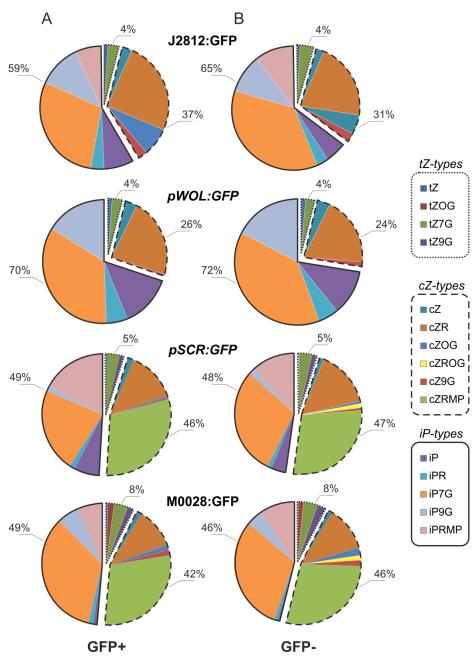
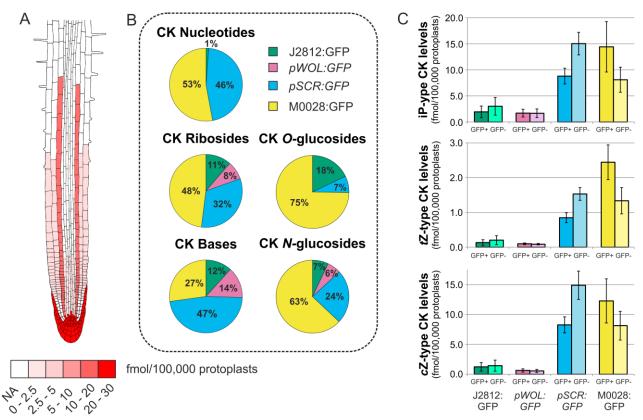


Supplemental Figure 1. Recovery (%) of Different Cytokinin Groups in Relation to the Number of Sorbent Multi-layers (C₁₈/SDB-RPS/Cation-SR) and Total Process Efficiency (%) of In-tip microSPE Protocol.

(A) A number of sorbent multi-layers were tested using a mixture of twenty-six CK standards (0.1 pmol of each). In-tip microSPE compared with a commonly used MCX purification method indicates the usefulness of this method for purification, enrichment and selective compound isolation. Recovery is expressed as the ratio of the mean peak area of an analyte spiked before extraction to the mean peak area of the same analyte standards, multiplied by 100.

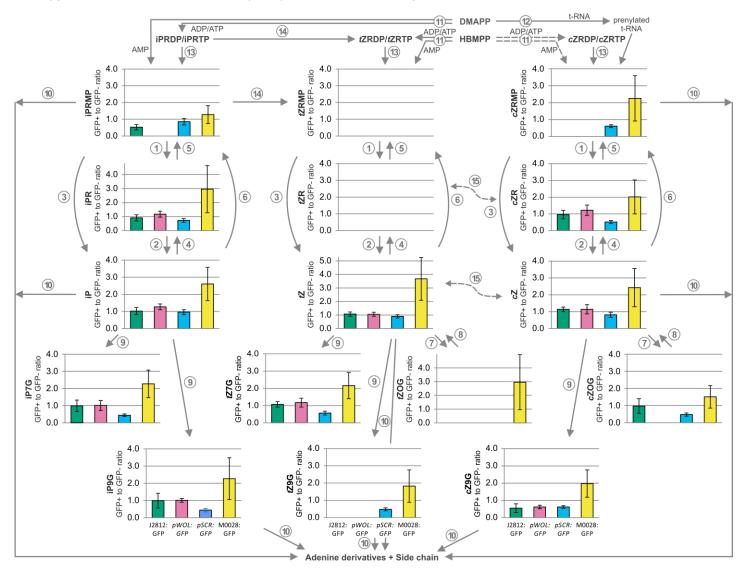

(B-C) The conditions for sorbent activation **(B)** and sample loading onto in-tip microSPE **(C)** were optimized to obtain higher yields for all analytes detected. The samples were loaded onto StageTip microcolumns activated by 50% nitric acid or 1 M formic acid using non-diluted/diluted (3:1; 2:1, v/v) solutions of 0.7% NaCl acidified by 1 M hydrochloric acid (pH 2.7) and spiked before extraction with known quantities of the target compounds (0.1 pmol of each CK metabolite). Process efficiency is expressed as the ratio of the mean peak area of an analyte spiked before extraction to the mean peak area of the same analyte standards multiplied by 100. Conditioning with nitric acid and loading of diluted 0.7% NaCl solution (3:1, v/v) were finally used for determination of CKs in isolated protoplasts (see Supplemental Figure 2).

