, this approach holds as there is a unique,

well defined, non-negative solution due to monotonically increasing θT1, θT2 and βTnXT
Tn with

respect to XT
Tn. The parameters can be determined explicitly through either solving computa-

tionally, if the kinetic parameters are given, or by (close) approximation (see SI 2 and 3).
We can alternatively scale against a lower value for the total transcription factor in order

to obtain a more accurate ‘typical’ maximum, such that

MT
Tn = SL

α2A1LgT
L

γTn
(13)

where 0 ≤ SL ≤ 1 is a fraction dependent upon the typical operating range of C2L, and thus
dependent upon the entire gene regulatory network. Equivalently, we can scale against a
reference regulation fraction 0 ≤ FT,re f < 1, such that

XT
Tn = XFT,re f = θT1(gT

L FT,re f ) (14)

where the other parameters are referenced against the new XT
Tn, as per Equation (11).

Nondimensionalising the ODEs results in

β

γTn
˙̄mT

T =(1− A3LȳL)−
γt

γTn
m̄T

T −
γTn − γt

γTn
C̄3T

β

βTn
˙̄xT
T =C̄3T −

βt

βTn
x̄T

T −
βt2 − βt

βTn
ηn

Tm z̄T
T −

βtg − βt2

βTn
ηn

TgC̄2T

εw1
˙̄C3T =m̄T

T − C̄3T

εw2 ˙̄yT =C̄2T − ȳT

εw3 ˙̄zT =A4T A5T

(
x̄T

T

)2
+ A4T(1− A5T)C̄2T

−
(

A6T x̄T −
1
2

A7T z̄T
T + 1− A6T + A7T

)
z̄T

T − εw5C̄2T

εw4
˙̄C2T =A8T(A9T + (1− A9T)ȳT)z̄T

T

−
(

A10T z̄T
T −

1
2

A11TC̄2T + A12T ȳT + 1− A10T + A11T − A12T

)
C̄2T

(15)

with parameters

βC3T = w4Rn + w−4 + w5 + γtR

βYT = w1Pn + w−1 + w2

βC2T =
1
2

w8(ZT
Tn − 2C2tn) + w8(1− A1T)(gT

T − C2tn) + w−8 + βtg

= w8XT2n + w8gTn + w−8 + βtg

βZT = 4w6(XT
Tn − ZT

Tn) + w−6 + βt2

= 4w6XTn + w−6 + βt2

εw1 =
β

βC3T
, εw2 =

β

βyT
, εw3 =

β

βC2T
, εw4 =

β

βZT
, εw5 =

βtgηTo

βZT

(16)
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A3L =
C2Ln

gT
L

, A4T = 1 +
2w6XTn

βZT
, A5T =

2w6
(
XT

Tn
)2

2w6
(
XT

Tn
)2

+ 2(w−6 + βt2)C2Tn

A6T =
4w6XT

Tn
βZT

, A7T =
4w6ZT

Tn
βZT

A8T = 1 +
w8C2Tn

βC2T
, A9T =

w8(1− A1T)gT
T

w8(1− A1T)gT
T + A1TC2Tn

A10T =
1
2 w8ZT

Tn
βC2T

, A11T =
2w8C2Tn

βC2T
, A12T =

w8YTn

βC2T

noting that we cancel terms as the nondimensionalisation is based on the maximum steady
state for each variable. We estimate the separate time-scales βC3T, βZT, βYT, βC2T of the indi-
vidual fast variables from the diagonal of the Jacobian matrix of the fast variables about the
candidate slow manifold.

To place the system in standard form, we need to estimate a lower bound for the fast
time-scale, which we achieve based on local analysis about the candidate slow manifold. This
lower bound is required to be slower than the individual fast variables, taking any coupling
into account between the variables. C3T is uncoupled from other variables on the fast time
scale, while yT,C2T,zT

T are coupled. From experimental observations, we can typically assume
that βC2T � βC1T [7], and so βC1T is effectively decoupled. By using estimates of the minimum
time scale based on the eigenvalue analysis, which hold locally about the quasi-steady state,
we can estimate the lowest fast time scale to be

βcoup =
βZT + βC2T

2
−

√(
βZT + βC2T

2

)2

− [βC2T βZT − w8gLn(w−6 + βt2)]

εw6 =
β

βcoup

(17)

setting εw6, as we need β� βcoup for time-scale separation to occur. These coupling conditions
ensure that as well as both C2T and zT

T being fast variables, all possible local transformations of
the two variables are also fast. If required, we can generalise the assumptions for the case that
yT,C2T,zT

T are on the same time scale, which we can once again achieve using local analysis.
We estimate the slow time-scale using

β = max (βTn, γTn) (18)

The ‘slow’ time scale may differ for a network compared to a ‘module’ analysed here, with
the network typically slower. However, the network may be faster due to feedback e.g. auto
regulation [1].

In order to obtain useful estimates of fast and slow time-scales, care is required in selecting
total transcription factor scaling XT

Tn using (11) or (13), which should be relevant to the be-
haviour of the entire network. A choice of XT

Tn well above the concentration range relevant for
regulation of expression could result in an overestimate of the speed of dimerisation or oper-
ator binding. For example, for a large XT

Tn where almost all operators are occupied (resulting
in C2Ln = 0.999gT

L ) and where there is an excess of free dimeric transcription factor X2Tn, then
the estimated speed of operator binding may be orders of magnitude too high compared to a
lower but still typical level of operator binding (C2Ln = 0.8gT

L ∼ gT
L ). Similarly, if XT

Tn is too
low, then there may be an unnecessary underestimate. For example, if dimerisation is (con-
servatively) required to be fast for all XT

Tn, then the speed of dimerisation may be estimated
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with a lower bound βZT ≥ w−6 + βt2 based on very low transcription factor concentrations.
However, this lower bound is often likely to significantly underestimate the dimerisation time
scale at concentrations relevant to regulation, which is typically when C2Ln ∼ gT

L , depending
upon the allowed error.

