MetaSV: An accurate integrative structural-variant caller for next
generation sequencing

SUPPLEMENTARY INFORMATION

Marghoob Mohiyuddin*, John C. Mu} Jian Li,
Narges Bani Asadi, Mark B. Gerstein, Alexej Abyzov,
Wing H. Wong, and Hugo Y.K. Lam'

1 Insertion Detection Enhancement

Given the poor performance of existing tools in detecting insertions, we augmented MetaSV with an option
to enhance insertion detection using soft-clips in read alignments. Large soft-clips in reads are considered
evidence of long insertions. In fact, they can also be evidence of other SVs, e.g., duplications, inversions
or translocations, but we focus on insertions in this work. Further validation is done by performing local
assembly around the potential insertion locations followed by dynamic programming to resolve the insertion
location precisely. Figure [1] shows the workflow of the our insertion detection method. The steps involved
are discussed in more detail below:

1. Process the read alignments looking for large soft-clips in reads mapped with good quality. The location
of the soft-clip is considered a candidate insertion location. In addition, the soft-clipped bases must be
of high quality to reduce false hits due to sequencing errors. At the end of this step, each candidate
read generates an interval for assembly centered at the soft-clip location.

2. Overlapping intervals in Step 1 are merged which drastically reduces the number of intervals to process—
the number of intervals in Step 1 used to generate a merged interval is considered the support count
of the merged interval. To further reduce false hits and computational cost, merged intervals with low
support count are discarded.

3. Local assembly is perfomed on the insertion intervals from Step 2. This is done by extracting read
pairs with at least one end mapped in and around the intervals of interest. Note that assembly will
generate potentially multiple contigs for the same intervals. In case of a heterozygous insertion, it is
possible that assembly may fail if the reads supporting the insertion allele are few in comparison to the
reference allele, especially for large insertions. Therefore, assembly is performed twice with different
sets of reads for the insertion interval: once with all the reads extracted from the interval and a second
time with only the imperfectly mapped reads in order to improve the sensitivity towards heterozygous
insertions.

4. Dynamic programming (Abyzov and Gerstein, [2011)) is used to precisely determine the insertion loca-
tions by aligning the assembled contigs from Step 3 against the reference. A contig is considered good
if it aligns with a large insertion close to the predicted insertion locations from Step 1 (Figure [2al).
Note that if no good contig can be found for an insertion interval, then the interval is considered a
false positive and discarded. In order to decrease false positives, it is also required for the assembled
contigs of an insertion interval to be consistent with each other, i.e., they must indicate almost the

*The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.
TTo whom correspondence should be addressed.

Read alignments

l BAM

Soft-clips to generate insertion intervals

|

Merge overlapping intervals

Filter insertion intervals with low read sup-
port l

Assembly on the insertion intervals

Dynamic programming to detect true in-
sertion assemblies

l VCF

Assembled insertions

Figure 1: High-level view of insertion detection.

Assembled contig
'\W_/'

Insertion sequence

Reference

(a) An assembly supporting a small insertion. The assembled contig must align against the reference
around the insertion location with an insertion.
Assembled contig 1 Assembled contig 2

Reference

(b) A pair of assemblies supporting a large insertion. The assembled contigs must align on different sides
of the insertion location. In addition, they must have a significant portion unaligned in order of avoid
assemblies which are exactly the reference.

Figure 2: Different kinds of assemblies for short and long insertions.

same insertion location. For long insertions, it is difficult to assemble the whole insertion sequence.
For these cases, pairs of contig alignments are considered (Figure 7if there are long fragments from
two different assembled contigs which align close to a potential insertion location and the fragments
align on opposite sides of the location, then there is evidence of a long insertion from local assembly. In
summary, an insertion is called at a location if the assembled contigs either align against the reference
with a long insertion or pairs of contigs can be found which align with long fragments on different sides
of the location.

We note that Steps 3 and 4 are done together for both insertions and other SV types.

