
Supplementary Information for
CoMEt: A Statistical Approach to Identify Combinations of Mutually

Exclusive Alterations in Cancer

Mark D.M. Leiserson1,2,∗, Hsin-Ta Wu1,2,∗, Fabio Vandin1,2,3, Benjamin J. Raphael1,2

1Department of Computer Science and 2Center for Computational Molecular Biology, Brown University,
Providence, RI, USA

3Department of Mathematics and Computer Science, University of Southern Denmark, Odense M, Denmark
∗Equal contribution.

Correspondence: braphael@brown.edu

S1 Results

Comparison to muex on real data

We compared CoMEt to muex [23] using two different versions of the TCGA glioblastoma (GBM) dataset:
(1) the dataset from Leiserson et al. [21] containing 398 alterations and 261 samples; (2) the dataset from
Szczurek et al. [23], containing 83 alterations and 236 samples (See Section § Glioblastoma multiforme
(GBM)). There are 184 samples in both the Multi-Dendrix GBM and muex GBM datasets. Besides the
samples, the main difference between these two datasets is that the muex dataset is restricted to only 83
significantly recurrent alterations.

Since the muex score is for single alteration sets, we ran muex iteratively to identify collections of
alteration sets. That is, we run muex to find the top scoring alteration set, remove those alterations, and
repeat t−1 times. We ran muex with the parameters used in [23], restricting to alteration sets with coverage
at least 0.3, impurity lower than 0.5, and a significance cutoff of 0.05. On the muex GBM dataset, we ran
CoMEt and muex with k = 4 and t = 3 to match the parameters used in [23]. On the Multi-Dendrix GBM
dataset, we ran CoMEt and muex with k = 3 and t = 3, since muex aborted with an out-of-memory error
for k = 4 on this dataset.

On both GBM datasets, CoMEt identifies collections with much more significant exclusivity. Moreover,
more of the genes in the CoMEt collections are known cancer genes (according to the COSMIC Cancer
Census [68]) compared to the genes in the muex collections (Table S13). On the Multi-Dendrix GBM
dataset, CoMEt identifies three collections that overlap the Rb (CDK4, CDKN2A, RB1), p53 (TP53, MDM2,
CDKN2A), and PI(3)K (PTEN, IDH1) signaling pathways. Each of these sets include surprisingly exclusive
alterations, with Φ(M) ranging from 10−8 to 10−19, and all the alterations are in cancer genes. In contrast,
muex identifies sets with lower coverage and less surprising exclusivity, with Φ(M) > 10−3 for each set,
and three of the alterations are not in known cancer genes.

On the muex GBM dataset, CoMEt again identifies more exclusive alteration sets that overlap more
known cancer genes, while muex reports few known cancer genes with most having an uncertain association
with cancer. In general this dataset seems to include more spurious alterations, as both algorithms identify
less exclusive sets with fewer cancer genes than on the Multi-Dendrix GBM dataset. This might be a result
of the different handling of copy number aberrations in the two papers (see [21] and [23]).
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S2 Methods

MCMC Algorithm

We define a Markov chain whose states Ω are possible collections M and where transitions between states
(collections) are defined such that the chain is ergodic. Finite and ergodic Markov chains converge to a
unique stationary distribution. In this case, because we want to sample from collections M in proportion to
their weights

Φ(M)−α =
∏
M∈M

Φ(M)−α,

our desired stationary distribution is

πM =
Φ(M)−α∑

M′∈Ω Φ(M′)−α
. (1)

Note that we use Φ(M)−α so more exclusive collections have higher weights. The Metropolis-Hastings
algorithm [64,65] is a method for defining transition probabilities for an irreducible Markov chain such that
the modified chain is ergodic and has a desired stationary distribution. A Metropolis-Hastings algorithm to
sample collections M according to this stationary distribution is as follows:

Initialization. Choose tk genes uniformly at random from E , and assign k genes at random to initialize
M = M1, . . . ,Mt.

Iteration. For N = 1, 2, . . . , obtain MN+1 from MN as follows:

1. Select a gene g uniformly at random from E .

2. Define the proposed collection M′N as follows:
i) If g /∈MN , then choose uniformly at random gene g′ ∈Mi, and replace g′ with g.
ii) Else, choose uniformly at random gene g′ ∈ Mi, and swap genes g and g′. Note that if
g, g′ ∈Mi, then Mi will be unchanged.

3. Let P (MN ,M
′
N ) = min{1, Φ(MN )α

Φ(M′
N )α
}.