We can place (15) in standard singular perturbation form [9]

ẋ1 = f1(t, x1, x2, ε)

εẋ2 = f2(t, x1, x2, ε)
(19)

by setting x1 = (m̄T
T, x̄T

T), x2 = (C̄3T, ȳT, z̄T
T, C̄2T), and ε = max(εw1, . . . , εw6). By symmetry,

the same methodology applies for reactions involving XL, XL2, gLXL2, gLP, using equivalent
assumptions, which can be used to derive the gene expression of xT

T .
From the standard form (19), we can see that ε is small and thus that Quasi-Steady State

holds under the assumptions

βTn, γTn �(w4Rn + w−4 + w5 + γtR), (w1Pn + w−1 + w2),
(w8XT2n + w8gTn + w−8 + βtg), (4w6XTn + w−6 + βt2)

(20)

as well as
βtgηTo � 4w6XTn + w−6 + βt2 (21)

and βC2T � βC1T together with βTn, γTn � βcoup, where the last of which can be relaxed to

βTn, γTn �
βC2T βZT − w8gTn(w−6 + βt2)

βC2T + βZT
(22)

when (20) holds.
The conditions in (20) require that the sum of the forward and reverse rates for transcrip-

tion, translation, operator binding and dimerisation are faster than mRNA and protein degra-
dation. For dimerisation and operator binding, this holds if either the forward or the reverse
rates are sufficiently fast compared to degradation. For transcription and translation, this con-
dition holds if ribosome/polymerase binding, unbinding or initiation is sufficiently fast.

Equation (22) holds if (20) holds unless both the reverse rate of operator binding and the
forward rate of dimerisation are relatively small, when the operator is not being fully occupied.
For the case that (22) does not hold, there would be a near zero free dimer concentration
at quasi-steady state, which would limit bound dimer (XT2gT) and monomer (XT) reaching
(quasi) equilibrium on a fast time scale. This case is typically only possible at concentrations
too low to be of interest for modelling of regulation.

The derived conditions generalise the existing model reduction methodology that uses
total transcription factor indirectly [8, 6], where the generalisation is required to match with
known experimental data. In [7], the isolated forward rate of chromosomal lacI-operator bind-
ing has an associated time-scale of≈ 1

2 min, while the reverse rate has an associated time-scale
of ≈ 10 min, noting that lacI is a dimer of dimers and that XT

Tn ≈ 20 molecules/cell [4]. As
γT ≈ 5 min and βT has a time scale between 5 min and hours/days [1], then experimental re-
sults indicate that in a typical case for lacI, only the forward rate is fast enough for time-scale
separation to hold generally. As the assumptions used here require either a fast forward or
reverse rate, the current reduced model assumptions are consistent with experimental data for
lacI [4, 7].

The time-scale separation conditions may be conservative for the asymptotic cases XTn �
XT

Tn or XT2n � XT
Tn or gTn � gT

T , as for these cases the local analysis may not contain a useful
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estimate of the time-scales. For example, if XTn � XT
Tn holds and βZT � βTn, γTn does not

hold, but the latter holds for a hypothetical XTn ∼ XT
Tn, then XTn typically converges to near

zero sufficiently quickly such that the error in degradation rate of xT
T and quasi-steady state

of C2T are small. As C2T is a proxy variable for regulation, the quasi-steady state is a useful
estimate of regulation for this case.

Equivalent time-varying equations may be obtained if R and P are time-varying parame-
ters, such that

εw1
˙̄C3T = R̄m̄T

T − (A2T R̄ + (1− A2T))C̄3T − εw5C̄3T

εw2 ˙̄yT = P̄C̄2T − (A1T P̄ + (1− A1T))ȳT
(23)

In this case, we also require that P and R are slowly time-varying. We require dP̄
dτf
� 1 and

dR̄
dτf
� 1, where τf is the fast time scale. This is equivalent to the unscaled conditions

εṖ� βPn, εṘ� βRn (24)

These conditions on parameters R and P in (24) hold locally about the slow manifold, and hold
on the entire domain when there is a sufficiently large number of polymerase/ribosomes such
that binding has little effect on the free polymerase/ribosomes concentration.

Application of Tikhonov’s Theorem

To show that the quasi-steady state approximation holds, we need to show that the conditions
for a version of Tikhonov’s Theorem are met on the domain of interest [9], which for this case
is the set of non-negative values of each concentration below the maximum of each variable.
As stated earlier, the non-dimensionalised quasi-steady state has a unique solution. The well
defined nature of C̄2T in terms of x̄T

T on the domain of interest implies an isolated root to the
quasi-steady state solution. The functions f1 and f2 in (19) are polynomial in terms of (x1, x2, ε)
and so are sufficiently smooth. Treating R and P as time-varying parameters, function f2 is
sufficiently smooth with respect to xT

T if R and P are continuously differentiable. The inverse
function theorem implies that the function C̄2T = θ−1

T1 (XT
Tn x̄T

T)/C2Tn is sufficiently smooth
on the domain for the reduced problem to have a well defined solution. Finally, for the fast
dynamics it can be shown that the isolated root is (locally) exponentially stable by using local
eigenvalue analysis. We set

f2(t, x1, x2, ε) = ε


˙̄C3T
˙̄C1T
˙̄zT
˙̄C2T

 (25)

If R and P are time-varying, then they are assumed slowly time-varying and we can set R =
R(0) and P = P(0) for the boundary value problem. The linearisation of the scaled boundary
value problem is

∂ f2

∂x2
(x1, x2, 0) =


ε
ε1

0 0 0
0 ε

ε2
0 0

0 0 ε
ε3

0
0 0 0 ε

ε4



−1 0 0 0
0 −1 0 1
0 0 J33 J34
0 J42 J43 J44

 (26)
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where
J33 =− (A6T x̄T

T − A7T z̄T
T + 1− A6T + A7T)

J34 =A4T(1− A5T)

J42 =A8T(1− A9T)z̄T
T − A2TC̄2T

J43 =A8T(A9T + (1− A9T)ȳT)− A10TC̄2T

J44 =− (A10T z̄T − A11TC̄2T + A12T ȳT + 1− A10T + A11T − A12T)

(27)

The matrix is Hurwitz for the entire domain of interest, and so the isolated root is (locally)
exponentially stable. Thus the conditions for Tikhonov’s Theorem are met internally on the
domain of interest [9].

