Cysteine oxidation impairs systemic glucocorticoid responsiveness in children with

difficult-to-treat asthma

ONLINE REPOSITORY

Susan T. Stephenson, Ph.D.¹

Lou Ann S. Brown, Ph.D.^{1,2}

My N. Helms, Ph.D.^{1,2}

Hongyan Qu, M.S.¹

Sheena D. Brown, Ph.D.¹

Milton R. Brown, Ph.D.^{1,2}

Anne M. Fitzpatrick, Ph.D.^{1,2}

¹ Emory University Department of Pediatrics, Atlanta, GA

² Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airways Disease Research

This study was funded by RO1 NR012021

and was supported in part by the National Center for Advancing Translational Sciences of the

National Institutes of Health, award number UL1 TR000454.

Asthma feature	Adjusted OR ² (95% CI)	p-value		
Middle tertile (-61.30 to -30.40 mV)				
High-dose inhaled glucocorticoids (previous 6 months)	1.43 (0.46, 4.42)	0.535		
Daily short-acting beta-agonists (previous 3 months)	2.26 (0.69, 7.38)	0.177		
Asthma Control Questionnaire Score >1.5 ³	1.81 (0.46, 7.05)	0.394		
\geq 3 oral corticosteroid bursts (previous year)	1.46 (0.49, 4.38)	0.498		
Emergency department visit (previous year)	1.72 (0.55, 5.43)	0.353		
Hospitalization for asthma (ever)	1.27 (0.27, 5.96)	0.761		
Intubation for asthma (ever)	2.11 (0.53, 8.32)	0.288		
Exhaled nitric oxide >35 ppb	0.88 (0.28, 2.749)	0.822		
FEV ₁ /FVC <80% of predicted value	0.79 (0.17, 3.74)	0.768		
Highest tertile (-30.41 to 54 mV)				
High-dose inhaled glucocorticoids (previous 6 months)	3.52 (1.05, 11.79)	0.041		
Daily short-acting beta-agonists (previous 3 months)	3.87 (1.19, 12.57)	0.024		
Asthma Control Questionnaire Score >1.5 ³	4.13 (1.10, 15.46)	0.035		
\geq 3 oral corticosteroid bursts (previous year)	1.04 (0.34, 3.15)	0.951		
Emergency department visit (previous year)	9.29 (2.31, 37.35)	0.002		
Hospitalization for asthma (ever)	2.17 (0.45, 10.37)	0.333		
Intubation for asthma (ever)	4.55 (1.25, 16.60)	0.022		
Exhaled nitric oxide >35 ppb	1.60 (0.53, 4.80)	0.405		
$FEV_1/FVC < 80\%$ of predicted value	1.98 (0.51, 7.69)	0.324		

Table E1. Associations between tertiles of plasma cysteine/cystine redox potentials¹ and clinical features in participants with difficult-to-treat asthma.

¹ The lowest tertile of the plasma cysteine/cystine redox potential (-99 to -61.29 mV) served as the reference group. A more positive redox potential reflects greater oxidation of the sample.

² Analyses were adjusted for race, sex, and BMI percentile.

³ Scores on the Asthma Control Questionnaire range from 0 to 6, with lower scores indicating better asthma control.

Feature	Did not receive triamcinolone N = 42	Received triamcinolone ¹ N = 57	p-value
Age (years)	12 (10, 15)	12 (10, 15)	0.773
Sex Male	22 (52)	44 (77)	0.010
Female	20 (48)	13 (23)	
Race			
White	14 (33)	2 (4)	< 0.001
Black	26 (62)	43 (75)	
Asian	1(2)		
More than one race	1 (2)	12 (21)	
Body mass index			
< 85 th percentile (normal weight)	17 (41)	26 (46)	0.660
85^{th} to 95^{th} percentile (overweight)	13 (21)	13 (23)	
\geq 95 th percentile (obese)	12 (29)	18 (32)	
Asthma Medications			
Inhaled corticosteroids	28 (67)	57 (100)	< 0.001
Montelukast	14 (25)	43 (75)	0.009
Self-reported allergic rhinitis	36 (86)	55 (97)	0.052
Asthma Control Questionnaire Score ²	0.36 (0.14, 0.61)	1.29 (0.57, 2.14)	< 0.001
Pediatric Asthma Quality of Life	6.36 (5.71, 6.85)	5.30 (4.28, 6.00)	< 0.001
Questionnaire total score ³			
Serum IgE (kU/L) ⁴	44 (20, 254)	365 (126, 646)	< 0.001
Exhaled nitric oxide (ppb) ⁴	23 (12, 43)	28 (19, 56)	0.121
Baseline lung function			
FVC (% predicted)	107 (103, 117)	100 (92, 114)	0.182
FEV ₁ (% predicted)	97 (88, 107)	90 (75, 101)	0.044
FEV ₁ /FVC	0.81 (0.77, 0.84)	0.77 (0.69, 0.82)	0.060
FEV ₁ /FVC (% predicted)	92 (88, 96)	90 (80, 94)	0.124
FEF ₂₅₋₇₅ (% predicted)	79 (67, 91)	67 (49, 77)	0.118