4. With probability P (MN ,M
′
N ),MN+1 = M′N , else MN+1 = MN .

It is easy to see that this chain is ergodic (it is possible to reach any state (collection) from any other state
(collection), it is finite, and it is not bipartite) and thus it converges to our desired stationary distribution.
We use the parameter α to increase/decrease the difference between Φ(M′N ) and Φ(MN ) (we used α = 2
except where noted). Also, in the second step of the algorithm, we ensure that the number of exclusive
alterations is larger than the number of co-occurring by checking that the Dendrix weight W (M) > 0.
This is to avoid examining sets alterations with high coverage (e.g. altered over 90% of samples) that
may have significant exclusivity even though relatively few samples harbor exclusive alterations. We assess
convergence of the MCMC algorithm by calculating total variation distance of the the sampling distributions
from multiple chains with different initializations (details below).

Convergence of MCMC from different initial gene sets We assessed the convergence of the MCMC al-
gorithm by comparing the sampling distributions from multiple chains initialized at different starting states.
The rationale is that if the multiple chains have converged (i.e. are sampling from the posterior distribution)
then the sampling distributions obtained from the different initializations should be very similar. Conversely,
if the sampling distributions are different, then one or more of the chains has failed to converge. We com-
puted the distance between the sampling distributions of chains C with different initializations as follows.
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First, let Pc(M) be the proportion of iterations in which collection M ∈ Ω was sampled in chain c ∈ C.
We compute the total variation distance [69] between the distribution Pc for each chain c to the distribution
Pu(M), where u is a chain formed by concatenating the chains in C, defined as

||Pc − Pu||TV = max
s∈u
‖Pc(s)− Pu(s)‖. (2)

A small total variational distance implies that the chain c has converged. We take the mean of the total
variation distance across chains.

To implement the above procedure, we ran CoMEt with 5 to 10 different initializations. For one of
these initializations, we used the collection output by Multi-Dendrix [21] (using the same values of the
parameters t and k as in CoMEt). The remaining initializations were random collections. We start CoMEt
with 100 million iterations for each of these initializations. If after the 100 million iterations the mean total
variation distance is smaller than 0.005, then we consider the chains to have converged. Otherwise, we
increase the number of iterations by a factor of 1.5, or stop the process if the number of iterations reaches 1
billion. The output of the MCMC algorithm is the the union of the sampling distributions from the different
initializations. As an example, Figure S15 shows the results of this procedure on AML mutation data for
t = 3 and k = 4, after 1 million and 10 million iterations.

Parameter selection

We select δ with the following heuristic procedure. When we run CoMEt with t sets in the collection, ideally
we should obtain t cliques in the marginal probability graph. To find the best δ that fulfills the expectation,
we search for an “L-corner” in a graph of the number of edges in the marginal probability graph as a function
of the edge weight.

More precisely, we first plot a log-log distribution with the number of edges in the marginal probability
graph with edge weight ≥ p against edge weight p (Figure S16). We choose δ starting from the minimum
edge weight pmin that contains at least t ×

(
k
2

)
edges in the marginal probability graph. e.g. the yellow

horizontal line in Figure S16 shows the number of edges in GBM with k = 3 and t = 3. We identify a value
δ where the number of edges increases dramatically after this value as the probability threshold decreases.
To find this value, for each value x we perform a linear regression of two best-fit lines (using root mean
squared error) before and after this value. We the first p > pmin that forms a “L-corner”, i.e. the slope of the
two best-fit lines changes from a smaller negative value to a larger negative value as the value x decreases
(e.g. moving leftward in Figure S16).

For each TCGA dataset, we ran CoMEt with α = 2, k = 4 and 100 million iterations using 5 to 10
random initializations. We used t = 3 for BRCA and t = 4 for AML, GBM, and STAD. For BRCA and
STAD with subtypes, we ran CoMEt with k = 4 and t equal to the number of pre-defined subtypes (4 and
3, respectively), and 100 million iterations using 10 random initializations. See § Somatic mutation datasets
and Supplementary § Convergence of MCMC from different initial gene sets for additional details.

S3 Data

Simulated data

We generated simulated datasets using the following approach. Recall C is a set of highly altered genes
whose alterations are not necessarily exclusive.

1. Select k genes to form an “implanted pathway” P .
2. Let γP be the fraction of mutated samples in P . Select γP × n samples to be exclusively mutated in
P , where the proportion of mutations in each gene in P is given by the tuple µP = (c1, . . . , ck).
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3. Randomly select samples to be mutated in each gene in C, where the fraction of mutated samples per
gene is given by γC.

