Selectivity is species-dependent: characterization of standard agonists and antagonists at human, rat and mouse adenosine receptors

Mohamad Wessam Alnouri, Stephan Jepards, Alessandro Casari, Anke Schiedel, Sonja Hinz and Christa E. Müller

PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany

corresponding author:

Christa Müller, christa.mueller@uni-bonn.de, phone +49 228 732301; fax +49 228 732567

alessandro.casari@studenti.unipd.it, stephan.jepards@uni-bonn.de, wessam.alnouri@unibonn.de, schiedel@uni-bonn.de, shinz@uni-bonn.de

	Gene accession number	Protein accession number
mA ₁	NM_001008533	NP_001008533.1
rA ₁	NM_017155.2	NP_058851.2
hA ₁	NM_000674	NP_000665.1
mA _{2A}	NM_009630	NP_033760.2
rA _{2A}	NM_053294.3	NP_445746.3
hA _{2A}	NM_001278497	NP_001265426.1
mA _{2B}	NM_007413	NP_031439.2
rA _{2B}	NM_017161.1	NP_058857.1
hA _{2B}	NM_000676.2	NP_000667.1
mA ₃	NM_009631.3	NP_033761.2
rA ₃	NM_012896	NP_037028.2
hA ₃	NM_000677.3	NP_000668.1

Table 1 The gene and protein accession numbers of the adenosine receptors in human, rat and mouse.

Table 2 Primer sequences and restriction enzymes used for amplifying the cDNAs of murine

adenosine receptors

Primer	Sequence 5'-3'	Gene bank reference
f-mA ₁ -EcoRI	GAGACGGAATTCATGCCGCCGTACATCTCGGC	NM_001008533
r-mA ₁ -BamHI	CCTACTAGGATCCCTAGTCATCAGCTTTCTCCTCT G	
f-mA _{2A} -MfeI	GAGACGCAATTGGATGGGCTCCTCGGTGTACATC	NM_009630
r-mA _{2A} -XhoI	CTTACTACTCGAGTCAGGAAGGGGGCAAACTCTGA AG	
f-mA _{2B} -EcoRI	GAGACGGAATTCATGCAGCTAGAGACGCAAGAC G	NM_007413
r-mA _{2B} - BamHI	CTTACTAGGATCCTCATAAGCCCAGACTGAGAGT AG	
f-mA ₃ -NotI	GTGACAGCGGCCGCATGGAAGCCGACAACACCA C	NM_009631.3
r-mA ₃ -EcoRI	CTTACTAGAATTCTTACTCAGTAGTCTGTTCCATG	
f-rA ₁ -NotI	GTGACAGCGGCCGCATGCCGCCCTACATCTCGGC	NM_017155.2
r-rA ₁ -EcoRI	CTTACTAGAATTCCTAGTCCTCAGCTTTCTCCTC	
f-rA _{2A} -NotI	GTGACAGCGGCCGCATGGGCTCCTCGGTGTACAT C	NM_053294.3
r-rA _{2A} -AgeI	CTTACTAACCGGTTCAGGAAGGGGGCAAACTCTGA AG	
f-rA _{2B} -EcoRI	GAGACGGAATTCATGCAGCTAGAGACGCAGGAC	NM_017161.1
r-rA _{2B} -BamHI	CTTACTAGGATCCTCACAAGCTCAGACTGAAAGT TG	

f-rA ₃ -EcoRI	GAGACGGAATTCATGAAAGCCAACAATACCACG AC	NM_012896
r-rA ₃ -XhoI	CTTGCAGTCTCGAGCTACTCAGTAGTCTGTTCAA GG	

Table 3 Primer sequences used for amplifying the cDNAs of rat adenosine receptors A_{2B} and A_3 from genomic DNA