All experiments were performed in quadruplicates and the error bars represent standard error.


Supplemental Figure 2. Optimized In-tip microSPE Protocol.

Three-layer in-tip μ SPE (C18/SDB-RP/Cation-SR) columns were prepared (A) and used for purification of isolated protoplasts (B-C). Activation, sample dilution, and loading steps were optimized to obtain higher yields of each analyte measured. The final CK-enriched fraction was evaporated to dryness and dissolved in 40 μ L of 10% methanol for LC-MS/MS analysis (D). The description of the optimized protocol is presented at the right-side of the figure. *Photos by Ota Blahoušek.*

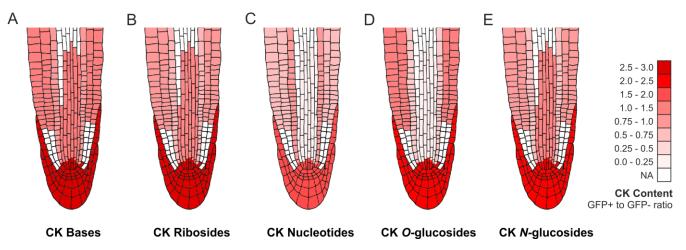
Supplemental Figure 3. Cytokinin Metabolite Patterns in GFP-expressing (A) and GFP non-expressing (B) Cells of Four Transgenic *Arabidopsis* Lines.


CK distribution of three isoprenoid groups in the isolated protoplast is indicated by different lines (dotted line, *trans*-zeatin-types, *tZ*; dashed line, *cis*-zeatin-types, *cZ*; solid line, isopentenyladenine-types, iP). CK metabolites were quantified in fmol/100,000 protoplasts and the percentages of their distribution were calculated from the sum of the compounds presented. Fifteen CK metabolites were found as follow: the CK nucleotides (iPRMP and *cZ*RMP), the CK ribosides (iPR and *cZ*R), the CK bases (iP, *tZ* and *cZ*), and the CK 7-/9-/O-glucoside conjugates (iP7G, iP9G, *tZ*7G, *tZ*9G, *cZ*9G, *tZ*OG and *cZ*OG). However, *cZ*ROG was detected only in the GFP non-expressing cells of the *pSCR:GFP* and M0028:GFP lines.

Supplemental Figure 4. Cytokinin Concentration Gradient Exists within the *Arabidopsis* Root Apex. **(A)** Cell type-specific CK concentrations were calculated as fmol/100,000 isolated protoplasts, and the total CK concentration in each cell type (according to the J2812:GFP, *pWOL:GFP*, *pSCR:GFP* and M0028:GFP transgenic lines) is indicated by the red colour scale. NA represents the cell populations that were not analysed.

(B) The relative concentration of different CK metabolite groups (nucleotides, ribosides, bases, *O*- and *N*-glucosides) in GFP-expressing cell populations (GFP⁺) were calculated from the total levels of each metabolite group.

(C) Total CK levels (in fmol/100,000 protoplast) of three isoprenoid groups detected in the GFP⁺ and GFP⁻ cell types of J2812:GFP, *pWOL:GFP*, *pSCR:GFP*, and M0028:GFP.



Supplemental Figure 5. Cytokinin Metabolism in Four Different GFP-expressing Cell Populations.

The individual CK metabolites detected in the sorted cell lines are presented. The arrows indicate the CK metabolism and circled numbers denote enzymes involved in CK biosynthesis, interconversions and degradation. (1) 5'-ribonucleotide phosphohydrolase; (2) adenosine nucleosidase; (3) CK phosphoribohydrolase 'Lonely guy'; (4) purine nucleoside phosphorylase; (5) adenosine kinase; (6) adenine phosphoribosyltransferase; (7) zeatin-O-glucosyltransferase; (8) ß-glucosidase; (9) N-(10)cytokinin oxidase/dehydrogenase (CKX); alucosvl transferase: (11)adenvlate isopentenyltransferase (IPT); (12) tRNA-specific isopentenyltransferase; (13) phosphatase; (14) cytochrome P450 mono-oxygenase; (15) zeatin isomerase. DMAPP, dimethylallylpyrophosphate; HMBPP, 4-hydroxy-3-methyl-2-(*E*)-butenyl diphosphate.