4. For each of the n samples s in each of the m genes g (including the implanted and cancer genes),
mutate g in s with fixed probability q. This step introduces noise into the dataset.

We used m = 100, n = 500, k = 3, µP = (0.5, 0.35, 0.15), |C| = 5, γC = (0.67, 0.49, 0.29, 0.29, 0.2),
and q = 0.0027538462.1 We removed alterations that occurred in fewer than 5 alterations (resulting in the
average number of genes of 276.44). We ran CoMEt 100 million iterations from 3 random initial starts.

S4 Supplementary Figures

Figure S1: Screenshot of the web application for interactive visualization of CoMEt results.

1We chose values for C and q using values calculated from real data. We choose C to match the mutation frequencies of the
five most mutated genes in the TCGA glioblastoma dataset. We calculated q empirically from the TCGA breast cancer mutation
matrix.
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Figure S2: The distribution of the number of genes with≥ x mutations in simulated data. We removed
those genes mutated in fewer than 1% of mutations, i.e. genes mutated in fewer than 5 samples.
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Figure S4: Mutation matrices for the CoMEt results on (a) TCGA GBM, (b) TCGA AML, (c) TCGA
STAD, and (d) TCGA BRCA datasets. The matrices have alterations as rows, and samples as columns.
Each cell indicates whether or not an alteration occurred in a particular sample, where grey indicates the
sample was not altered. Samples with co-occurring alterations in the same set are colored orange, while
exclusive alterations are colored blue.
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Figure S5: Statistically significant modules identified by CoMEt (with k = 3, t = 1) on ICGTs from
Wang et al. [27]. (a,c) Marginal probability graphs of the two modules. (b,d) Mutation matrices of the two
modules. Representation as in Figure 4.
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Figure S6: mutex results on the TCGA GBM dataset from Leiserson et al. [21].
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(a) Bootstrap (b) Down-sampled

Figure S10: Robustness of CoMEt on TCGA GBM [1] datasets from Leiserson et al. [21]. Datasets were
(a) bootstrapped and (b) down-sampled to include only 50% of the samples. We ran CoMEt on 25 such
datasets, and computed the number of recovered genes (x-axis) and number of additional genes (y-axis)
compared to the CoMEt results on the full dataset. For comparison, the CoMEt results on the full dataset
included 17 genes (black line).
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Figure S11: Robustness of the modules identified by CoMEt on the TCGA GBM [1] dataset from
Leiserson et al. [21]. We ran CoMEt on TCGA GBM datasets (a) bootstrapped (sampled with replacement)
and (b) down-sampled to include only 50% of the samples. Shown is the marginal probability graph output
by CoMEt on the TCGA GBM dataset. Nodes and edges are labeled with the proportion of down-sampled
datasets in which they were identified by CoMEt. The most mutated genes in each of the Rb, p53, and
PI(3)K signaling pathways were identified on at least 68% (17/25) and 80% (20/25) of the bootstrapped and
down-sampled datasets, respectively.
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Figure S12: Scatter plot between negative log of exact and binomial P -values for all sets of k = 3
alterations on the GBM dataset (left) and BRCA dataset (right). The color of each dot represents the
number of co-occurring alterations according to the scale at the right. Note that the P -values for the exact
test much smaller than the binomial only in cases with relatively low number of co-occurrences. These cases
are the fastest to compute with the tail enumeration algorithm.
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(b) Multi-Dendrix

(a) CoMEt

(c) mutex

Figure S14: (a) CoMEt modules, (b) Multi-Dendrix consensus, and (c) Mutex groups from the TCGA Pan-
cancer GBM datasets [5] with (left) and without (right) mutation filtering with the MutSigCV algorithm.
Red and blue circles represent genes that are common and different between the two results, respectively.
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Iteration of MCMC Iteration of MCMC

Figure S15: Plots of the total variation distance distribution in each iteration for an MCMC run with
1M iterations (left) and an MCMC run with 10M iterations (right) on AML mutation data for t = 3
and k = 4.

Figure S16: The distribution of the number of edges with weight ≥ p in GBM with k = 3 and t = 3 in
log-log scale. The red dot indicates the first hitting edge weight where the change in slope is negative (when
moving leftward) such that the number of edges in the subgraph is at least t ×

(
k
2

)
= 9 (as the horizontal

yellow line).
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