Primer	Sequence 5'-3'
f-rA _{2B}	ATGCAGCTAGAGACGCAGGA
r-rA _{2B} -Exon1	CTGAGCGGGACGCGAATG
f-rA _{2B} -Exon2	GTATAAAGGTTTGGTCACTGGAA
r-A _{2B}	TCACAAGCTCAGACTGAAAGTTG
f-rA ₃	ATGAAAGCCAACAATACCACGAC
r-rA ₃ -Exon1	ACTGTCAGCTTGACTCGCAGGTAT
f-rA ₃ -Exon2	CAGATATAGAACGGTTACCACTCAAAG
r-rA ₃	CTACTCAGTAGTCTGTTCAAGGTTTG
r-rA ₃ -Overlap-Ex1	TGGTAACCGTTCTATATCTGACTGTCAGCTTGACTCG CAG
f-rA ₃ -Overlap-Ex2	CTGCGAGTCAAGCTGACAGTCAGATATAGAACGGTT ACC

Fig. S1 Scatchard transformation of saturation binding assays at ARs stably expressed in recombinant CHO cells; (**A**) mA₁AR using [3 H]CCPA; (**B**) mA₁AR using [3 H]DPCPX; (**C**) mA_{2A}AR using [3 H]CGS-21680; (**D**) mA_{2A}AR using [3 H]MSX-2. Data are means of three independent saturation assays each performed in duplicates.

Fig S2 Scatchard transformation of saturation binding assays at ARs stably expressed in recombinant CHO cells; (**A**) $rA_{2B}AR$ using [³H]PSB-603; (**B**) $mA_{2B}AR$ using [³H]PSB-603; (**C**) rA_3AR using [³H]NECA; (**D**) mA_3AR using [³H]NECA. Data are means of three independent saturation assays each performed in duplicates.

mA_1	MPPYISAFQAAYIGIEVLIALVSVPGNVLVIWAVKVNQALRDATFCFIVSLAVADVAVGA	60
rA_1	MPPYISAFQAAYIGIEVLIALVSVPGNVLVIWAVKVNQALRDATFCFIVSLAVADVAVGA	60
hA_1	MPPSISAFQAAYIGIEVLIALVSVPGNVLVIWAVKVNQALRDATFCFIVSLAVADVAVGA	60
	*** ***********************************	
mΔ.	I.VIDIATI.TNIGOOTYFHTCI.MVACDVI.TI.TOSSTIAI.AIAVDRYI.RVKIDI.RVKYV.	120
rΔ.		120
hA		120
IIA ₁	**************************************	120
mA_1	QRR <u>AAVAIAGCWILSLVVGLTPMFGW</u> NNLSEVEQAWIANGSVGEPVIKCEFEKVISM <u>EYM</u>	180
rA_1	QRR <u>AAVAIAGCWILSLVVGLTPMFGW</u> NNLSVVEQDWRANGSVGEPVIKCEFEKVISM <u>EYM</u>	180
hA_1	PRRAAVAIAGCWILSFVVGLTPMFGWNNLSAVERAWAANGSMGEPVIKCEFEKVISM <u>EYM</u>	180

mA_1	VYFNFFVWVLPPLLLMVLIYLEVFYLIRKQLNKKVSASSGDPQKYYGKELKIAKSLALIL	240
rA ₁	VYFNFFVWVLPPLLLMVLIYLEVFYLIRKQLNKKVSASSGDPQKYYGKELKIAKSLALIL	240
hA_1	VYFNFFVWVLPPLLLMVLIYLEVFYLIRKOLNKKVSASSGDPOKYYGKELKIAKSLALIL	240
±	***************************************	
mΔ.	FI.FAI.GWI.DI.HII.NCITI.FCDTCOKDGII.IVIAIFI.THCNGAMNDIVYAFRIHKFRVTFI.	300
rA.		300
hA.	FI FALSWI DI HILNGITI FODSCHKOSII TVI ALFI THONSAND IVVA FOLOK FOVTFI	300
1141	***************************************	500
111A1	KINNDERCOPERTEDIPEEKADD 320	
rA ₁	KIWNDHEKCUPKPPIDEDLPEEKAED 320	
nA1	KIMNDHLKCÖDADDIDEDFAEKEDD 350 KIMNDHLKCÖDADDIDEDFAEKEDD 350	
	·	

Fig. S3 The alignment of the A_1 adenosine receptor in mouse, rat and human. The transmembrane domains (TMs) are underlined in red. The different amino acids are in blue.

