Supplementary Data

Supplementary Materials and Methods

Reagents for cell culture

All growth factors and neutralizing antibodies—recombinant human transforming growth factor (TGF)- β 3, recombinant human bone morphogenetic protein (BMP)-4, monoclonal mouse TGF- β 1/2/3 antibody (anti-TGF- β), monoclonal mouse BMP-4 antibody (anti-BMP-4), and recombinant human TGF- β 1—were purchased from R&D Systems (Minneapolis, MN). In addition, the following biochemical supplements were used in cell culture: fetal bovine serum (Gibco, Invitrogen, Carlsbad, CA); penicillin (100 U/mL)– streptomycin (100 µg/mL) (Gibco); dexamethasone (G Biosciences, Maryland Heights, MO); L-ascorbic acid 2phosphate (Sigma-Aldrich, St. Louis, MO); insulin, transferrin, and selenium (BioWhittaker, Lonza, Walkersville, MD); and β -glycerophosphate (Sigma-Aldrich).

Synthesis of poly(lactide-co-glycolide) microspheres

Poly(lactide-co-glycolide) (PLG) microspheres were prepared using a double emulsion technique as described previously¹ to encapsulate TGF- β 3 (0.4 ng per mg of microspheres), BMP-4 (0.5 ng per mg of microspheres), insulin (1 µg per mg of microspheres)-transferrin (1 µg per mg of microspheres)-selenium (1 ng per mg of microspheres), BMP-4 (0.5 ng per mg of microspheres), β -glycerophosphate (0.2 mg per mg of microspheres), anti-TGF- β (12 ng per mg of microspheres), or anti-BMP-4 (6 ng per mg of microspheres). Briefly, 100 µL of aqueous microsphere contents (i.e., the proteins and/or small molecules to be encapsulated within PLG microspheres) was pipetted into 1 mL of 5% PLG (8515DLG7E) (Lakeshore Biomaterials, Birmingham, AL) in ethyl acetate (Sigma-Aldrich), and the mixture was sonicated at an amplitude of 40 (VCX 130; Sonics, Newtown, CT) for 15 s. Then, 1 mL of 1% polyvinyl acetate (PVA; Sigma-Aldrich) in 7% ethyl acetate was added, and the mixture was vortexed at maximum speed for 15 s. The mixture was then transferred into a bath of 0.3%PVA in 7% ethyl acetate and stirred continuously at 500 rpm under a chemical hood for 3h to promote precipitation of the microspheres by solvent evaporation. The microspheres were then filtered through a 0.2-µm-diameter filter (Nalgene, Rochester, NY), collected by centrifugation at 2200 rpm for 10 min (Eppendorf, Hauppauge, NY), lyophilized for 72 h (Labconco, Kansas City, MO), and stored at −20°C.

Synthesis of rhodamine-conjugated silica nanoparticles

A solution of 1% rhodamine isothiocyanate (RITC; Sigma-Aldrich), prepared by dissolving 10 mg RITC, was dissolved in 1 mL of ethanol with 44 μ L of (3-aminopropyl) trimethoxysilane (Sigma-Aldrich), and a solution 5% tetra-ethyl orthosilicate (TEOS; Sigma-Aldrich) was prepared by mixing 0.5 mL TEOS with 7.4 mL of anhydrous ethanol, 1 mL of molecular-grade water, and 0.1 mL of ammonium hydroxide (NH₄OH; Sigma-Aldrich). To conjugate rhoda-

mine to the silica, $100 \,\mu\text{L}$ of the RITC solution was added into the TEOS solution, and the mixture was rapidly stirred for 24 h. The fluorescent nanoparticles were then collected by centrifugation at 10,000 rpm for 5 min (Eppendorf, Hauppauge, NY) and resuspended in 2 mL of moleculargrade H₂O.

