1	Supplementary Information
2	Streptomyces natalensis programmed cell death and morphological differentiation are
3	dependent on oxidative stress
4	
5	Tiago Beites ^{1,2} , Paulo Oliveira ^{1,2} , Beatriz Rioseras ³ , Sílvia D.S. Pires ^{1,2,4} , Rute Oliveira ^{1,2} , Paula
6	Tamagnini ^{1,2,5} , Pedro Moradas-Ferreira ^{1,2,4} , Ángel Manteca ³ and Marta V. Mendes ^{1, 2*}
7	
8	1 – i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto,
9	Portugal.
10	2 - IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
11	3 - Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina,
12	Universidad de Oviedo, Oviedo, Spain.
13	4 - ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
14	5 - Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Porto, Portugal.
15	
16	Supplementary Table S1 – S. natalensis homologues.
17	Supplementary Table S2 – Primers.
18	Supplementary Figure S1 - Construction of S. natalensis $\Delta catR$ strain by gene replacement.
19	Supplementary Figure S2 – 2D-PAGE gels.
20	Supplementary Figure S3 – SDS-PAGE.

Table S1. S. natalensis homologues of known S. coelicolor development related proteins.

Protein	SNA_code	Identity	Coverage		S. coelicolor	
name				e-value	RefSeq	
BIdA	SNA_04225	93%	100%	4.00E-28	Y00209.1	
BldB	SNA_08815	68%	93%	1.00E-23	NP_629849.1	
BldC	SNA_03650	100%	100%	6.00E-44	NP_628272.1	
BldD	SNA_13365	98%	100%	4.00E-113	NP_625769.1	
BldG	SNA_00365	96%	100%	1.00E-73	NP_627747.1	
BldH (AdpA)	SNA_06025	92%	79%	0	NP_627022.1	
BIdKA	SNA_34770	60%	99%	8.00E-146	NP_629262.1	
BIdKB	SNA_34775	49%	97%	0	NP_629263.1	
BIdKC	SNA_34780	70%	99%	5.00E-166	NP_629264.1	
BIdKD	SNA_34785	78%	99%	0	NP_629265.1	
BIdKE	SNA_34790	80%	93%	0	NP_733655.1	
BldM	SNA_39180	100%	100%	7.00E-142	NP_628926.1	
BldN	SNA_38050	96%	67%	7.00E-123	NP_627533.1	
WhiA	SNA_10605	92%	99%	0	NP_626214.1	
WhiB	SNA_03895	95%	98%	7.00E-56	NP_627256.1	
WhiD	SNA_39175	97%	84%	4.00E-64	NP_628925.1	
WhiEl	SNA_26210	57%	96%	2.00E-138	NP_629462.1	
WhiEll	SNA_26205	72%	91%	9.00E-65	NP_629461.1	
WhiEIII	SNA_26200	76%	99%	0	NP_629460.1	
WhiEIV	SNA_26195	74%	96%	0	NP_629459.1	
WhiEV	SNA_26190	52%	98%	9.00E-23	NP_629458.1	
WhiEVI	SNA_26185	68%	91%	7.00E-69	NP_629457.1	
WhiEVII	SNA_26180	72%	95%	2.00E-52	NP_629456.1	
WhiEVIII	SNA_26175	77%	96%	0	NP_629463.1	
WhiG	SNA_32585	90%	99%	0	NP_629755.1	
WhiH	SNA_31720	76%	99%	7.00E-162	NP_629942.1	
Whil	SNA_30685	95%	99%	9.00E-140	NP_630140.1	
ChpA	SNA_06310	50%	56%	3.00E-37	NP_733581.1	
ChpC	SNA_01235	46%	99%	5.00E-38	NP_625949.1	
ChpD	SNA_00490	67%	97%	2.00E-23	NP_626950.1	
ChpD2	SNA_12255	77%	60%	1.00E-20	NP_626950.1	

Protein			_		S. coelicolor	
name	SNA_code	Identity	Coverage	e-value	RefSeq	
ChpE	SNA_11245	64%	97%	6.00E-20	NP_626070.1	
ChpE2	SNA_11250	67%	64%	1.00E-17	NP_626070.1	
ChpG	SNA_00485	67%	49%	2.00E-16	NP_626939.1	
ChpG2	SNA_05975	73%	48%	3.00E-15	NP_626939.1	
ChpH	SNA_12040	86%	98%	8.00E-24	NP_625950.1	
RdIA	SNA_27905	53%	71%	2.00E-25	NP_626951.1	
RamR	SNA_20600	50%	98%	1.00E-50	NP_733711.1	
RamB	SNA_20605	56%	96%	1.00E-174	NP_630759.1	
RamA	SNA_20610	56%	92%	8.00E-147	NP_630758.1	
RamS	SNA_20615	76%	97%	3.00E-17	NP_630757.1	
RamC	SNA_20620	66%	99%	0	NP_630756.1	
DivIVA	SNA_09545	84 %	54 %	4E-99	NP_626336	
FilP	SNA_33665	92%	100 %	0	NP_629535	
FtsK	SNA_11150	61 %	88 %	1E-152	NP_733622	
FtsW	SNA_09505	79 %	94%	0	NP_626344	
FtsZ	SNA_09520	86 %	100 %	0	NP_626341	
Mbl	SNA_06725	97 %	100 %	0	NP_626848	
MreB	SNA_07640	71 %	98 %	4E-170	NP_626694	
ParA	SNA_02365	89 %	100 %	4E-173	NP_628072	
ParB	SNA_02360	74 %	99 %	1E-149	NP_628073	
Scy	SNA_33660	60 %	100 %	0	NP_629536	
SigF	SNA_01565	92 %	94 %	8E-171	NP_628217	
Smc	SNA_32725	82 %	86 %	0	NP_629712	
SsgA	SNA_26640	49 %	97 %	4E-40	NP_630795	
SsgB	SNA_00325	88 %	92 %	2E-159	NP_627756	
SspA	SNA_27035	44 %	61 %	3E-3	NP_631483	