For the boundary cases, the isolated root is only on the boundary of the domain for xT
T =

0 or mT
T = 0, on the assumption that the kinetic rates are positive constants. We note that

xT
T = 0 implies xT

T = zT
T = C2T = yT = 0 and so the quasi-steady state approximation holds

trivially for C2T, xT
T , zT

T, yT on the boundary of the domain, as well as holding in the limit due
to continuity. This logic similarly holds for mT

T = 0. Thus for sufficiently small ε in (19) then
the quasi-steady state approximation holds on the domain.

2 Simplified Expression Model

In this section, we simplify the model of expression for gene regulation from an implicit to
an explicit form, which together with simplified degradation (SI 3), enables us to represent
the reduced model as an ODE rather than a DAE (differential-algebraic equation). To derive
an ODE, we need to determine the expression in terms of the total TF (Transcription Factor),
which is an inverse function problem. To solve this, we partition the function into multiple
cases and then use Padé approximations to approximate the inverse function. The two cases
used for the partition are the monomer dominant and multimer dominant regulation, which
indicate the predominant form of the regulating transcription factor at concentrations relevant
for regulation. We use two methods of perturbation theory and interpolation to determine the
Padé approximations and to determine the partitioning of the cases. Using interpolation is
conceptually related to previous interpolation methods for Michaelis-Menten kinetic deriva-
tions [3].

To determine expression explicitly, we need to invert the function θL1(C2L), where

xT
L = θL1(C2L) :=

√
C2L√

BL2BLg(gT
L − C2L)

+
2C2L

BLg(gT
L − C2L)

+ 2C2L (28)

2.1 Perturbation Theory

We initially approximate the inverse for the multimer dominant case, where

xT
L ≈ zT

L =
2C2L

BLg(gT
L − C2L)

+ 2C2L (29)

and the monomer dominant case, where

xT
L ≈ XL =

√
C2L√

BL2BLg(gT
L − C2L)

(30)

11



before using perturbation theory to both determine when the two cases are valid, and to find
more accurate approximations.

We provide the approximation in terms of the multimerisation efficiency ηLm := zT
L

xT
L

, which
is the fraction of a protein in its full multimer form. There are alternative approaches to rep-
resent the approximation than using the multimerisation efficiency. However, we use the ap-
proach presented here as it is relatively simple and allows the refined approximations to have
a simple biological interpretation.

2.1.1 Multimer Dominant Regulation

We first look at the multimer dominant case. Using zT
L = ηLmxT

L , we have

C2L =
gT

L
2

+
ηLmxT

L
4

+
1

2BLg
−

√√√√( gT
L

2
+

ηLmxT
L

4
+

1
2BLg

)2

−
gT

L ηLmxT
L

2

=
gT

L
2

+
ηLmxT

L
4

+
1

2BLg
−

√√√√(ηLmxT
L

4
+

1
2BLg

−
gT

L
2

)2

+
gT

L
BLg

(31)

and so

FL =
gT

L − C2L

gT
L

=

√√√√(ηLmxT
L

4gT
L

+
1

2BLggT
L
− 1

2

)2

+
1

BLggT
L
−
(

ηLmxT
L

4gT
L

+
1

2BLggT
L
− 1

2

) (32)

We set the initial approximation

FL0(xT
L ) := FL|ηLm=ηLm0 (33)

where ηLm0 = 1.
More formally, we can write out the non-dimensionalised algebraic equation in (28) using

the scaling approximation C2Ln = gT
L (noting C2L = C2LnC̄2L) to obtain the inverse function

perturbation problem

A1C̄2L + (1− A1)
C̄2L

1− C̄2L
+ εL

√
C̄2L

1− C̄2L
= A2

A1 =
BLggT

L

1 + BLggT
L

A2 =
BLgxT

L

2(1 + BLggT
L )

εL =

√
BLg

2(1 + BLggT
L )
√

BL2

(34)

There is a boundary layer near C̄2L = 1 if 1− A1 = O(ε), but we are only interested in the
outer solution.

12
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Figure S2: Comparison of Regulation function FL from the DAE (6) and perturbation approach
(33) for the multimer dominant case. The parameters are gT

L = 1, 1
BL2

= 4 and 1
BLg

= 1
(molecules/cell).

We transform this perturbation problem to be in terms of the multimerisation efficiency,
such that

ηLm A2 + εL

√
F̄L0 (ηLm A2)

−1 − 1 = A2 (35)

where F̄L0(ηLm A2) = FL0(ηLmxT
L ).

Padé Approximation - Multimer Case

We next use a Padé approximation to estimate the multimerisation efficiency, as the Padé ap-
proximation is a close approximation for a large range of εL. In comparison, a 1st order Taylor
series is much slower to converge and predicts negative solutions for small A2 (i.e. small xT

L ),
which is not biologically feasible. For the zeroth order Padé approximation, we have ηLm0 = 1,
which is the ‘multimeric transcription factor only’ case. Using a first order Padé approxima-
tion ηLm1 = a0(A2)

1+εa1(A2)
and matching to the Taylor series, we have

ηLm1 =
A2

A2 + εL

√
F̄L0 (A2)

−1 − 1
(36)

Using the original scaling and variables, we have

ηLm1 =
xT

L

xT
L + 1√

BL2BLg

√
FL0
(
xT

L
)−1 − 1

(37)
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Figure S3: Comparison of Regulation function FL from the DAE (6) and perturbation model
(33) for the multimer dominant case. Parameters are gT

L = 1, 1
BLg

= 1, 1
BL2

= 16 (molecules/cell)
and εL = 1. The parameters chosen give the boundary case εL = 1, but the first order Padé
approximation only has a small error from the full mechanistic model.