2 Simulation Results

We use the VarSim framework (Mu et al, [2014) to simulate the NGS reads for comparing the various SV
detection tools. Simulated 2x100bp paired-end NGS reads were generated at 50x coverage with the ART
simulator using the read base error profiles from the Illumina Platinum Genomes NA12878 sample. Insert
size mean and standard deviation were 350bp and 50bp respectively. The ground truth was constructed as

follows:

e Small variants (SNPs and small indels) were obtained from the Genome in a Bottle Consortium high-
confidence calls for NA12878 (Zook et al.l |2014).

e Deletion SVs were obtained from the 1000Genomes project data (Abecasis et al., 2010; Mills et al.,
2011)).

e Insertion SVs were generated by randomly sampling the locations from DGV (MacDonald et al., 2014)
and the sequences from the concatenation of the Venter insertion sequences (Levy et al., [2007)).

e Other SVs were randomly sampled from DGV.

The simulated FASTQs were aligned using BWA-MEM (Li, [2013)) (version 0.7.12-r1039) and then pro-
cessed by the various SV-calling tools, including MetaSV. For MetaSV local assembly SPAdes (Bankevich
et all 2012) version 3.5.0 was used. The dynamic programming step in MetaSV for assembled contigs was
performed using a modified AGE (Abyzov and Gersteinl 2011) at https://github.com/marghoob/AGE/
tree/simple-parseable-output-AGE was modified to make the output easier to parse for MetaSV.

We compare MetaSV against the state of the art in SV detection. The following tools were included
in the comparison: BreakDancer (Chen et all 2009), BreakSeq2 (Abyzov et al., 2015), Pindel (Ye et al.|
2009), CNVnator (Abyzov et al), 2011), LUMPY (Layer et al. [2014), DELLY (Rausch et al.l [2012) and
MindTheGap (Rizk et all [2014). Table [I| provides a summary of the tools and the versions used—default
settings were used when running the individual tools. In this work, the outputs of BreakDancer, BreakSeq2,
CNVnator and Pindel were provided as inputs to MetaSV to generate accurate SV calls. Insertion detection
enhancement was also turned on for the accuracy comparison. Tables [2] [B] [] and [f] show the accuracies for
the individual tools. We can clearly see that MetaSV achieves significantly higher accuracy in comparison
to other tools for deletions, insertions and tandem duplications. For inversions, however, the accuracy is
lower since the consensus accuracy is limited by BreakDancer. Future work will leverage the soft-clip based
approach in Section 1 to improve the accuracy of inversion detection.

2.1 Impact of Coverage

In addition to the primary results on 50x coverage simulated data, simulation was also performed on 10x and
30x coverages to investigate the impact on SV detection accuracy as coverage is varied. Furthermore, 250bp
paired-end simulated reads at 50x coverage was also done to study the impact of increased read-length on
SV detection accuracy. Figures[3|and [4|show how the accuracy (F1-score) of deletion and insertion detection
varies for each tool as coverage is varied from 10x to 50x. As expected, most of the tools, including MetaSV,
improve in accuracy as coverage increases due to increased read support for SV detection. We also note that
MetaSV still has the best performance across all coverages for both insertions and deletions-it also achieves
the most stable performance when coverage is varied. For insertions, MetaSV’s improvement over other tools
is more significant.

2.2 Impact of Read Length

Figures [f] and [6] show the accuracies for 250bp paired-end simulation at 50x coverage-MetaSV achieves
Fl-scores of 96.8% and 80.9% for deletion and insertion detection respectively. We also note that MetaSV
performance improvement over other tools in this case is better than the 100bp simulation at 50x coverage.
Since the coverage was kept constant, the number of reads decreased by a factor of 2.5x which means reduced
sensitivity for other SV-calling tools. MetaSV, however, is able to maintain accuracy since it integrates across
four SV-caling signals which means increased tolerance to coverage and read-length variations.