The metabolites were quantified in fmol/100,000 protoplasts and the respective ratios were computed in each of the sorted transgenic lines J2812:GFP (green), *pWOL:GFP* (red), *pSCR:GFP* (blue) and M0028:GFP (yellow). The results represent 6 biological replicates and for each 2 technical replicates were performed. Error bars indicate standard error.

Supplemental Data. Antoniadi et al. (2015). Plant Cell. 10.1105/tpc.15.00176

Supplemental Figure 6. Distribution of Cytokinin Metabolite Groups within the *Arabidopsis* Root Tip. Different patterns of CK bases (A), ribosides (B), nucleotides (C), O-glucosides (D) and *N*-glucosides (E) are present in the stele, the epidermis, and the endodermis and cortex cells. All CK gradient maps showed a concentration maximum in the root cap, columella, columella initials and quiescent centre cells.

The data presented in the maps were derived from 4 GFP lines (J2812:GFP, *pWOL:GFP*, *pSCR:GFP* and M0028:GFP) covering all of the different cell types of the root apex. To compensate for differences in growth and development among the different GFP expressing *Arabidopsis* lines, cell type-specific CK concentrations were calculated in fmol/100,000 isolated protoplasts and then the data were normalized against their respective internal reference GFP⁻ protoplast populations. The red colour scale indicates the CK content relative to this reference population; NA represents the cell populations that were not analysed; a value of 1 represents CK level in GFP⁺ cells equivalent to that in reference GFP⁻ cells. In the stele, the CK O-glucosides and nucleotides were not detected in either the GFP⁺ or the GFP⁻ cell populations.

Supplemental Table 1. MS optimized conditions.

The precursor and product ions of the studied compounds and optimized collision energies (Fragmentor) are listed. The retention time stability and limits of detection (LOD) are shown for UHPLC-ESI(+)-MS/MS analysis of isoprenoid CKs. Conditions in positive ion mode were as follows: Drying Gas Temperature, 200°C; Drying Gas Flow, 16 L Min⁻¹; Nebulizer Pressure, 35 Psi; Sheath Gas Temperature, 375°C, Sheath Gas Flow, 12 L Min⁻¹; Capillary, 3400 V; Nozzle Voltage, 0 V; Delta iFunnel High/Low Pressure RF, 150/60 V.

Compound	MRM	Fragmentor (V)	Collision Energy (V)	Retention time ^a (min)	LOD [♭] (fmol)
t/cZ	220.1 > 136.1	380	19	10.15±0.03/11.28±0.03	0.1
<i>t/c</i> ZR	352.2 > 220.1	380	20	$12.92 \pm 0.04 / 13.68 \pm 0.03$	0.1
tZ7G	382.2 > 220.1	380	21	7.71 ± 0.01	0.1
t/cZ9G	382.2 > 220.1	380	21	8.93±0.04/9.63±0.03	0.5 / 0.1
<i>t/c</i> ZOG	382.2 > 220.1	380	21 / 18	9.52±0.01 / 10.35±0.01	0.1
<i>t/c</i> ZROG	514.2 > 220.1	380	21	11.96±0.01/12.71±0.01	1.0
<i>t/c</i> ZRMP	432.2 > 382.2	380	21	8.36 ± 0.02 / 9.01 ± 0.02	1.0 / 5.0
DHZ	222.1 > 136.1	380	23	10.91 ± 0.04	0.1
DHZR	354.2 > 222.1	380	22	13.64 ± 0.01	0.01
(±)DHZ7G	384.2 > 222.1	380	23	8.61±0.01/8.92±0.01	0.1
DHZ9G	384.2 > 222.1	380	23	9.61 ± 0.04	0.1
DHZOG	384.2 > 222.1	380	21	10.97 ± 0.03	0.1
DHZROG	516.2 > 222.1	380	22	13.29 ± 0.02	1.0
DHZRMP	434.2 > 384.2	380	23	8.87 ± 0.02	1.0
iP	204.1 > 136.1	380	16	17.88±0.02	0.01
iPR	336.2 > 204.1	380	20	18.15 ± 0.02	0.05
iP7G	366.2 > 204.1	380	21	13.16 ± 0.01	0.1
iP9G	366.2 > 204.1	380	22	16.44 ± 0.02	0.1
iPRMP	416.2 > 204.1	380	22	15.31 ± 0.01	1.0

^a Values are means ± SD (n = 10). ^b Limit of detection, defined as a signal-to-noise ratio of 3:1.