2.1.2 Monomer Dominant Regulation

We next look at the monomer dominant case. Using xL = (1− ηLm)xT
L , we have

(1− ηLm)xT
L =

√
C2L√

BL2BLg(gT
L − C2L)

(38)

and so

FL((1− ηLm)xT
L ) =

gT
L − C2L

gT
L

=
1

1 + BLgBL2(1− ηLm)2xT
L

2 (39)

We again set
FL0(xT

L ) := FL|ηLm=ηLm0 (40)

but use ηLm0 = 0.
We find the non-dimensionalised algebraic equation in (6) using the approximation C2Ln =

gT
L to obtain the perturbation problem√

C̄2L

1− C̄2L
+ εLs

(
A1C̄2L + (1− A1)

C̄2L

1− C̄2L

)
= A2

A1 =
BLggT

L

1 + BLggT
L

A2 = xT
L

√
BL2BLg

εLs = 2(1 + BLggT
L )

√
BL2

BLg
=

1
εL

(41)
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Figure S4: Comparison of Regulation function FL from the DAE (6) and perturbation model
(39) for the monomer dominant case. Parameters are gT

L = 1, 1
BLg

= 1.5, 1
BL2

= 150
(molecules/cell) and εL ≈ 3.1.

For leading order behaviour of order 1 as C̄2L → 0, we square the perturbation problem, such
that

C̄2L

1− C̄2L
+ 2εLs

√
C̄2L

1− C̄2L

(
A1C̄2L + (1− A1)

C̄2L

1− C̄2L

)
+ ε2

Ls

(
A1C̄2L + (1− A1)

C̄2L

1− C̄2L

)2

= A2
2

(42)

Using X2
L = hLxT

L
2, we have

hL A2
2 + 2εLs

√
hL A2

(
A1(1− F̄) + (1− A1)(F̄−1 − 1)

)
+ ε2

Ls

(
A1(1− F̄) + (1− A1)(F̄−1 − 1)

)2
= A2

2

(43)

Solving this, we have hL0 = 1 as expected, as well as

hL1 =
A2

A2 + 2εLs

(
A1(1− F̄0) + (1− A1)(F̄−1

0 − 1)
) (44)

With original scaling and parameters, this becomes

hL1 =
xT

L

xT
L + 4

(
gT

L (1− F0) +
1

BLg
(F−1

0 − 1)
) (45)

and we set hL1 = (1− ηLm1)
2.
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2.1.3 Alternative to Monomer Dominant Case

We can describe the expression term in Equation 2 (main paper) in an alternative represen-
tation by using the overlapping cases of predominantly multimer and predominantly free
monomer/dimer, such that

FL =


√

W2
L +

1
BLggT

L
−WL, εL ≤ 1

1

1+
BLg

16BL2

(√
1+8BL2hLxT

L−1
)2 , εL > 1

WL =
ηLmxT

L
4gT

L
+

1
2BLggT

L
− 1

2
, εL =

√
BLg

2(1 + BLggT
L )
√

BL2

(46)

where the free transcription factor fraction hL replaces the multimerisation efficiency ηLm.
However, here we use the original regulation term (Equation 3 in the paper), at least for

lower order approxations, for simplicity and for the ability to more easily relate the pro-
posed regulation term to traditional models. It can be noted that modelling the total free
monomer/dimer concentration is of use to determining reduced models for tetrameric TF.

For the free monomer/dimer case, we use the perturbation problem

A1

√
C̄2L

1− C̄2L
+ (1− A1)

C̄2L

1− C̄2L
+ εLuC̄2L = A2

A1 =
1

1 + 2
√

BL2
BLg

A2 =
BLg

2
xT

L
1

1 + 2
√

BL2
BLg

εLu = 2gT
L

√
BL2BLg

1 + 2
√

BL2
BLg

(47)

noting that εLu ≤ εLs = 1
εL

, and so (47) covers the case of monomer dominant regulation.
Using overlapping perturbation problems allows a non-unique partitioning, and so we can
also replace εL with 1/εLu if required.

Solving, we have
hL0 = 1 (48)

Using the same methodology as the multimer dominant case, the first order (unscaled) Padé
approximation is

hL1 =
xT

L
xT

L + 2gT
L (1− FL0)

(49)
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Figure S5: Comparison of Regulation function FL from the DAE (6) and perturbation model
(46) for the free transcription factor case. Parameters are gT

L = 1, 1
BLg

= 1.4, 1
BL2

= 10.2
(molecules/cell) and εL ≈ 0.78.

2.2 Interpolation

We also use interpolation to determine the Padé approximation and to determine the required
case, such that

ktx
T = Vtx

T FL

FL =


√

W2
L +

1
BLggT

L
−WL, ηLm0 ≥ 1

2
1

1+BLgBL2hLxT
L

2 , ηLm0 < 1
2

WL =
ηLmxT

L
4gT

L
+

1
2BLggT

L
− 1

2

(50)

This test determines the predominant form of transcription factor when half of the operators
are occupied.

To approximate multimerisation efficiency for the multimer dominant case, we use the
point C2g = 1

2 g for a one point interpolation, such that

ηLm0 =

√
B2
BLg

(2 + gT
L BLg)

1 +
√

B2
BLg

(2 + gT
L BLg)

(51)

Similarly, for the first order rational case, we interpolate the points C2g = 0, C2g = 1
2 g, and

C2g → g, which gives

ηLm1 =
xT

L
xT

L + ALm

ALm =
1

ηLm0
√

BL2BLg
=

1 +
√

B2
BLg

(2 + gT
L BLg)

BL2(2 + gT
L BLg)

(52)
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Figure S6: Comparison of DAE model (6) and multimer interpolation model (50), using pa-
rameters gT

L = 1, 1
BLg

= 1.4, 1
BL2

= 10.2 (molecules/cell), where ηLm0 = 0.50.
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Figure S7: Comparison of DAE model (6) and monomer interpolation model (50), using pa-
rameters gT

L = 1, 1
BLg

= 1.4, 1
BL2

= 101 (molecules/cell), where ηLm0 = 0.24.
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For the monomer dominant case, we use an identical zeroth order approximation to the
multimer case, where

hL0 = (1− ηLm0)
2 (53)

However, for the first order case, we use

hL1 =
ALm

ALm + xT
L

ALm =
hL0

1− hL0

1√
B2BLg +

1
BLg

+ gT
L

(54)

as using hL1 = (1− ηLm1)
2 results in erroneous asymptotic behaviour of FL as xT

L → ∞.
Here, we interpolate at C2L = 1

2 as we are analysing a module and have no information
about the network. However, we can also interpolate at or near an equilibrium point for the
network, or at a typical operating point.

