Appendices
A.1 Dynamic Modeling

We begin our dynamic model with the planar motion of a three degree of freedom
brain that is uncoupled from the skull. As seen in the kinematics section, the
motion of brain’s center of mass is constrained to a single degree of freedom
according to the PCA analysis. In the small angle regime, this is indicative
of a rolling motion between the brain and skull. Using the kinematic analysis,
we determine a center of rotation for the brain, which is defined as the point
in the brain that translates minimally in the skull frame. The translational
motion of the center of rotation is not completely eliminated, however, there
still exists a linear relationship between brain’s relative angle and the relative
translation. This relationship is represented as a kinematic constraint that
reduces the constrained three degree of freedom to a single independent degree
of freedom. We chose to use the brain’s relative angle as the independent degree
of freedom because of the importance of brain rotation in diffuse axonal injury
[30, 12].

Below, we furnish the equations of motion that were used in the constrained
dynamic model.

Table 3: Glossary of model parameters
| Variables | Description |

| T | Kinetic energy |

Nz, Ny, Nz | Unit vectors in the reference frame

Sz, Sy, S: | Unit vectors in the skull frame

bz, by, bz Unit vectors in the brain frame

Ts, Zs Translation of the skull reference

0s Rotation of the skull reference

Tp, 2p Relative translation of the brain center of rotation

0y Relative rotation of the brain

dg,d Position of the brain center of rotation w.r.t. the
brain center of mass

k,c Spring stiffness and damping respectively of the
torsional spring

m Mass of the brain

1 Moment of inertia of the brain about the brain

center of mass




Figure 8: Rigid body diagram of the brain-skull system detailing the parameters
and variables. The skull and brain are rigid bodies coupled with a torsional
spring. The translation of the torsional spring with respect to the skull is
coupled to the relative rotation between the skull and brain.

In Table 3, the skull motion variables x;, 25,05 are given as system inputs
while the system outputs are the resulting brain motion variables xy, 2y, 6,. We
start by writing the Lagrange equations of motion as follows:
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where T is the kinetic energy and consists of a rotational and a translational
component, ¢ is an arbitrary variable, and the right hand side give the fores
that are exerted on the system. Brain’s kinetic energy can be written as:
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and the generalized forces as:
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where F, and F, are the reaction forces applied to the brain at the center of
rotation from the skull, and k£ and ¢ are stiffness and damping parameters re-
spectively for the torsional spring. Using the Lagrange formulation in Equation
1, the kinetic energy of the brain defined in Equation 1 and the generalized
forces acting on the brain in Equation 2, we derive the equations of motion for
each generalized coordinate:

e Generalized coordinate: xy:
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e Generalized coordinate: zp:
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e Generalized coordinate: 6y:
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To reduce the 3 generalized coordinates to a single independent degree of
freedom, we impose two kinematic constraints:
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It should be noted that the fitted values for the distance between brain’s center

of mass and center of rotation, fitted to the MRI measurement of brain motion,
were determined as dz = 0.011, —0.005, 0.006m and dz = —0.038, —0.045, —0.041m
for the three subjects, respectively.

A.2 Frequency Modeling

We begin our frequency analysis by reducing our constrained dynamic model
to a Single-Input Single-Output (SISO) model, which parametrizes the relative
rotation of the brain with respect to the skull. The translational degrees of free-
dom of the skull and the brain are decoupled from the relative brain rotation.
The justification of the SISO model is based on the strong dependence of the
brain rotation on the skull’s rotational acceleration. The transmissibility func-
tion is defined as the ratio of the output, i.e. the relative brain rotation 6, to the
input, i.e., skull’s rotational acceleration 6, in the frequency domain. The iner-
tial parameter (C) is fixed based on the results from the dynamical model. The
stiffness and damping parameters are optimized in the frequency domain by us-
ing a least-squares approach based on the mismatch between the empirical (i.e.,
from MRI data) and analytical (i.e., Equation 10) transmissibility amplitudes.
All 3 subjects were considered simultaneously for the least-squares optimization
and parameter fits. The confidence bound of the frequency domain fit, which
turned out to be insignificant when compared with the uncertainty due to the
time length of experimental measurements is computed by using the confidence
intervals of stiffness and damping parameters.

