SUPPLEMENTARY TABLE

Emergence of collective changes in travel direction of starling flocks from individual birds' fluctuations

Alessandro Attanasi^{1,2}, Andrea Cavagna^{1,2,3}, Lorenzo Del Castello^{1,2}, Irene Giardina^{1,2,3‡}, Asja Jelic^{1,2‡},*

Stefania Melillo^{1,2}, Leonardo Parisi^{1,2,4}, Oliver Pohl^{1,2},[†] Edward Shen^{1,2}, and Massimiliano Viale^{1,2} ¹ Istituto Sistemi Complessi, Consiglio Nazionale delle Ricerche, UOS Sapienza, 00185 Rome, Italy

² Dipartimento di Fisica, Università Sapienza, 00185 Rome, Italy

³ Initiative for the Theoretical Sciences, The Graduate Center,

City University of New York, 10016 New York, USA

⁴ Dipartimento di Informatica, Università Sapienza, 00198 Rome, Italy and

[‡] e-mail: asja.jelic@qmail.com, irene.qiardina@roma1.infn.it

Event	Event	N	Φ	$\mathbf{I}_1\cdot\mathbf{G}$	$\mathbf{I}_3\cdot\mathbf{G}$	$\mathbf{V}_1\cdot\mathbf{G}$	$\mathbf{I}_3\cdot\mathbf{V}_1$	$\mathbf{I}_3\cdot\mathbf{V}_2$	$\mathbf{I}_3 \cdot \frac{\mathbf{d}_0}{\ \mathbf{d}_0\ }$	$\mathbf{V}_1 \cdot \frac{\mathbf{d}_0}{\ \mathbf{d}_0\ }$	$\mathbf{V}_2 \cdot \frac{\mathbf{d}_0}{\ \mathbf{d}_0\ }$
NUMBER	LABEL			at t_1	at t_1	at t_1	at t_1	at t_2	at t_1	at t_1	
E1	20110208_ACQ3	176	0.806	0.95	0.15	0.47	0.14	0.93	0.97	0.08	-0.91
E2	20111124_ACQ1	125	0.959	0.97	0.15	0.01	0.65	0.99	0.97	0.81	-0.78
E3	20111125_ACQ1	50	0.866	0.86	0.42	0.26	0.41	0.88	0.91	0.05	-0.82
E4	20111214_ACQ4_F1	154	0.940	0.69	0.72	0.03	0.12	0.63	0.97	0.10	-0.83
E5	20111215_ACQ1	384	0.801	0.97	0.16	0.13	0.24	0.92	0.98	0.05	-0.94
E6	20111125_ACQ2	502	0.841	0.98	0.16	0.35	0.38	0.89	1.00	0.43	0.74
E7	20110217_ACQ2	404	0.854	0.91	0.32	0.39	0.34	0.96	0.78	0.83	-0.89
$\mathbf{E8}$	20111220_ACQ2	197	0.907	0.98	0.03	0.94	0.30	0.90	0.56	0.20	-0.53
E9	20111201_ACQ3_F1	133	0.793	0.76	0.46	0.04	0.21	0.99	0.89	0.21	0.78
E10	20110211_ACQ1	595	0.757	0.94	0.10	0.34	0.03	0.36	0.91	0.37	-0.96
E11	20111214_ACQ4_F2_T1	139	0.890	0.35	0.87	0.67	0.92	0.56	0.84	0.74	0.08
E12	20111214_ACQ4_F2_T2	139	0.808	0.66	0.74	0.11	0.58	0.79	0.89	0.15	0.39

TABLE S1. Global quantitative properties of the turning events. We analyzed twelve turning events, of which two (E11 and E12) are performed by the same flock one after the other (therefore marked T1 and T2 in the event label). N is the number of birds in the flock. The polarization is defined as $\Phi = \|(1/N)\sum_i \mathbf{v}_i/\|\mathbf{v}_i\|\|$. In the remaining columns we report absolute values of the scalar products between yaw I_1 (the axis relative to the shortest dimension of the flock), the longest elongation axis I_3 , and gravity G, with the direction of motion before and after the turn given by velocity vectors V_1 and V_2 at times t_1 and t_2 , respectively. The scalar products are calculated using the values of appropriate quantities at times t_1 of the start of the turn, or t_2 at the end of the turn, as indicated. Note that the vectors I_1 , I_3 , and G are unitary by definition, while for the direction of motion we used normalized velocity vectors $\mathbf{n}_1 \equiv \mathbf{n}(t_1) = \mathbf{V}(t_1)/\|\mathbf{V}(t_1)\|$ and $\mathbf{n}(t_2) = \mathbf{V}(t_2)/\|\mathbf{V}(t_2)\|$, which are for clarity called V_1 and V_2 in the column titles. Finally, in order to quantify the location of the origin of the turn, we use a mean relative position of the 10 top-ranked birds with respect to the barycenter of the flock, \mathbf{d}_0 , as defined in the main text. We calculate absolute scalar products of the normalized vector $\mathbf{d}_0/\|\mathbf{d}_0\|$ with the unitary vector \mathbf{I}_3 of the longest elongation axes at t_1 , as well as with the direction of motion at the start of the turn \mathbf{n}_1 . In the last column, we report the scalar product between $\mathbf{d}_0/\|\mathbf{d}_0\|$ and the new direction of motion after the turn, given by the unitary velocity vector $\mathbf{n}(t_2) = \mathbf{V}(t_2)/\|\mathbf{V}(t_2)\|$ (called V_2 for simplicity). Note that absolute values of all scalar products are reported, except for the last one whose negative values signify that the top-ranked birds initiated the turn in the direction towards the flock's barycenter (towards inside of the flock and not outside).

^{*} Present address: The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34014 Trieste, Italy.

[†] Present address: Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, D-10623 Berlin-Charlottenburg, Germany.