SUPPLEMENTARY FIG. S1. Growth factor release and degradation kinetics. (A) Cumulative release curve of transforming growth factor (TGF)- β 1 from single-layer scaffolds. Scaffolds containing TGF-B1 were incubated in phosphate-buffered saline (PBS) under culture conditions; PBS was collected and replaced after 1, 3, 5, 7, and 10 days; and growth factor concentration in collected PBS was measured by enzyme-linked immunosorbent assay (ELISA) (n=4). The TGF- β 1 release profile was fitted to a thirdorder time-dependent polynomial to acquire the protein release function used in mathematical modeling. (B) Degradation/uptake profiles of TGF- β 1 (*upper*) and bone morphogenetic protein (BMP)-4 (lower) in the presence of mesenchymal stem cells (MSCs). MSCs were cultured in media containing growth factors, and growth factor concentrations were measured in media by ELISA (n=2). Degradation profiles were fitted to exponential decay equations to acquire the half-life of each species.

SUPPLEMENTARY FIG. S2. Specificity of luciferase reporter cells to TGF- β 1 and BMP-4. Single-layer poly(lactideco-glycolide) scaffolds uniformly seeded with PAI-Luc or BRE-Luc cells were cultured in complete Dulbecco's Modified Essential Media (DMEM) supplemented with no growth factors (*left*), 10 ng/mL TGF- β 1 (*center*), or 30 ng/mL BMP-4 (*right*). Luciferase activity was recorded after 24 h. (A) Representative images taken with the Xenogen IVIS-200 system. (B) Quantification of photon flux density (*n*=3). *Asterisks* indicate statistical significance at *p* < 0.05.

Three-dimensional printing

Customized scaffold molds were designed in SolidWorks (Dassault Systems, Waltham, MA) using a digital model of an adult human femoral condyle that had been reconstructed from computed tomography imaging (3D ContentCentral; Dassault Systems). Molds were fabricated at the 1:8 anatomical scale in VeroBlue polyjet resin using a Connex500 3D printer (Objet, Billerica, MA).

Equation 1. Function for protein release from PLG scaffold

$$C = C_{tot}[(5.748 \times 10^{-19})t^3 - (1.503 \times 10^{-12})t^2 + (1.633 \times 10^{-6})t + 0.0299)]$$

Calculated from a third-order polynomial fit for TGF- β 1 release from a single-layer PLG scaffold, with $R^2 = 0.9891$.

C denotes the cumulative protein released from the scaffold layer in units of g/mL, C_{tot} represents the total concentration of protein in the scaffold layer after salt leaching in units of g/mL, and *t* represents the time after cell seeding in units of s.

Supplementary References

- Cohen, S., Yoshioka, T., Lucarelli, M., Hwang, L.H., and Langer, R. Controlled delivery systems for proteins based on poly(lactic/ glycolic acid) microspheres. *Pharm Res* 8, 713, 1991.
- Young, M.E., Carroad, P.A., and Bell, R.L. Estimation of diffusion coefficients of proteins. *Biotechnol Bioeng* 22, 947. 1980.
- 3. Morell, A., Terry, W.D., and Waldman, T.A. Metabolic properties of IgG subclasses in man. *J Clin Invest* **49**, 673, 1970.
- Yuen, W.W., Du, N.R., Chan, C.H., Silva, E.A., and Mooney, D.J. Mimicking nature by codelivery of stimulant and inhibitor to create temporally stable and spatially restricted angiogenic zones. *Proc Natl Acad Sci U S A* **107**, 17933, 2010.

SUPPLEMENTARY FIG. S3. Dose responsiveness of luciferase reporter cells to TGF- β 1 and BMP-4. Single-layer scaffolds containing increasing quantities of encapsulated TGF- β 1 (**A**) or BMP-4 (**B**) were uniformly seeded with PAI-Luc or BRE-Luc cells. Luciferase activity was recorded after 24 h. Representative images taken with the Xenogen IVIS-200 system (*left*) and quantification of photon flux density (*right*) are shown (*n*=4). *Asterisks* indicate statistical significance at p < 0.05.