We linearized and simplified Equation 7, with the following assuming d, >
dy,Ts > Zs. Furthermore, similar PCA analysis results as discussed in the
previous sections hold between the skull accelerations for different DOF's, such
that )

0s = Cig (A.9)

where C' has an average value of 4.1m~! for MRI experiments and -5.8m ™! for
PMHS experiments. The reason for the negative sign in the PMHS experiment
is the fact that the cadaver head was held upside down in those experiments.



Using Equations 5 and 6, and linearizing Equation 7 we obtain

ICoRéb + Céb + kO, = (C’mdz — ICOR)os (A.lO)

where Ic,r is the equivalent inertia around the CoR, zy is the relative rotation
of the brain wrt skull and 6, is the rotational skull acceleration.
The resulting transmissibility function is derived as:
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where w,, is the resonance frequency, ¢ is the damping ratio, and w is the
frequency of the input to the system (skull motion).

(A.11)

A.3 Model Verification with PMHS Measurements

In this section, we verify the IDOF dynamic model both in frequency and time
domains with brain displacement data derived from x-ray measurements during
PMHS head impacts [17]. This step is crucial to examine the applicability of
our model to loadings that are more representative of typical head impacts on
the field. We used the neutral density target (NDT) displacement data from a
test performed in the sagittal plane (protocol C755-T2). In this experiment, the
maximum achieved linear and rotational accelerations were 20g and 2000rad/s?.

First, we compared the frequency response in the PMHS study with the pre-
dictions from our 1DOF model. A similar procedure to MRI data analysis was
repeated for the PMHS data, where we fitted a 3DOF rigid-body motion to the
NDT displacement data [49], and then analyzed the kinematics of the derived
rigid-body motion, which showed a different center of rotation and translation
path from the MRI data (Figure 5A). Subsequently, we used skull’s accelera-
tion and brain’s rigid-body rotation as input and output to the transmissibility
function (Supplementary Equation 11) and observed that the PMHS data show
similar resonating behavior as previously seen in the MRI data (Figure 5B).The
predictions from the 1DOF dynamic model with parameters derived from time
and frequency domains, as described in the previous section, showed good agree-
ment with the PMHS experimental results.

We also verified the performance of the 1IDOF dynamic model in the time
domain. Using, the IDOF dynamic model developed in the previous section and
PMHS skull kinematics, we simulated PMHS brain’s motion. Similar to error
analysis in the previous sections, a histogram of distance errors (for all NDT
displacement values and throughout the temporal measurements) between x-ray
measurements and model predictions is shown in Figure 9A.

Finally, as an additional step in verifying model accuracy, we compared the
1DOF dynamic model’s predictions against a finite element simulation. We
used the Simulated Injury Monitor (SIMon), a detailed finite element (FE)
brain model developed by the U.S. National Highway Traffic and Safety Ad-
ministration, that includes detailed geometry and anatomy of brain and skull
with more than 30,000 elements [39]. This model has been validated against



brain displacement measurements from the same PMHS experimental protocol
in various planes of impact. Interestingly, the 1DOF dynamic model gave simi-
lar distance error levels as SIMon for all NDTs for throughout the experimental
measurement (Figure 9B). As reference, a representative NDT displacement in
IS and PA directions is shown for both 1IDOF dynamic model and SIMon (Figure
9C-D).
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Figure 9: Model consistency verification with cadaver impact experiments: (A)
histogram of distance error between the rigid-body model and all the cadaver
NDT and comparison of error with SIMon, (B) histogram of distance erros from
NDT measurements for the IDOF dynamic model and SIMon, (C-D) compari-
son of IS and PA translations predicted with the 3DOF dynamical model versus
the cadaver experimental results and SIMon prediction.