mA_{2A} r A_{2A} h A_{2A}	MGSSVYIMVELAIAVLAILGNVLVCWAVWINSNLQNVTNFFVVSLAAADIAVGVLAI MGSSVYITVELAIAVLAILGNVLVCWAVWINSNLQNVTNFFVVSLAAADIAVGVLAI MPIMGSSVYITVELAIAVLAILGNVLVCWAVWLNSNLQNVTNYFVVSLAAADIAVGVLAI ******* *****************************	57 57 60
mA _{2A}	$\underline{\texttt{PFAITI}} \texttt{STGFCAACHGC} \underline{\texttt{LFFACFVLVLTQSSIFSLLAIAI} DRYIAIRIPLRYNGLVTGMR}$	117
rA _{2A}	<u>PFAITI</u> STGFCAACHGCLFFACFVLVLTQSSIFSLLAIAIDRYIAIRIPLRYNGLVTGVR	117
hA _{2A}	<u>PFAITI</u> STGFCAACHGCLFIACFVLVLTQSSIFSLLAIAIDRYIAIRIPLRYNGLVTGTR	120
mA_{2A}	AKGIIAICWVLSFAIGLTPMLGWNNCSQ-KDE-NSTKTCGEGRVTCLFEDVVPMNYMVYY	175
rA _{2A}	<u>AKGIIAICWVLSFAIGLTPMLGW</u> NNCSQ-KDG-NSTKTCGEGRVTCLFEDVVPMNYMVYY	175
hA _{2A}	AKGIIAICWVLSFAIGLTPMLGWNNCGQPKEGKNHSQGCGEGQVACLFEDVVPMNYMVYF ************************************	180
mA _{2A}	$\underline{NFFAFVLLPLLLMLAIYL} RIFLAARRQLKQMESQPLPGERTRSTLQKEVHAAKS\underline{LAIIVG}$	235
rA _{2A}	$\underline{\rm NFFAFVLLPLLLMLAIYL} RIFLAARRQLKQMESQPLPGERTRSTLQKEVHAAKS\underline{\rm LAIIVG}$	235
hA _{2A}	NFFACVLVPLLLMLGVYLRIFLAARRQLKQMESQPLPGERARSTLQKEVHAAKSLAIIVG **** **:**********************************	240
mA_{2A}	$\underline{\texttt{LFALCWLPLHIINCFTFF}CSTCQHAPPWLMYLAIILSHSNSVVNPFIYAYRIREFRQTFR}$	295
rA _{2A}	LFALCWLPLHIINCFTFFCSTCRHAPPWLMYLAIILSHSNSVVNPFIYAYRIREFRQTFR	295
hA _{2A}	LFALCWLPLHIINCFTFFCPDCSHAPLWLMYLAIVLSHTNSVVNPFIYAYRIREFRQTFR	300
mA _{2A}	$\tt KIIRTHVLRRQEPFRAGGSSAWALAAHSTEGEQVSLRLNGHPLGVWANGSAPHSGRRPNG$	355
rA _{2A}	$\tt KIIRTHVLRRQEPFQAGGSSAWALAAHSTEGEQVSLRLNGHPLGVWANGSATHSGRRPNG$	355
hA _{2A}	KIIRSHVLRQQEPFKAAGTSARVLAAHGSDGEQVSLRLNGHPPGVWANGSAPHPERRPNG ****:********************************	360
mA _{2A}	YTLGPGGGGSTQGSPGDVELLTQEHQ-EGQEHPGLGDHLAQGRVGTASWSSEFAP	409

rA _{2A} hA _{2A}	YTLGLGGGGSAQGSPRDVELPTQERQ-EGQEHPGLRGHLVQARVGASSWSSEFAP 4(YALGLVSGGSAQESQGNTGLPDVELLSHELKGVCPEPPGLDDPLAQDGAGVS 4:						409 412					
	*:**	.***:*	*	* * * *	::*	:	*	* * *	• * • *	·	.*.:	
mA _{2A}	S 410											
rA _{2A}	S 410											
hA _{2A}	-											

Fig. S4 The alignment of the A_{2A} adenosine receptor in mouse, rat and human. The transmembrane domains (TMs) are underlined in red. The different amino acids are in blue.