Table S2. Primers used in PCR and RT-qPCR.

	Sequence		Amplicon
Primer			(bp)
D_catR_F	ATTCCGGGGATCCGTCGACCGTACCCTGGGCTGTATCTGACTGA	60	1462
D_catR_R	TGTAGGCTGGAGCTGCTTCCCTGGGGGCGGGCCGGACGCGGGACGCCGACCGCGGTCA		
C_catR_F	GTGCGCCTCCTGAAGTGATC	60	584
C_catR_R	TCAGGCGTGGTGGCCGCT		
adpA_S	CCCGCGACCACCCATTGGA	65	105
adpA_AS	GGTGAGCACATCGCCGTCGTC		
bldD_S	CTGGAAGGCCGTGGTGG	65	105
bldD_AS	AGCTCCTGGACCGGCACCC		
bldN_S	CACGGCCGAGGACCTCACCA	65	102
bldN_AS	ATGGTCACCAGCCAGGCGC		
chpC_S	CACCAGGGCGGGTCGGA	60	109
chpC_AS	TGGCCGGTACCGCGTAGC		
ramC_S	ATCCATATCTCGGCCTGCCTGG	60	102
ramC_AS	CCGGCTCGGCATGCATTTG		
ramS_S	TCGACCTGCAGACGATGGAAAC	60	99
ramS_AS	TCAGACTGCTGTCGCCGCA		-
rdIA_S	GAGTAACCGCCACGCCAGCA	60	103
rdIA_AS	CCCTGCGGGCTCATGTCG		
bfrA_S	CGGCTGGCCGAAGCTTGC	60	103
bfrA_AS	CGGCAGCCCTTCGAGGAAGA		
catR_S	CAACGCCCACCACGACCA	. 65	75
catR_AS	TCGCCCTGGAGATGGACG		
cpx_S	GAGCGGCTCCAGCAGGACT	60	106

Duting ou		T.A.	Amplicon
Primer	Sequence		(bp)
cpx_AS	TCGCGGCTTGTTCGACG		
dpsA_S	CACTGGAACGTCGTCGGCC	60	150
dps_AS	CTTGGCGACCGTCGAGGC		200
katA1_S	CCTGGTCGGTCTTGAAGTGGTA	60	80
katA1_AS	CTACGGCTCGCACACCTTC		
katA3_S	CACACCAAGGACGACGACTT	60	81
katA3_AS	CTCCACCAGACGCTTCTTCTC		01
16S_S	CAGGCTAGAGTTCGGTAGG	65	117
165_AS	CTCCTCAGCGTCAGTATCG		

27 Fig. S1 - Construction of *S. natalensis* Δ*catR* strain by gene replacement.

28 (A) Predicted restriction enzyme polymorphism caused by gene replacement. The Ncol-Xbal restriction pattern before and after replacement is shown. The probe used for 29 30 southern hybridization is indicated by thick lines. N, Ncol; X, Xbal. (B) Confirmation of gene 31 disruption by PCR. A pair of primers, C_catR_F and C_catR_R, covering the deleted region 32 in the chromosome were to identify double crossover mutants. Lane L, GeneRuler[™] 33 (Thermo Scientific).(C) Confirmation of gene disruption by Southern blot of the Ncol-Xbal 34 digested chromosomal DNA of the wild type (lane 1), and $\Delta catR$ (lane 2) strains. Lane L, 35 DIG-labelled DNA Molecular Weight Marker II (Roche).

Fig. S2 - Proteome analysis by 2D-PAGE.

- 39 The presented 2D gels are representative of biological duplicates (100 µg of crude protein extracts per gel). The spots indicated in the
- 40 figure correspond to the proteins identified by mass spectrometry (for SNA code correspondence to spot ID number see Table 1).

Fig. S3 - Coomassie coloration of SDS-PAGE with protein crude extracts (20 μg of
protein per lane) used as loading control for the nuclease activity assay (Fig. 4B).