Supplemental Table 2. List of 107 cytokinin-related genes indicated with their published name and their corresponding accession number.

The genes have been categorized according to their role in CK pathways as Biosynthesis and Metabolism genes (A), Degradation and Conjugation genes (B), Perception and Signaling genes (C) and (Candidate) Transport genes (D).

a.	Biosynthesis	s & Metabolism	C.	Perception	&Signaling	d.	Trar	nsport
	IPT1	At1g68460		AHK2	At5g35750		ENT1	At1g70330
	IPT2	At2g27760		AHK3	At1g27320		ENT2	At3g09990
	IPT3	At3g63110		CRE1/AHK4	At2g01830		ENT3	At4g05120
	IPT4	At4g24650		AHP1	At3g21510		ENT4	At4g05130
	IPT5	At5g19040		AHP2	At3g29350		ENT5	At4g05140
	IPT6	At1g25410		AHP3	At5g39340		ENT6	At4g05110
	IPT7	At3g23630		AHP4	At3g16360		ENT7	At1g61630
	IPT8	At3g19160		AHP5	At1g03430		ENT8	At1g02630
	IPT9	At5g20040		ARR1	At3g16857		PUP1	At1g28230
	CYP735A1	At5g38450		ARR2	At4g16110		PUP2	At2g33750
	CYP735A2	At1g67110		ARR3	At1g59940		PUP3	At1g28220
	LOG1	At2g28305		ARR4	At1g10470		PUP4	At1g30840
	LOG2	At2g35990		ARR5	At3g48100		PUP5	At2g24220
	LOG3	At2g37210		ARR6	At5g62920		PUP6	At4g18190
	LOG4	At3g53450		ARR7	At1g19050		PUP7	At4g18197
	LOG5	At4g35190		ARR8	At2g41310		PUP8	At4g18195
	LOG6	At5g03270		ARR9	At3g57040		PUP9	At1g18220
	LOG7	At5g06300		ARR10	At4g31920		PUP10	At4g18210
	LOG8	At5g11950		ARR11	At1g67710		PUP11	At1g44750
	LOG9	At5g26140		ARR12	At2g25180		PUP12	At5g41160
	AK1	At3g09820		ARR13	At2g27070		PUP13	At4g08700
	AK2	At5g03300		ARR14	At2g01760		PUP14	At1g19770
	APT1	At1g27450		ARR15	At1g74890		PUP15	At1g75470
	APT2	At1g80050		ARR16	At2g40670		PUP16	At1g09860
	APT3	At4g22570		ARR17	At3g56380		PUP17	At1g57943
	APT4	At4g12440		ARR18	At5g58080		PUP18	At1g57990
_	APT5	At5g11160		ARR19	At1g49190		PUP19	At1g47603
				ARR20	At3g62670		PUP20	At1g47590
b.	b. Degradation & Conjugation			ARR21	At5g07210		PUP21	At4g18205
	CKX1	At2g41510		ARR22	At3g04280		ABCG14	At1g31770
	CKX2	At2g19500		CRF1	At4g11140			
	CKX3	At5g56970		CRF2	At4g23750			
	CKX4	At4g29740		CRF3	At5g53290			
	CKX5	At1g75450		CRF4	At4g27950			
	CKX6	At3g63440		CRF5	At2g46310			
	CKX7	At5g21482		CRF6	At3g61630			
	UGT76C1	At5g05870		CRF7	At1g22985			
	UGT76C2	At5g05860		CRF8	At1g71130			
	UGT73C1	At2g36750						
	UGT73C5	At2g36800						
	UGT85A1	At1g22400						

Supplemental Table 3. Cytokinin-related gene expression enriched in *pWOL:GFP* (A), M0028:GFP (B), *pSCR:GFP* (C) and J2812:GFP (D) cell types.

The data derive from GUS and GFP assays and from four transcriptome and proteome studies of cellspecific populations of the *Arabidopsis* root.