3 Simplified Degradation Model

We next simplify the model of degradation from an implicit to an explicit form, which together
with SI 2 enables the model of to be written as an ODE. We split degradation into the two cases
of uniform and non-uniform degradation, where we define uniform degradation as occurring
when different forms of the protein have the same degradation rate. For a transcription fac-
tor (TF) in the prototypical model with uniform degradation, the degradation rates of the
monomer, free and bound dimer are equal. This differs from two distinct proteins having the
same degradation rate. In many cases we can assume uniform degradation of proteins in order
to simplify the protein degradation term in the ODEs (e.g. dilution only). This assumption is
biologically reasonable in many cases, and more generally is a useful first approximation for
the non-uniform case. If non-uniform degradation is required to be modelled, then we can use
equivalent approximations to those used for simplifying regulation in SI 2.

3.1 Uniform Degradation Model

The uniform degradation assumption in the mechanistic model is

Dilution/Degradation

XT
βt→ ∅, XT2

βt2→ ∅, gTXT2
βtg→ gT

Uniform Rates
βT := βt = βt2 = βtg

Biologically, this is a lumped mechanistic model, as the term is composed of both dilution and
degradation. The dilution terms are uniform for all conditions. Uniform degradation can be
represented by

Degradation

XT
βt,d→ ∅, XT2

2βt2,d→ XT, gTXT2
2βtg,d→ gT + XT

Uniform Rates
βT := βt,d = βt2,d = βtg,d
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The doubled kinetic rate assumes that the protease has two sites to bind on the dimer XT2 or
gTXT2. Equations of either form lead to the same reduced, deterministic equations, and so we
lump the degradation and dilution biochemical equations.

Assuming uniform degradation of proteins, we can simplify the differential equation for
proteins to

ẋT
T = ktl

TmT
T − βTxT

T

where βT is a constant, rather than a function of xT
T .

Similar to proteins, mRNA degradation can be treated as uniform as a first approxima-
tion, where the degradation rate is the same with or without a bound ribosome. Using the
approximation of uniform mRNA degradation simplifies the degradation rate of mRNA to a
constant γT = γt = γtR, which is otherwise dependent on the often time-varying ribosome
concentration.

Mathematically, uniform degradation is similar to and thus named after uniform damping
approximations used in power systems and oscillator networks [2].

3.2 Non-Uniform Degradation Model

If non-uniform degradation is required to be modelled, then we can use the approximation of
ηTm found in an identical fashion to ηLm and RT (see SI 2), where we have

βT(xT
T) = βt + (βt2 − βt)ηTm + (βtg − βt2)

2gT
T(1− RT0(ηTmxT

T))

xT
T

(55)

We can also use interpolation of the degradation rate directly, where for a zeroth order
Padé approximation with interpolation at C2T = 1/2gT

T , we have

βT = βt + (βt2 − βt)

2
BTg

+ gT
T

1√
BTgBT2

+ 2
BTg

+ gT
T
+ (βtg − βt2)

gT
T

1√
BTgBT2

+ 2
BTg

+ gT
T

(56)

We can similarly use interpolation to find higher order approximations (see SI 2).

4 Model Reduction of Activator

We next find the reduced model for an activator, in a similar manner to the repressor. For the
case of activation, the transcription reactions in the full mechanistic model need to be replaced
by the following biochemical equation:

Transcription (activator)

gLXL2 + P
α1−⇀↽−

α−1
gLXL2P α2→ gLXL2 + P + mT

Degradation (Activation)

gTXT2P
βtg→ gT + P

Operator Binding

gL + XL2
α8−⇀↽−

α−8
gLXL2, gLXL2P

α−8→ gL + XL2 + P
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where for simplicity we assume uniform transcription factor-operator dissociation and degra-
dation, with or without bound polymerase, noting that this assumption is generalisable.

We use equivalent derivation and nondimensionalisation as for the repressor, only show-
ing the nondimensionalisation for the altered equations.

We set the summed variables for the transcription factor

xT
T = xT

T + 2XT2 + 2C2T + 2C1T

zT
T = 2XT2 + 2C2T + 2C1T

yT
T = C2T + C1T

(57)

Thus the slow variables are

ṁT
T = α2C1L − γtmT

T − (γtR − γt)C3T

ẋT
T = w5C3T − βtxT

T − (βt2 − βt)zT
T − 2(βtg − βt2)yT

T
(58)

and the quasi-steady state approximations together with the conserved quantities are

gL + C1L + C2L = gT
L

C1L + C2L = yT
L

α6X2
L = (α−6 + βL2)XL2

α8gLXL2 = (α−8 + βLg)yT
L

α1PC2L = (α−1 + α2 + βLg)C1L

w4RmT
T = (w4R + w−4 + w5 + γtR)C3T

Solving, we have the reduced differential-algebraic equations

ṁT
T = gT

L Vtx
T FL − γTmT

T

ẋT
T = ktl

TmT
T − βTxT

T

FL =
yT

L
gT

L

βT = βt − (βt2 − βt)
zT(yT

T)

xT
T
− (βtg − βt2)

2yT
T

xT
T

xT
L = θL1(yT

L) :=

√
yT

L√
BL2BLg(gT

L − yT
L)

+
2yT

L
BLg(gT

L − yT
L)

+ 2yT
L

xT
T = θT1(yT

T) :=

√
yT

T√
BT2BTg(gT

T − yT
T)

+
2yT

T
BTg(gT

T − yT
T)

+ 2yT
T

(59)
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where zT(yT
T) =

2yT
T

BTg(gT
T−yT

T)
+ 2yT

T is a function of yT and where

ktl
T =

w5w4R
w−4 + w5 + w4R + γtR

Vtx
T =

α2α1P
α−1 + α1P + α2 + βLg

BLg =
α8

α−8 + βlg
, BL2 =

α6

α−6 + βl2

BTg =
w8

w−8 + βtg
, BT2 =

w6

w−6 + βt2

γT = γt +
(γtR − γt)w4R

(w4R + w−4 + w5)

(60)

such that Vtx
T is the transcription rate per non-repressed promoter, BL2, BT2 are the effective

dimerisation association constants, and BLg, BTg are the effective dimer-operator association
constants. We can further simplify the parameters BL2, BT2 and BLg, BTg by removing βlg and
βl2 if required, as per the case of the repressor (SI 1).