2.3 Speed of MetaSV

Figure [7] shows how the time taken for MetaSV varies as coverage is varied as a stacked bar chart with the
time taken to run the four individual SV-calling tools as well as the time to run MetaSV with assembly. For
this performance data, benchmarking was performed on an Intel Xeon X5675 dual-hexcore machine with

https://github.com/marghoob/AGE/tree/simple-parseable-output
https://github.com/marghoob/AGE/tree/simple-parseable-output

Tool Version Command-line options Breakppmt
resolution
1.4.5 (commit -s 7 -¢c 3 -m 1000000000 -q 35 -r 2 -x 1000
BreakDancer 251f9£(;3) -b 100 -y 30 > 1bp
--min_span 10 --window 100 --min_overlap 10
BreakSeq2 2.0 —-junct?on_length 200 i 1bp
Bin size of 100bp was used
Tree generation: -unique
Histogram generation: -his 100 100bp
CNVnator 0-3.1 Stat generation: -stat 100 (bin size)
Partition: -partition 100
Calling: -call 100
DELLY 0.6.1 -q0-s9 -m 13 -u 20 > 1bp
-mw 4 -tt 0.0
-pe mean:350,stdev:50,read_length:100,
LUMPY 0.2.9 min_non_overlap:100,discordant_z:4,back_distance:20, > 1bp
weight:1,id:1,min_mapping_threshold:20
-sr back_distance:20,weight:1,id:2,min_mapping_threshold:20
MindTheGap | 0.6447 -k 27 -t 3 -mrep 5 -i 10000 -n 100 -m O -r O -bfs -h 1 1bp
-R 1T -H8 -T 4 -x 4 -w 5000000 -e 0.0 -E 0.95
Pindel 0.2.5a8 -u0.02-n2-r1-t1-11-a1-m3-v50 1bp
-d 30 -B0O-AO0O-M3-q0-I0
--filter_gaps --keep_standard_contigs --wiggle 100
--inswiggle 100 --minsvlen 50 --overlap_ratio 0.5
MetaSV 0.2-alpha ——bc.Josi.:_ins ——min_ins_support? . 1bp
--min_ins_support_frac O --max_ins_intervals 50000
--num_threads 15

Table 1: Tools run, versions used and their breakpoint resolution.

Note that CNVnator SV-calling in-

volves multiple invocations of the executable. For the tools mentioned, the command-line options stated
are generally the default options for that version of the tool. Interchromosomal SV detection was dis-
able to reduce run time. BreakSeq2 was run with the latest breakpoint library available from http:
//sv.gersteinlab.org/phaselbkpts/. LUMPY and DELLY parameters were tuned for best performance.
Breakpoint resolution varies across the tools. Since DELLY and LUMPY use a combination of SV signals,
their breakpoint resolution can vary depending on the signals used for detecting an SV. The human reference
genome build 37 with the decoy contig was used for alignment as well all SV-calling. As much as possible,
only the major contigs chrl, chr2, ..., chr22, chrX, chrY and chrMT were processed for minimum processing
time.

http://sv.gersteinlab.org/phase1bkpts/
http://sv.gersteinlab.org/phase1bkpts/

=== BreakDancer === CNVnator = | UMPY = MetaSV
=== BreakSeq2 === Pindel m== DELLY

100%- B

|

90% -

80% R

70%| R

60% - B

F1 score

50% R

40% - R

30%[R

20% R

10%

10x 30x 50x
Datasets

Figure 3: Deletion detection accuracy for different coverages.

=== BreakDancer === CNVnator = | UMPY = MetaSV
=== BreakSeq2 === Pindel m== DELLY

100%- q

90% - R

80% R

70%| R

60% - R

50% | i

F1 score

40% | §

30% | R

20% R

10%}- R

10x 30x 50x
Datasets

Figure 4: Insertion detection accuracy for different coverages. Note that Pindel achieves best accuracy at
30x coverage which appears anomalous—this is due to the improved FDR at 30x coverage over 50X coverage.

=== BreakDancer CNVnator = L UMPY = MetaSV
= BreakSeq?2 == Pindel = DELLY

100% —
80% —
60% — -

40%- =

20% —

0% -

T
N oD P 02 oD a? o 0 P
S A9 A7 A 6‘9 3\9 e 1’\9,1’56 6\}, Qq}cpgo O

W 00"
A0 297 20600, 0 0 (o0 o0
Dc
'L?"L

Figure 5: Deletion detection accuracy for 250bp paired-end simulation at 50x coverage.