Table E2. Features of the asthmatic participants at the baseline visit. Data represent the median(IQR) or the number of participants (%).

Post-bronchodilator lung function			
FVC (% predicted)	110 (101, 118)	109 (99, 122)	0.930
FEV_1 (% predicted)	108 (93, 114)	101 (93, 115)	0.770
FEV ₁ /FVC	0.87 (0.82, 0.88)	0.83 (0.77, 0.87)	0.339
FEV ₁ /FVC (% predicted)	98 (93, 102)	96 (90, 100)	0.726
FEF ₂₅₋₇₅ (% predicted)	103 (87, 112)	90 (73, 107)	0.421

¹ Triamcinolone was administered at the completion of the baseline characterization visit to participants with symptomatic asthma despite moderate-to-high dose inhaled corticosteroid therapy.

² Scores on the Asthma Control Questionnaire range from 0 to 6, with lower scores indicating better asthma control.

³ Scores on the Pediatric Asthma Quality of Life Questionnaire range from 0 to 7, with higher scores indicating better quality of life.

⁴ Data were logarithmically transformed prior to statistical analyses.

FIGURE LEGENDS

Figure E1. Flowchart of participant enrollment and inclusion in the study.

Figure E2. Plasma (A) cysteine and (B) cystine concentrations and (C) the cysteine/cystine redox potential (E_h) in healthy control children, children with non-severe asthma and children with severe asthma. Cysteine and cystine data are presented as the mean \pm SEM and the cysteine/cystine E_h boxplots are shown with minimum and maximum values. Dots represent individual participants. Control: n = 15, non-severe asthma: n = 43, severe asthma: n = 56 for each panel. *p < 0.05, **p < 0.01

Figure E3. Peripheral blood mononuclear cell (A) glutathione disulfide (GSSG) concentrations, (B) reactive oxygen species (ROS) generation, and (C) *CCL3* and (D) *CXCL1* mRNA gene expression in healthy control children, children with non-severe asthma and children with severe asthma. GSSG and ROS data are presented as the mean \pm SEM and *CCL3* and *CXCL1* mRNA data are presented as boxplots with minimum and maximum values. Dots represent individual values. *p < 0.05, **p < 0.01

Figure E4. Stability of the plasma cysteine/cystine redox potential (E_h) between the baseline and two-week follow-up visit in (A) healthy control children and (B) children with asthma who did not receive triamcinolone. Differences between the baseline and 2-week follow-up visits were not statistically significant. **Figure E5.** Peripheral blood mononuclear cell (PBMC) mRNA expression of (A) *CCL3* and (B) *CXCL1* in healthy control children, children with asthma who did and did not respond to triamcinolone, and children with asthma who did not receive triamcinolone. Boxplots depict fold-change values relative to controls are shown with minimum and maximum values. Dots represent individual participants. *p < 0.05, **p < 0.01

Figure E6. Extracellular cysteine/cystine redox potentials (E_h), intracellular glutathione disulfide (GSSG) concentrations, and intracellular reactive oxygen species (ROS) generation in THP-1 monocytes (A-C, respectively) and human primary PBMCs (D-E, respectively) after exposure to extracellular oxidizing versus reduced conditions. Horizontal lines in panels A and D represent the median. Other data are shown as the mean \pm SEM.

Figure E7. Glucocorticoid receptor (GR) protein sulfhydryl (-SH) groups available for binding in (A) THP-1 monocytes and (B) human primary PBMCs after exposure to extracellular oxidizing versus reduced conditions, and (C) healthy control children and children with asthma. Data are shown as the mean ± SEM and are normalized to total GR protein. Representative images from participants are provided in panel (D).