The model can be further simplified in an identical fashion to the repressor case in order to
derive an ODE (SI 2 and 3).

Assumptions

To determine the conditions under which the reduced model holds, we again need to apply
singular perturbation theory. We rewrite the differential equations which are altered from the
repressor case

ġT = −w8gTXT2 + w−8C2T + w−8C1T + βgtC2T + βtgC1T

Ċ1T = w1PC2T − w−8C1T − (w−1 + w2 + βtg)C1T

Ċ2T = w8gTXT2 − w−8C2T − w1PC2T + (w−1 + w2 + βtg)C1T

(61)

For the activator, we have the transformed differential equations

Ċ1T = w1PyT
T − (w1P + w−1 + w2 + βtg)C1T

ẏT
T = w8

(
1
2

zT
T − yT

T

)(
gT

T − yT
T

)
− (w−8 + βtg)yT

T
(62)

which can be rewritten

ẏT
T =

1
2

w8gT
TzT

T −
(

1
2

w8(zT
T − yT

T) + w8gT
T + w−8 + βtg

)
yT

T (63)

We have the nondimensionalisation

YT
Tn = θ−1

L1 (Xn
L)

C1Tn =
w1P

w1P + w−1 + w2 + βtg
Y2Tn

(64)

which results in

εw2
˙̄C1T =ȳT

T − C̄1T

εw4 ˙̄yT =A8T z̄T
T −

(
A9T z̄T

T −
1
2

A10T ȳT
T + 1− A9T + A10T

)
ȳT

(65)

22



where
βC1T = w1Pn + w−1 + w2 + βtg

βyT =
1
2

w8(ZT
Tn −YT

Tn) + w8(gT
T −YT

Tn) + w−8 + βtg

= w8XT2n + w8gTn + w−8 + βtg

εw2 =
β

βC1T
, εw4 =

β

βyT

A8T = 1 +
w8YT

Tn
βyT

, A9T =
w8
2 ZT

Tn
βyT

, A10T =
w8YT

Tn
βyT

(66)

where gTn = gT
T −YT

Tn and XT2n = 1
2 (ZT

Tn −YT
Tn).

Using a similar singular perturbation form for the activator, we have the conditions

βTn, γTn �(w4Rn + w−4 + w5 + γtR), (w1Pn + w−1 + w2 + βtg),
(w8XT2n + w8gTn + w−8 + βtg), (4w6XTn + w−6 + βt2)

(67)

as well as
βtgηTo � 4w6XTn + w−6 + βt2 (68)

and similarly to the repressor case, we need (22). We also need to assume that if R and P are
time-varying, then they are slowly time varying, as per (24).

For the case of the activator we do not need βC2T � βC1T, as the dynamics of C1T have
no effect on the dynamics of C2T. Biologically, this is due to the lack of competition between
polymerase and transcription factor for DNA binding sites.

5 Model Reduction - Protein Only

In this section, we determine the reduced model and assumptions for the case that only protein
is modelled. We can remove the need to model mRNA if protein degradation/dilution is much
smaller than mRNA degradation. For this case, the reduced biochemical equations are

gT
L

kL(xT
L )−→ gT

L + xT
T , xT

L
βT→ ∅ (69)

where kL are the expression rates per gene, which is kL(xT
L ) =

ktl
L

βL
Vtx

L FL.

We can determine conditions for this model to hold be setting β = βTn and εw7 = βTn
γTn

in
(15), which leads to the alternative mRNA equation

εw7ṁT
T = Vtx

T (gT
L − C2L)− γTmT

T

We can therefore replace (20) with the assumptions

βTn �γTn, (w4Rn + w−4 + w5 + γtR), (w1Pn + w−1 + w2),
(w8XT2n + w8gTn + w−8 + βtg), (4w6XTn + w−6 + βt2)

(70)

as well as
βtgηTo � 4w6XTn + w−6 + βt2 (71)

and βC2T � βC1T together with

βTn �
βC2T βZT − w8gTn(w−6 + βt2)

βC2T + βZT
(72)
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6 Model Reduction - Basal Expression

In this section, we find the reduced model for gene regulation when basal expression is in-
cluded. For basal expression, we introduce the extra biochemical equations

Basal Transcription (Repression)

gLXL2 + P
α1r−⇀↽−

α−1r
gLPXL2

α2r→ gLXL2 + P + mT

gLPXL2
βgPL→ ∅

This biochemical reaction is a lumped reaction representing the different effects such that XL2
bound to gL is only partially effective in repression.

For this case, we represent the modified transcription rate in (6) as

ktx
T = Vtx

T,rep + (Vtx
T −Vtx

T,rep)FL

where
Vtx

T,rep =
α2rα1rP

α−1r + α1rP + α2r

The assumptions for the singular perturbation can be found in an equivalent manner to SI 1,
while TF degradation rate in the reduced models can be found in a similar manner to that
described in SI 3.

7 Model Reduction - Inducers

In this section, we include a prototypical mechanistic model of the effect of inducers on the
transcription factors. We use a relatively simple biochemical model of inducer binding to
illustrate the methodology, noting that more complicated biochemical models can also be used
if required. We include the extra biochemical reactions

Inducer

XL + I
kI1−⇀↽−

k−I1

XL I

XL2 + 2I
kI2−⇀↽−

k−I2

XL22I

gLXL2 + 2I kI2→ XL22I + gL

Degradation

XL I
βl→ I

XL22I
βl2→ 2I

in Equation (1) in the paper. We have the total protein concentration

xT
L = XL + CI + 2XL2 + 2CI2 + 2C2L (73)

24



where CI = [XL I] and C2I = [XL22I]. The quasi-steady state approximations are

BL2X2
L = XL2

XL2 =
C2L

BLg(gT
L − C2L)

CI = BI IXL

CI2 = BI2 I2(XL2 + C2L)

(74)

where
BLg =

α8

α−8 + βlg + k I2 I2 (1− A1L)

BI =
k I

k−I + βl
, BI2 =

k I2

k−I2 + βl2

(75)

See SI 1 for further information on A1L and BL2. Thus

xT
L =(1 + BI I)XL + 2(1 + BI2 I2)XL2 + 2(1 + BI2 I2)C2L

=
(1 + BI I)√

BL2BLg

√
C2L√

(gT
L − C2L)

+
2(1 + BI2 I2)C2L

BLg(gT
L − C2L)

+ 2(1 + BI2 I2)C2L
(76)

We assume that the free inducer concentration is a constant. However, the non-constant in-
ducer case can be treated using Padé approximations as per the methodology in SI 2.