Α. Ρ	WOL:GFP – Stele	В.	B. M0028:GFP – Lateral root cap, Columella, Columella Initials & QC			
IPT3	[2],[7]		CYP735A2	[4]		
IPT5	[2]		LOG1	[3],[8]		
IPT7	[2]		LOG8	[5]		
LOG1	[2]		APT1	[8]		
LOG3	[1],[2],[3],[5],[8]	CKX5	[9]		
LOG4	[1],[5]		CKX4	[8],[9]		
LOG5	[2],[5]		UGT76C2	[3],[8]		
LOG8	[5]		UGT85A1	[2],[3],[8]		
APT3	[8]		B-ARRs (TCSn:GFP)	[11]		
CKX5	[9]		CRF6	[3],[8]		
CKX6	[2]		ABCG14	[10]		
UGT85A1	[1],[9]					
AHK2	[2]	С.	pSCR:GFP	P – Endodermis & QC		
CRE1/AtAl	HK4/WOL [1],[3]		LOG1	[3],[8]		
AHP4	[2]		LOG4	[1],[5]		
AHP6	[6]		CRF2	[1]		
ARR21	[8]		CRF6	[1]		
B-ARRs (TCSn:GFl	₽) [1],[2],[10],[11]		ABCG14	[1]		
CRF1	[2]					
PUP4	[2]	D.	J2812:GFP	– Epidermis & Cortex		
PUP18	[2]		LOG4	[1]		
ABCG14	[3]		LOG7	[1],[3],[5],[8]		
		_	LOG8	[1]		
			APT4	[3],[8]		
			UGT85A1	[1]		
			ARR8	[3],[8]		
			CRF2	[1]		
			CRF3	[1]		
			ABCG14	[1]		

Source:

The *pSCR:GFP* and *pWOL:GFP* lines are in *Arabidopsis* Columbia background (Birnbaum et al., 2003). The J2812:GFP and M0028:GFP lines from the Jim Haseloff GAL4-GFP enhancer trap collections (Jim Haseloff lab, University of Cambridge, <u>http://www.plantsci.cam.ac.uk/Haseloff/</u>) are in *Arabidopsis* C24 background and are available from NASC, the European Arabidopsis Stock Centre, <u>http://arabidopsis.info/</u> (Stock codes: N9089, N9342).

Supplemental References

- [1] Birnbaum, K. Shasha, D.E., Wang, J.Y., Jung, J.W., Lambert, G.M., Galbraith, D.W. and Benfey, P.N. (2003). A gene expression map of the Arabidopsis root. Science **302**: 1956–1960.
- [2] Brady, S.M., Orlando, D.A., Lee, J.Y., Wang, J.Y., Koch, J., Dinneny, J.R., Mace, D., Ohler, U. and Benfey P.N. (2007). A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318: 801–806.
- [3] Dinneny, J.R., Long, T.A., Wang, J.Y., Jung, J.W., Mace, D., Pointer, S., Barron, C., Brady, S.M., Schiefelbein, J. and Benfey, P.N. (2008). Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320: 942–945.
- [4] Kiba, T., Takei, K., Kojima, M. and Sakakibara, H. (2013). Side-chain modification of cytokinins controls shoot growth in Arabidopsis. Dev. Cell **27**: 452–461.
- [5] Kuroha, T., Tokunaga, H., Kojima, M., Ueda, N., Ishida, T., Nagawa, S., Fukuda, H., Sugimoto, K. and Sakakibara, H. (2009). Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21: 3152–3169.
- [6] Mähönen, A.P., Bishopp, A., Higuchi, M., Nieminen, K.M., Kinoshita, K., Törmäkangas, K., Ikeda, Y., Oka, A., Kakimoto, T. and Helariutta, Y. (2006). Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311: 94–98.
- [7] Miyawaki, K., Matsumoto-Kitano, M. and Kakimoto, T. (2004). Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. 37: 128–138.
- [8] Petricka, J.J., Schauer, M.A., Megraw, M., Breakfield, N.W., Thompson, J.W., Georgiev, S., Soderblom, E.J., Ohler, U., Moseley, M.A., Grossniklaus, U. and Benfey, P.N. (2012). The protein expression landscape of the Arabidopsis root. Proc. Natl. Acad. Sci. USA 109: 6811-6818.
- [9] Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H. and Schmülling, T. (2003). Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15: 2532–2550.
- [10] Zhang, K., Novak, O., Wei, Z., Gou, M., Zhang, X., Yu, Y., Yang, H., Cai, Y., Strnad, M., Liu, C.J. (2014). Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat. Commun. 5: 3274.
- [11] Zürcher, E., Tavor-Deslex, D., Lituiev, D., Enkerli, K., Tarr, P.T. and Müller, B. (2013). A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiol. 161: 1066–1075.