SUPPLEMENTARY FIG. S4. Five-layer scaffold with neutralizing antibodies in the middle layer (second-generation design). (A) Schematic of scaffold dimensions and contents after optimization by mathematical modeling (*left*); photographs of five-layer scaffolds, in which selected layers have been labeled with orcein (*middle*); and orientation of scaffolds for mathematical modeling and luciferase imaging (*right*). (B) Slice plots illustrating concentration profiles of TGF- β 3 (*upper row*) and BMP-4 (*lower row*) over 7 days, as simulated in COMSOL Multiphysics. Values reported in g/mL. (C) Representative images (*left*) and quantification (*right*) of photon flux density through scaffold zones at 24 h after seeding with PAI-Luc or BRE-Luc cells (*n*=3 for each reporter line). *Asterisks* indicate statistical significance at *p*<0.05.

Target	Manufacturer	Dilution factor	Molecular weight (kDa)
SRY box 9 (Sox9)	Abcam (Cambridge, MA)	1:500	65
Runt-related transcription factor 2 (Runx2)	Invitrogen (Carlsbad, CA)	1:500	57
Aggrecan (AGG)	Abcam (Cambridge, MA)	1:100	50
Type II collagen (Col-II)	Abcam (Cambridge, MA)	1:500	100
Bone sialoprotein II (BSP-II)	Cell Signaling (Danvers, MA)	1:1000	82
Osteopontin (OPN)	Developmental Studies Hybridoma Bank (Iowa City, IA)	1:500	60
Type X collagen (Col-X)	Abcam (Cambridge, MA)	1:500	66
β-Actin	Cell Signaling (Danvers, MA)	1:10,000	45