Now (76) has the same form as the non-inducer case, but with altered parameters. Thus
we have

FL =


√

W2 + 1
BLggT

L
−W εL ≤ 1

1
1+ 1

(1+BI I)2
BL2BLghLxT

L
2 εL > 1

W =
ηLmxT

L
4(1 + BI2 I2)gT

L
+

1
2BLggT

L
− 1

2

εL =
(1 + BI I)

√
BLg

2(1 + BI2 I2)(1 + BLggT
L )
√

BL2

(77)

For the multimer dominant case, we have

ηL0 = 1

ηL1 =
xT

L

xT
L + (1+BI I)√

BL2BLg

√
FL0
(
xT

L
)−1 − 1

(78)

For the monomer dominant case, we have

hL0 = 1

hL1 =
xT

L

xT
L + 4(1 + BI2 I2)

(
1

BLg
(F−1

L0 − 1) + gT
L (1− FL0(xT

L ))
) (79)

The degradation term for the model can be determined using a similar methodology to SI
3. The assumptions for the singular perturbation can be found in an equivalent manner to SI
1.
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8 Model Reduction - Unbound Dimer Only

In this section, we find a simplified version of the regulation term for the multimer dominant
case. We start with the proposed model’s multimer dominant regulation term

FL =

√√√√(ηLmxT
L

4gT
L

+
1

2BLggT
L
− 1

2

)2

+
1

BLggT
L
−
(

ηLmxT
L

4gT
L

+
1

2BLggT
L
− 1

2

)
(80)

and assume that gT
L � 1

BLg
, for which the system is predominantly unbound dimer for all

concentrations of xT
L , ignoring monomer by using the previous assumptions. Using 1

BLggT
L
� 1,

then (
ηLmxT

L
4gT

L
+

1
2BLggT

L
− 1

2

)2

� 1
BLggT

L
(81)

and so we have

FL =

∣∣∣∣∣
(

ηLmxT
L

4gT
L

+
1

2BLggT
L
− 1

2

)∣∣∣∣∣

√√√√√√1 +

1
BLggT

L(
ηLmxT

L
4gT

L
+ 1

2BLggT
L
− 1

2

)2 − 1


=

∣∣∣∣∣ηLmxT
L

4gT
L

+
1

2BLggT
L
− 1

2

∣∣∣∣∣
 1

BLggT
L

2
(

ηLmxT
L

4gT
L

+ 1
2BLggT

L
− 1

2

)2


=

1

1 + BηLm
2 xT

L

(82)

9 Model Reduction - Multiple Operators

In this section, we determine reduced models of gene regulation when additional operators are
included. The effect of additional operators can be important for the multimer dominant case
of regulation, while for the monomer dominant case, the effect of adding additional operators
is typically smaller. To incorporate the additional operators in the reduced models, we can
once again split the model into multiple cases and use perturbation theory. For the multimer
dominant case, we initially analyse the three special cases of extra operators with much higher,
equal and much weaker affinity, when compared to the primary operator. We then use Padé
approximations to describe regulation functions for cases in between the three asymptotic
cases. Here we use perturbation theory to determine Padé approximations, although we can
alternatively use interpolation. The extra operator has no affect on the monomer dominant
case for the initial approximation, but is included in higher order approximations through the
multimerisation efficiency.

For the case of a second operator, we have the added biochemical equation

OL + XL2
α9−⇀↽−

α−9
XL2OL (83)

along with relevant degradation term. Setting C4L = [XL2OL], we have the modified total
protein equation

xT
L = XL + 2XL2 + 2C2L + 2C4L
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along with the quasi-steady state
C4L = BLoOLXL2 (84)

where BLo = α9
α−9

. Now we have the conserved quantity C4L + OL = OT
L and so C4L =

OT
L

BLoXL2
1+BLoXL2

. Thus we have

xT
L =

√
C2L√

BL2BLg(gT
L − C2L)

+
2C2L

BLg(gT
L − C2L)

+ 2C2L + 2OT
L

BLoC2L

BLg(gT
L − C2L) + BLoC2L

(85)

The perturbation problem for the dimer dominant regulation is

A1C̄2L + AO
C̄2L

1− C̄2L +
BLo
BLg

C̄2L
+ (1− A1 − AO)

C̄2L

1− C̄2L
+ εL

√
C̄2L

1− C̄2L
= A2

A1 =
BLggT

L

1 + BLggT
L + BLoOT

L

AO =
BLoOT

L
1 + BLggT

L + BLoOT
L

A2 =
BLgxT

L

2(1 + BLggT
L + BLoOT

L )

εL =

√
BLg

2(1 + BLggT
L + BLoOT

L )
√

BL2

(86)

From this we can see that a system with extra operators is more likely to be multimer domi-
nant. The assumptions for the singular perturbation can be found in an equivalent manner to
SI 1, noting that the coupling condition equivalent to (17) requires three variables to be taken
into account, rather than two.

9.1 Multimer Dominant Case

For the multimer dominant case, we analyse the three special cases of BLo � BLg, BLo ≈ BLg
and BLo � BLg. We then use Padé approximations to represent the cases in-between these
asymptotic cases, so that the reduced models can be determine for all values of BLo.

