

Supporting Information

Catalytic Intramolecular Aminofluorination, Oxyfluorination, and Carbofluorination with a Stable and Versatile Hypervalent Fluoroiodine Reagent**

Weiming Yuan and Kálmán J. Szabó*

anie_201503373_sm_miscellaneous_information.pdf

Contents:

General Information	2
Experimental Procedures and Spectral Data	2
References	13
NMR spectra of products 3a-3n, 5a-5c and 7a-7d	14

General Information

Hypervalent iodine **1**^[1] and alkenes^[2] were prepared according to literature procedures. All the other chemicals were obtained from commercial sources and used as received. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded in CDCl₃ (internal standard: 7.26 ppm, ¹H; 77.0 ppm, ¹³C) using 400 MHz spectrometers. High resolution mass data (HRMS) were obtained using ESI technique. For column chromatography, silica gel (35-70 microns) was used. Unless otherwise stated the reactions were conducted under argon.

Experimental Procedures and Spectral Data

Method A for catalytic fluorocyclization

Fluoroiodine reagent **1** (92.0 mg, 0.33 mmol), the corresponding alkenes **2** (0.3 mmol), $Zn(BF_4)_2XH_2O$ (3.6 mg, 0.015 mmol) were mixed in DCM (0.5 mL). This reaction mixture was stirred at room temperature. After completion of the reaction, the resulting mixture was concentrated and purified by column chromatography on silca gel.

Method B for catalytic fluorocyclization

Fluoroiodine reagent **1** (126.0 mg, 0.45 mmol), the corresponding alkenes **2** (0.3 mmol), Cu(MeCN)₄BF₄ (9.4 mg, 0.03 mmol) were mixed in DCM (0.5 mL). This reaction mixture was stirred at 40 °C. After completion of the reaction, the resulting mixture was concentrated and purified by column chromatography on silca gel.

3-Fluoro-3,5,5-trimethyl-1-tosylpiperidine (3a)^[3]

This compound was prepared according to method A. Compound **3a** was isolated as a white solid by chromatography using pentane:Et₂O (5:1) eluent system (67.4 mg, 75%). ¹H-NMR (400 MHz, CDCl₃) δ 0.90 (s, 3H); 1.08-1.23 (m, 4H); 1.30 (d, *J* = 20.6 Hz, 3H); 1.66-1.79 (m, 1H); 2.12 (d, *J* = 11.5 Hz, 1H); 2.32 (dd, *J*_{H-F} = 31.6 Hz, *J*_{H-H} = 12.6 Hz, 1H); 2.42 (s, 3H); 3.31 (dt, *J* = 11.6, 1.9 Hz, 1H); 3.67-3.76 (m, 1H); 7.31 (d, *J* = 8.2 Hz, 2H); 7.65 (d, *J* = 8.4 Hz, 2H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -145.00 (br); ¹³C-NMR (100 MHz, CDCl₃) δ 21.5; 25.6 (d, *J*_{CF} = 14.7 Hz); 25.7 (d, *J*_{CF} = 15.4 Hz); 29.0; 31.1; 46.8 (d, *J*_{CF} = 21.0 Hz); 53.9 (d, *J*_{CF} = 23.5 Hz); 56.5; 91.2 (d, *J*_{CF} = 176.8 Hz); 127.5; 129.6; 134.0; 143.4; HRMS (ESI): *m/z* calcd. for [C₁₅H₂₂FNNaO₂S]⁺ 322.1247, found 322.1247; Mp: 130-131 °C.

The spectral data is in agreement with the literature values of ref [3].