=== BreakDancer CNVnator = LUMPY = MetaSV

=== BreakSeq?2 === Pindel === DELLY
100% —

80% —

F1 Score

60% —

40% —

20% — —

0% - ,

’1° T T T

K

WS \9‘3 399 19‘5 c;aq ’\99639 192 65 \} 2 900000000\, A
307 207 07l 60 00 uo“,ﬁ,cs AP

A
,15366 ,Lo ,LD‘QQQ@, A0
o

Figure 6: Insertion detection accuracy for 250bp paired-end simulation at 50x coverage. Note that Pindel
has a significantly low precision due to a large number false large insertions.

Tool Reported | True positives | False positives | Sensitivity | Precision | Fl-score
MetaSV 1192 1178 14 93.7 98.8 96.2
Pindel 1353 1161 92 92.4 92.7 92.5
BreakSeq2 1102 1078 24 85.8 97.8 91.4
LUMPY 1196 1063 133 84.6 88.9 86.7
BreakDancer 1250 914 336 72.7 73.1 72.9
DELLY 1248 552 696 43.9 44.2 44.1
CNVnator 839 384 455 30.5 45.8 36.6
MindTheGap NA NA NA NA NA NA

Table 2: Deletion detection accuracy for different tools. Total number of true deletions was 1257. Rows are
sorted in order of decreasing F1-scores. DELLY’s Fl-score is low due to low SV resolution of the calls made.
With 50% reciprocal overlap, DELLY was able to get 77.8% sensitivity, 78.5% precision and 78.1% F1-score.

Tool Reported | True positives | False positives | Sensitivity | Precision | Fl-score
MetaSV 1454 1223 231 85.3 84.1 84.7
Pindel 5437 1087 4350 75.6 20.0 31.6
MindTheGap 427 63 364 4.4 14.8 8.1
BreakDancer 334 12 322 0.8 3.6 1.4
BreakSeq2 0 0 0 0 0 0
CNVnator NA NA NA NA NA NA
LUMPY NA NA NA NA NA NA
DELLY NA NA NA NA NA NA

Table 3: Insertion detection accuracy for different tools. Total number of true insertions was 1433. Rows
are sorted in order of decreasing F1-scores.

12 physical cores in total and 96 GB of DRAM. All the SV-calling tools were run on a per-chromosome
basis—for maximum throughput, 15 processes were run at a time. Note that the limit of 15 processes was
imposed due to the DRAM memory constraints. This means that the peak memory utilization was close to
96 GB. As expected, the total time increased with increase in coverage. However, the speed scaling was less
than linear with coverage. We attribute this to the evidence for calling SVs scales less than linearly with
increased coverage once coverage is high enough.

3 Results on Other Genomes

In order to do further validation of MetaSV, we also considered looking into other genomes, particularly
the mouse dataset in the SMASH work (Talwalkar et al. [2014]) but the quality of the dataset limits SV
detection for small SV. The mean insert size was 174bp and the standard deviation was 134bp after aligning
with BWA-MEM which would limit small SV detection given the large standard deviation. Since the small
SVs dominate, the Fl-scores for all the tools would be poor. In addition, we also encountered problems in
running the tools on the mouse genome reference, e.g., Pindel incurred a segmentation fault. Although our
approach is not limited to only human genomes, most of the popular SV detection tools have been tested
mostly on the human genome. This means the effectiveness of our approach is best demonstrated on the
human genome. Due to lack of good support for other genomes, we omit non-human genomes from our
comparisons.

Tool Reported | True positives | False positives | Sensitivity | Precision | Fl-score
LUMPY 60 59 1 70.2 98.3 81.9
Pindel 86 69 17 82.1 80.2 81.2
MetaSV 49 46 3 54.8 93.9 69.2
BreakDancer 71 45 26 53.6 63.3 58.1
DELLY 459 83 376 98.8 18.1 30.6
BreakSeq2 NA NA NA NA NA NA
CNVnator NA NA NA NA NA NA
MindTheGap NA NA NA NA NA NA

Table 4: Inversion detection accuracy for different tools. Total number of true inversions was 84. Rows are
sorted in order of decreasing F1-scores.