mA _{2B} rA _{2B} hA _{2B}	MQLETQDALYVALELVIAALAVAGNVLVCAAVGASSALQTPTNYFLVSLATADVAVGLFA MQLETQDALYVALELVIAALAVAGNVLVCAAVGASSALQTPTNYFLVSLATADVAVGLFA MLLETQDALYVALELVIAALSVAGNVLVCAAVGTANTLQTPTNYFLVSLAAADVAVGLFA * ***********************************	60 60 60
mA_{2B} rA_{2B} hA_{2B}	IPFAITISLGFCTDFHGCLFLACFVLVLTQSSIFSLLAVAVDRYLAIRVPLRYKGLVTGT IPFAITISLGFCTDFHSCLFLACFVLVLTQSSIFSLLAVAVDRYLAIRVPLRYKGLVTGT IPFAITISLGFCTDFYGCLFLACFVLVLTQSSIFSLLAVAVDRYLAICVPLRYKSLVTGT ************************************	120 120 120
mA_{2B} rA_{2B} hA_{2B}	RARGIIAVLWVLAFGIGLTPFLGWNSKDSATSNCTELGDGIANKSCCPVTCLFENVVPMS RARGIIAVLWVLAFGIGLTPFLGWNSKDRATSNCTEPGDGITNKSCCPVKCLFENVVPMS RARGVIAVLWVLAFGIGLTPFLGWNSKDSATNNCTEPWDGTTNESCCLVKCLFENVVPMS ****:********************************	180 180 180
mA_{2B} rA_{2B} hA_{2B}	YMVYFNFFGCVLPPLLIMLVIYIKIFMVACKQLQRMELMDHSRTTLQREIHAAKSLAMIV YMVYFNFFGCVLPPLLIMMVIYIKIFMVACKQLQHMELMEHSRTTLQREIHAAKSLAMIV YMVYFNFFGCVLPPLLIMLVIYIKIFLVACRQLQRTELMDHSRTTLQREIHAAKSLAMIV ************************************	240 240 240
mA_{2B} rA_{2B} hA_{2B}	GIFALCWLPVHAINCITLFHPALAKDKPKWVMNVAILLSHANSVVNPIVYAYRNRDFRYS GIFALCWLPVHAINCITLFHPALAKDKPKWVMNVAILLSHANSVVNPIVYAYRNRDFRYS GIFALCWLPVHAVNCVTLFQPAQGKNKPKWAMNMAILLSHANSVVNPIVYAYRNRDFRYT ************************************	300 300 300
mA _{2B} rA _{2B} hA _{2B}	FHKIISRYVLCQAETKGGSGQAGAQSTLSLGL 332 FHRIISRYVLCQTDTKGGSGQAGGQSTFSLSL 332 FHKIISRYLLCQADVKSGNGQAGVQPALGVGL 332 **:*****::***::.*.*.*.*	

Fig. S5 The alignment of the A_{2B} adenosine receptor in mouse, rat and human. The transmembrane domains (TMs) are underlined in red. The different amino acids are in blue.

mA ₃	MEADN-TTETDWLNITYITMEAAIGLCAVVGNMLVIWVVKLNPTLRTTTFYFIVSLALAD 59
rA ₃	MKANNTTTSALWLQITYITMEAAIGLCAVVGNMLVIWVVKLNRTLRTTTFYFIVSLALAD 60
hA3	-MPNN-STALSLANVTYITMEIFIGLCAIVGNVLVICVVKLNPSLQTTTFYFIVSLALAD 58
	· * · * · · · * * * * * * * * * * * * *
mA ₃	IAVGVLVTPLAIAVSLQVKMHFYACLFMSCVLLIFTHASIMSLLAIAVDRYLRVKLTVRY 119
rA ₃	IAVGVLVIPLAIAVSLEVQMHFYACLFMSCVLLVFTHASIMSLLAIAVDRYLRVKLTVRY 120
hA3	IAVGVLVMPLAIVVSLGITIHFYSCLFMTCLLLIFTHASIMSLLAIAVDRYLRVKLTVRY 118
	****** **** *** : :***:****************
mA ₃	RTVTTQRRIWLFLGLCWLVSFLVGLTPMFGWNRKATLASSQNSSTLLCHFRSVVSLDYMV 179
rA ₃	RTVTTQRRIWLFLGLCWLVSFLVGLTPMFGWNRKVTLELSQNSSTLSCHFRSVVGLDYMV 180
hA ₃	KRVTTHRRIWLALGLCWLVSFLVGLTPMFGWNMKLTSEYHRNVTFLSCQFVSVMRMDYMV 178 : ***:***** **************************