We have the total dimer concentration

zT
L =

2C2L

BLg(gT
L − C2L)

+ 2C2L + 2OT
L

BLoC2L

BLg(gT
L − C2L) + BLoC2L

In the following, we treat the multimerisation efficiency and the effect of added operators
as two separate perturbation problems. This minor informality is sufficient for the zeroth and
first order approximations determined here, but more care is required for higher order terms
or determining error bounds if εL and the small parameters in this section are of the same
order of magnitude.
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Figure S8: Comparison of DAE models with (85) and without (6) secondary operators as well
as the perturbation model (87), for the case of a weak secondary operator-binding site. Param-
eters are gT

L = 10, OT
L = 100, BLg = 0.0667, BL2 = 10, BLo = 0.005.

9.1.1 Low Affinity Extra Operator

If BLo � BLg then we use the form

FL = FL0(xT
L ) =

√
W2

L +
A

BLggT
L
−WL

WL =
ηLmxT

L
4gT

L
+

A
2BLggT

L
− 1

2

A = 1 + BLoOT
L

1
1 + εLo(F−1

L − 1)

εLo =
BLo

BLg

(87)

For the first order approximation, we have

A = A0 = 1 + BLoOT
L (88)

Adding more weak operators effectively weakens the binding affinity
(

BLg
A

)
of the primary

operator. An example of this is due to non-specific binding.
For a higher order approximation, using a Padé approximation, we have

A = A1 = 1 + BLogT
L

1
1 + BLo

BLg
(F−1

L0 − 1)
(89)
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9.1.2 Equal Affinity Extra Operator

For an equal affinity extra operator, we have

FL =

√
W2

L +
1

BgL AgT
L
−WL

WL =
ηLmxT

L
4AgT

L
+

1
2BgL AgT

L
− 1

2

A = 1 +
BLoOT

L
BLggT

L

1
1 + εLo(1− FL)

εLo =
BLo − BLg

BLg

(90)

For a zeroth order approximation, we can use

A0 = 1 +
BLoOT

L
BLggT

L
, FL0 = FL|A=A0 (91)

Thus adding more equal affinity operators effectively increases the gene copy number in
the regulation term (AgT

L ).
For a first order approximation, we can use

A = A1 = 1 +
BLoOT

L
BLggT

L

1

1 + BLo−BLg
BLg

(1− FL0)
, FL1 = FL|A=A1 (92)

9.1.3 High Affinity Extra Operator

If BLo � BLg then we have

FL =

√
W2

L +
1

BLggT
L
−WL

WL =
ηLmxT

L − A
4gT

L
+

1
2BLggT

L
− 1

2

A = 2OT
L

1

1 + εLz

(
FL

1−FL

)
εLz =

BLg

BLo

(93)

There is a boundary layer near C2L = 0, and we have the zeroth order outer solution

A = A0,out = 2OT
L (94)

It can be noted that a higher affinity extra operator effectively removes transcription factor.
For a rough solution, we can use the estimate

= A0,out =

{
2OT

L if xT
L ≥ 2OT

L

xT
L otherwise

(95)
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Figure S9: Comparison of DAE models with (85) and without (6) secondary operators as well
as the perturbation model (90), for the case of an approximately equal secondary operator-
binding site. Parameters are gT

L = 10, OT
L = 50, BLg = 0.0667, BL2 = 10, BLo = 0.05.
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Figure S10: Comparison of DAE models with (85) and without (6) secondary operators as
well as the perturbation model (93), for the case of a strong secondary operator-binding site.
Parameters are gT

L = 10, OT
L = 10, BLg = 0.0667, BL2 = 10, BLo = 0.5.
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Figure S11: Simulation of full and reduced mechanistic models for a genetic toggle switch with
additional TF binding sites for one TF. The TF concentration for one half of the toggle switch is
shown. A close match between the full and reduced models can be seen. The parameters used
match those in Figure 4 in the main section (see Materials and Methods). The kinetic rates not
discussed in Materials and Methods are P = 100, R = 100, a4 = 0.03, a−4 = 0.8, a5 = 2, a6 =
0.5125, a−6 = 1, a8 = 1.845, a−8 = 1, a9 = 5.125, a−9 = 1, a1 = 0.03, a−1 = 1, a2 = 2. w4 =
0.02, w−4 = 0.8, w5 = 2, w6 = 0.5125, w−6 = 1, w8 = 0.82, w−8 = 1, w1 = 0.03, w−1 = 1, w2 = 2.

by noting that saturation of A with increasing xT
L occurs when C2L � gT

L and so any error is
relatively small.

For a more accurate estimate across a range of parameters, it is simpler to use the low affin-
ity case to determine the dimer bound to second operator, using (87) with BLo, OT

L swapped
with BLg, gT

L to obtain FO. From this, we obtain

A = A0 = 2OT
L (1− FO0)

A = A1 = 2OT
L (1− FO1)

(96)

9.2 Monomer Dominant Case

For the monomer dominant case, the regulation term is not affected by the extra operators for
the zeroth order approximation. However, for higher order approximations there is an effect.
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Using an equivalent methodology to the single operator case, we have

hL0 = (1− ηLm0)
2 = 1

hL1 = (1− ηLm1)
2 =

xT
L

xT
L + 4gT

L (1− FL0) +
4

BLg
(F−1

L0 − 1) + 4OT
L

BLo gT
L (1−FL0)

BLggT
L FL0+BLo gT

L (1−FL0)

(97)

10 Regulation Efficiency

In this section, we discuss regulation efficiency, an important concept in gene regulation. We
define the regulation efficiency to be the fraction of transcription factor, in monomer units,
which is bound to an operator. The efficiency of regulation ηLg for the transcription factor is
defined here as

ηLg :=
2gLXL2

xT
L

(98)

noting the 2 is required as there are two monomer units in a dimer, and also noting that regu-
latory (ηLg) and multimerisation (ηLm) efficiency are distinct. The efficiency of regulation ηLg
for the dimer can be estimated by

ηLg =
2gT

L (1− FL)

xT
L

(99)

where FL is given in Equation 3 in the paper.
For the case of multiple operators, the efficiency is defined by

ηLg :=
2gLXL2 + 2XL2OL

xT
L

(100)

and the efficiency can be estimated by

ηLg =
2gT

L (1− FL)

xT
L

+
2OT

L (1− FO)

xT
L

(101)

where FL and FO are the regulation functions for the respective promoters, found using Equa-
tion 3 in the main section, with relevant corrections as described in SI 9.
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