Tool Reported | True positives | False positives | Sensitivity | Precision | Fl-score
MetaSV 42 38 4 84.4 90.5 87.3
Pindel 110 43 67 95.6 39.1 55.5
LUMPY 173 34 139 75.6 19.7 31.2
DELLY 402 40 362 88.9 10.0 17.9
CNVnator 416 36 380 80.0 8.7 15.6
BreakDancer NA NA NA NA NA NA
BreakSeq2 NA NA NA NA NA NA
MindTheGap NA NA NA NA NA NA

Table 5: Tandem duplication detection accuracy for different tools. Total number of true tandem duplications
was 45. Rows are sorted in order of decreasing F1-scores.

Runtime vs. Coverage

25

20

W MetasSy
B S\V-tools

Runtime (h)

30 50

Coverage

Figure 7: MetaSV and SV-calling time on a single node as coverage is varied. Note that SV tools were
run on a per-chromosome basis and at a time, a maximum of 15 processes were run to maximize SV-caller
throughput. For comparison, MindTheGap, which uses assembly to detect insertions, took 48 hours to run
on the same node for 50x coverage. In contrast, MetaSV assembly took around 11 hours for 50x coverage.

References

Abecasis, G.R. et al (2010). A map of human genome variation from population-scale sequencing. Nature, 467(7319), 1061-1073.

Abyzov, A. and Gerstein, M. (2011). AGE: defining breakpoints of genomic structural variants at single-nucleotide resolution, through
optimal alignments with gap excision. Bioinformatics, 27(5), 595-603.

Abyzov, A., Urban, A.E., Snyder, M. and Gerstein, M. (2011). CNVnator: an approach to discover, genotype, and characterize typical
and atypical CNVs from family and population genome sequencing. Genome research, 21(6), 974-984.

Abyzov, A. et al (2015). Analysis of deletion breakpoints from 1,092 humans reveals details of mutation mechanisms. Nature Commu-
nications. In press.

Bankevich, A. et al (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of
Computational Biology, 19(5), 455-477.

Chen, K. et al (2009). BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nature methods, 6(9),
677-681.

Layer, R.M., Chiang, C., Quinlan, A.R. and Hall, I.M. (2014). LUMPY: a probabilistic framework for structural variant discovery.
Genome Biol, 15(6), R84.

Levy, S. et al (2007). The diploid genome sequence of an individual human. PLoS Biol., 5(10), e254.
Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with bwa-mem.

MacDonald, J.R., Ziman, R., Yuen, R.K.C., Feuk, L. and Scherer, S.W. (2014). The Database of Genomic Variants: a curated collection
of structural variation in the human genome. Nucleic Acids Research, 42(D1), D986-D992.

Mills, R.E. et al (2011). Mapping copy number variation by population-scale genome sequencing. Nature, 470(7332), 59-65.

Mu, J.C. et al (2014). VarSim: A high-fidelity simulation and validation framework for high-throughput genome sequencing with cancer
applications. Bioinformatics.

Rausch, T. et al (2012). DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics, 28(18),
i333-1339.

Rizk, G., Gouin, A., Chikhi, R. and Lemaitre, C. (2014). MindTheGap : integrated detection and assembly of short and long insertions.
Bioinformatics, pages 1-7.

Talwalkar, A. et al (2014). SMASH: a benchmarking toolkit for human genome variant calling. Bioinformatics, 30(19), 2787-2795.

Ye, K., Schulz, M.H., Long, Q., Apweiler, R. and Ning, Z. (2009). Pindel: a pattern growth approach to detect break points of large
deletions and medium sized insertions from paired-end short reads. Bioinformatics, 25(21), 2865-2871.

Zook, J.M. et al (2014). Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat
Biotechnol, 32(3), 246-251.

	Insertion Detection Enhancement
	Simulation Results
	Impact of Coverage
	Impact of Read Length
	Speed of MetaSV

	Results on Other Genomes