mA ₃	FFSFVTWILVPLVVMCVIYLDIFYIIRNKLSQNLSGFRETRAFYGREFKTAKSLFLVLFL 2	239
rA ₃	FFSFITWILIPLVVMCIIYLDIFYIIRNKLSQNLTGFRETRAFYGREFKTAKSLFLVLFL 2	240
hA ₃	YFSFLTWIFIPLVVMCAIYLDIFYIIRNKLSLNLSNSKETGAFYGREFKTAKSLFLVLFL 2	238
	·***:***::****** **********************	
mA ₃	FALCWLPLSIINFVSYFDVKIPDVAMCLGILLSHANSMMNPIVYACKIKKFKETYFLILR 2	299
rA ₃	FALCWLPLSIINFVSYFNVKIPEIAMCLGILLSHANSMMNPIVYACKIKKFKETYFVILR 3	300
hA ₃	FALSWLPLSIINCIIYFNGEVPQLVLYMGILLSHANSMMNPIVYAYKIKKFKETYLLILK 2	298
	*** ******* : **: ::*: :**************	
mA ₃	ALRLCQTSDSLDSNMEQTTE 319	
rA ₃	ACRLCQTSDSLDSNLEQTTE 320	
hA ₃	ACVVCHPSDSLDTSIEKNSE 318	
	* :*:.****:.:*:.:*	

Fig. S6 The alignment of the A_3 adenosine receptor in mouse, rat and human. The transmembrane domains (TMs) are underlined in red. The different amino acids are in blue.

Correlation of pK_i values

In order to determine the correlation coefficients, the available pK_i values of all the compounds (both from this work as well as from literature) were calculated and a linear regression of the pK_i values was conducted. The R^2 of the linear regression analysis is equal to the correlation coefficient. A compound was not taken into consideration if it was only screened (for example, if K_i value > 10 μ M).

Correlation coefficients of the pK_i values at A_1 were found to be between 0.74 and 0.80, whereas the correlation coefficients of pK_i values at A_{2A} ranged between 0.83 and 0.88. Interestingly, the correlation between the three species is better at the $A_{2A}AR$ than A_1AR despite their lower sequence identity. It was also counterintuitive that results for mouse and rat $A_{2A}AR$ correlate slightly worse than mouse with human receptor. The curves and correlation coefficients are given in figure S7.

Fig. S7 1 Correlation of the pK_i values at A₁ and A_{2A} receptors in the human, rat and mouse.
A: correlation between mouse and human at A₁AR, B: correlation between rat and human at A₁AR,
C: correlation between rat and mouse at A₁AR, D: correlation between mouse and human at A_{2A}AR,
E: correlation between rat and human at A_{2A}AR, F: correlation between rat and mouse at A_{2A}AR.

The correlation coefficients of the pK_i values at A_{2B} were also high, ranging between 0.82 and 0.90. The correlation between the species at A_3AR is not expected to be high since the genetic divergence is high. Many antagonists were not considered because they were not active at A_3AR . The correlation coefficient between mouse and human was only 0.52 but if we considered only A_3 agonists the coefficient will increase to 0.93 (data not shown). Rat correlates better with human than mouse with coefficient of 0.83, whereas rat and mouse correlate less with a correlation coefficient of 0.73 as shown in figure S8.

Fig. S8 Correlation of the pK_i values at A₁ and A_{2A} receptors in the human, rat and mouse.
A: correlation between mouse and human at A_{2B}AR, B: correlation between rat and human at A_{2B}AR,
C: correlation between rat and mouse at A_{2B}AR, D: correlation between mouse and human at A₃AR,
E: correlation between rat and human at A₃AR, F: correlation between rat and mouse at A₃AR.