Supplementary Table S1. Antibodies Used in Western Blotting

SUPPLEMENTARY TABLE S2. PARAMETERS USED IN MATHEMATICAL MODELING

Parameter	Value	Source
TGF- β 3 molecular weight TGF- β 3 diffusion coefficient in H ₂ O	25.4 kDa $1.2810 \times 10^{-6} \text{ cm}^2/\text{s}$	R&D Systems (Minneapolis, MN) Young–Carroad–Bell method ²
TGF-β3 diffusion coefficient in PLG scaffold	$1.1529 \times 10^{-6} \text{ cm}^2/\text{s}$	90% of H_2O diffusivity
BMP-4 molecular weight	26 kDa	R&D Systems (Minneapolis, MN)
BMP-4 diffusion coefficient in H_2O	$1.2647 \times 10^{-6} \text{ cm}^{2}/\text{s}$	Young–Carroad–Bell method ²
BMP-4 diffusion coefficient in PLG scatfold	$1.1382 \times 10^{-6} \text{ cm}^{-7}\text{s}$	90% of H_2O diffusivity
Anti-TGE- β diffusion coefficient in H.O	140 KDa 7 1154 × 10 ⁻⁷ cm ² /s	Young_Carroad_Bell method ²
Anti-TGF-B diffusion coefficient in PLG scaffold	$64039 \times 10^{-7} \text{ cm}^2/\text{s}$	90% of H ₂ O diffusivity
Molecular weight of anti-BMP-4	146 kDa	Typical mass of IgG
Anti-BMP-4 diffusion coefficient in H ₂ O	$7.1154 \times 10^{-7} \text{ cm}^2/\text{s}$	Young–Carroad–Bell method ²
Anti-BMP-4 diffusion coefficient in PLG scaffold	$6.4039 \times 10^{-7} \text{ cm}^2/\text{s}$	90% of H_2O diffusivity
Molecular weight of TGF- β 3-antibody complex	171.4 kDa	Molecular weight of TGF- β 3 + IgG
TGF- β 3-antibody complex diffusion coefficient in H ₂ O	$6.7502 \times 10^{-7} \text{ cm}^2/\text{s}$	Young–Carroad–Bell method ²
TGF-β3-antibody complex diffusion	$6.0752 \times 10^{-7} \text{ cm}^2/\text{s}$	90% of H ₂ O diffusivity
coefficient in PLG scaffold		
Molecular weight of BMP-4-antibody complex BMP-4-antibody complex diffusion	172 kDa 6.7371 × 10 ⁻⁷ cm ² /s	Molecular weight of BMP-4+IgG Young–Carroad–Bell method ²
BMP-4-antibody complex diffusion	$6.0634 \times 10^{-7} \text{ cm}^2/\text{s}$	90% of H ₂ O diffusivity
TGF-β half-life	26831.5 s (7.45 h)	Exponential curve fit of ELISA data
TGF- β first-order degradation rate	$2.583 \times 10^{-5} \text{ s}^{-1}$	$\frac{\ln(2)}{\ln(1+1)}$
BMP-4 half-life	28037.4 s (7.79 h)	Exponential curve fit of ELISA data
BMP-4 first-order degradation rate	$2.472 \times 10^{-5} \text{ s}^{-1}$	ln(2) half life
Anti-TGF-β half-life	18,14,400 s (21 days)	Morell <i>et al.</i> ³
Anti-TGF- β first-order degradation rate	$3.82026 \times 10^{-7} \text{ s}^{-1}$	$\frac{ln(2)}{half life}$
Anti-BMP-4 half-life	18,14,400 s (21 days)	Morell <i>et al.</i> ³
Anti-BMP-4 first-order degradation rate	$3.82026 \times 10^{-7} \text{ s}^{-1}$	$\frac{ln(2)}{half life}$
TGF-β-antibody complex half-life	18,14,400 s (21 days)	Assumed to be same as free antibody
TGF-β-antibody complex first-order degradation rate	$3.82026 \times 10^{-7} \text{ s}^{-1}$	$\frac{ln(2)}{half\ life}$
BMP-4-antibody complex half-life	18,14,400 s (21 days)	Assumed to be same as free antibody
BMP-4-antibody complex first-order degradation rate	$3.82026 \times 10^{-7} \text{ s}^{-1}$	ln(2) half life
K_D for anti-TGF- β	7.5×10^{-7} g/mL	R&D Systems (Minneapolis, MN)
k _{on,TGF}	$1467 \mathrm{cm}^3$ /g·s	Calculated from k_{off} and K_D
k _{on,abTGF}	$8365 \text{ cm}^{3}/\text{g}\cdot\text{s}$	Calculated from k_{off} and K_D
<i>k_{on,TGF}</i> complex	$9831 \text{ cm}^3/\text{g}\cdot\text{s}$	Calculated from k_{off} and K_D
k _{off,TGF}	1.641×10^{-4} s ⁻¹	Stoichiometric equivalent to $k_{off, TGF complex}$
K _{off,ab} TGF	$9.539 \times 10^{-4} \text{ s}^{-1}$	Storemometric equivalent to $\kappa_{off, TGF complex}$
K_{D} for anti-BMP-4	2×10^{-6} g/mL	R&D Systems (Minneapolis, MN)
k _{on RMP}	$550 \mathrm{cm^3/g \cdot s}$	Calculated from k_{off} and K_D
k _{on,abBMP}	$3088 \mathrm{cm}^3/\mathrm{g}\cdot\mathrm{s}$	Calculated from k_{off}^{m} and K_D
k _{on,BMPcomplex}	$3639 \mathrm{cm}^3/\mathrm{g}\cdot\mathrm{s}$	Calculated from k_{off} and K_D
k _{off,BMP}	$1.663 \times 10^{-4} \text{ s}^{-1}$	Stoichiometric equivalent to
k _{off,abBMP}	$9.337 \times 10^{-4} \text{ s}^{-1}$	<i>k_{off}</i> , <i>BMPcomplex</i> Stoichiometric equivalent to
k _{off,BMPcomplex}	$11 \times 10^{-4} \text{ s}^{-1}$	Yuen et $al.^4$

TGF, transforming growth factor; BMP, bone morphogenetic protein; PLG, poly(lactide-co-glycolide); ELISA, enzyme-linked immunosorbent assay.