5-Fluoro-5-methyl-3,3-diphenyl-1-tosylpiperidine (3b)^[3]

This compound was prepared according to method A. Compound **3b** was isolated as a white solid by chromatography using pentane:Et₂O (5:1) eluent system (92.8 mg, 73%). ¹H-NMR (400 MHz, CDCl₃) δ 1.17 (d, *J* = 22.8 Hz, 3H); 2.45 (s, 3H); 2.49-2.63 (m, 1H); 2.70 (t, *J* = 13.2 Hz, 1H); 3.02 (t, *J* = 10.3 Hz, 1H); 3.08-3.20 (m, 1H); 3.43 (d, *J* = 12.7 Hz, 1H); 3.71 (d, *J* = 12.6 Hz, 1H); 7.13-7.25 (m, 2H); 7.26-7.46 (m, 10H); 7.70 (d, *J* = 8.3 Hz, 2H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -137.98 (br); ¹³C-NMR (100 MHz, CDCl₃) δ 21.5; 25.1 (d, *J*_{CF} = 24.2 Hz); 44.9 (d, *J*_{CF} = 20.7 Hz); 45.5 (d, *J*_{CF} = 6.0 Hz); 53.8; 54.6 (d, *J*_{CF} = 29.4 Hz); 91.5 (d, *J*_{CF} = 174.6 Hz); 126.2; 126.4; 126.8; 127.1; 127.7; 128.3; 128.4; 129.8; 132.3; 143.9; 145.1; 145.4; HRMS (ESI): *m*/*z* calcd. for [C₂₅H₂₆FNNaO₂S]⁺ 446.1560, found 446.1571; Mp: 160-162 °C.

The spectral data is in agreement with the literature values of ref [3].

5-Fluoro-5-methyl-1-(methylsulfonyl)-3,3-diphenylpiperidine (3c)

^{Ph} ^{Ph}

5-Fluoro-5-methyl-3,3-diphenyl-1-(p-nitro-benzenesulfonyl)piperidine (3d)

This compound was prepared according to method A. Compound **3d** was isolated as a white solid by chromatography using pentane:Et₂O (3:1) eluent system (114.4 mg, 84%). ¹H-NMR (400 MHz, CDCl₃) δ 1.22 (d, *J* = 22.1 Hz, 3H); 2.47 (dd, *J* = 21.5, 14.1 Hz, 1H); 2.73-2.87 (m, 1H); 3.02-3.27 (m, 2H); 3.56-3.80 (m, 2H); 7.18-7.37 (m, 10H); 7.95 (d, *J* = 8.8 Hz, 2H); 8.35 (d, *J* = 8.9 Hz, 2H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -139.39 (br); ¹³C-NMR (100 MHz, CDCl₃) δ 25.1 (d, *J*_{CF} = 23.5 Hz); 44.6 (d, *J*_{CF} = 20.5 Hz); 45.6 (d, *J*_{CF} = 5.2 Hz); 53.7; 54.4 (d, *J*_{CF} = 28.7 Hz); 91.1 (d, *J*_{CF} = 176.2 Hz); 124.4; 126.4; 126.7; 126.8; 126.9; 128.4; 128.6; 128.9; 141.7; 144.7; 145.0; 150.2; HRMS (ESI): *m*/*z* calcd. for [C₂₄H₂₃FN₂NaO₄S]⁺ 477.1255, found 477.1247; Mp: 180-182 °C.

5-Cyclohexyl-3-fluoro-3-methyl-1-tosylpiperidine (3e)

F N Te This compound was prepared according to method A. Compound 3e was isolated as a white solid by chromatography using pentane:Et₂O (5:1)

eluent system (85.5 mg, 84%). ¹H-NMR (400 MHz, CDCl₃) δ 0.97-1.15 (m, 1H); 1.15-1.23 (m, 2H); 1.30 (d, J = 20.5 Hz, 3H); 1.35-1.63 (m, 7H); 1.69-1.80 (m, 1H); 1.84-1.95 (m, 1H); 2.06 (d, J = 11.9 Hz, 1H); 2.29-2.47 (m, 4H); 3.57-3.67 (m, 1H); 3.68-3.79 (m, 1H); 7.32 (d, J = 8.3 Hz, 2H); 7.67 (d, J = 8.3 Hz, 2H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -143.41 (m); ¹³C-NMR (100 MHz, CDCl₃) δ 21.4; 21.5; 25.9 (d, $J_{CF} =$ 24.3 Hz); 26.1; 33.1; 33.2; 33.7; 37.7; 45.4 (d, $J_{CF} = 20.8$ Hz); 53.8; 54.5 (d, $J_{CF} =$ 24.3 Hz); 91.5 (d, $J_{CF} = 176.2$ Hz); 127.5; 129.6; 134.2; 143.4; HRMS (ESI): m/zcalcd. for [C₁₈H₂₆FNNaO₂S]⁺ 362.1560, found 362.1569; Mp: 114-115 °C.

5-Fluoro-3,3-diphenyl-1-tosylpiperidine (3f)^[3]

This compound was prepared according to method A. Compound **3f** was isolated as a white solid by chromatography using pentane:Et₂O (5:1) eluent system (87.2 mg, 71%). ¹H-NMR (400 MHz, CDCl₃) δ 2.14-2.25 (m, 1H); 2.28-2.38 (m, 1H); 2.39-2.55 (m, 4H); 2.91-3.07 (m, 1H); 3.99-4.15 (m, 1H); 4.43-4.70 (m, 2H); 7.13-7.44 (m, 10H); 7.50 (d, *J* = 7.8 Hz, 2H); 7.68 (d, *J* = 8.1 Hz, 2H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -185.46 (d, *J* = 47.9 Hz); ¹³C-NMR (100 MHz, CDCl₃) δ 21.5; 41.0 (d, *J*_{CF} = 18.5 Hz); 46.5 (d, *J*_{CF} = 11.0 Hz); 49.9 (d, *J*_{CF} = 31.2 Hz); 53.8; 85.6 (d, *J*_{CF} = 173.9 Hz); 126.4; 126.5; 126.9; 127.69; 127.73; 128.58; 128.66; 129.9; 132.1; 143.1; 144.0; 145.4; HRMS (ESI): *m*/*z* calcd. for [C₂₄H₂₄FNNaO₂S]⁺ 432.1404, found 432.1398; Mp: 167-168 °C.

The spectral data is in agreement with the literature values of ref [3].

5-Ethyl -5-fluoro-3,3-diphenyl-1-tosylpiperidine (3g)

This compound was prepared according to method A. Compound **3g** was isolated as a white solid by chromatography using pentane:Et₂O (5:1) eluent system (94.5 mg, 72%). ¹H-NMR (400 MHz, CDCl₃) δ 0.82 (t, *J* =

7.4 Hz, 3H); 1.34-1.54 (m, 2H); 2.36-2.57 (m, 4H); 2.61-2.75 (m, 1H); 2.98-3.17 (m, 2H); 3.47-3.66 (m, 2H); 7.13-7.24 (m, 2H); 7.25-7.43 (m, 10H); 7.69 (d, J = 8.3 Hz, 2H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -151.29 (m); ¹³C-NMR (100 MHz, CDCl₃) δ 6.8 (d, $J_{CF} = 5.1$ Hz); 21.5; 30.4 (d, $J_{CF} = 22.2$ Hz); 42.8 (d, $J_{CF} = 20.6$ Hz); 45.4 (d, $J_{CF} = 5.9$ Hz); 52.7 (d, $J_{CF} = 28.7$ Hz); 54.1; 93.0 (d, $J_{CF} = 177.8$ Hz); 126.2; 126.4; 126.9; 127.1; 127.7; 128.2; 128.4; 129.8; 132.4; 143.9; 145.47; 145.53; HRMS (ESI): m/z calcd. for [C₂₆H₂₈FNNaO₂S]⁺ 460.1717, found 460.1716; Mp: 168-169 °C.

5-Fluoro-5-pentyl-3,3-diphenyl-1-tosylpiperidine (3h)

This compound was prepared according to method A. Compound **3h** was isolated as a white solid by chromatography using pentane:Et₂O (5:1) eluent system (89.1 mg, 62%). ¹H-NMR (400 MHz, CDCl₃) δ 0.85 (t, *J* = 7.3 Hz, 3H); 0.95-1.52 (m, 8H); 2.39-2.73 (m, 5H); 2.95-3.22 (m, 2H); 3.43-3.71 (m, 2H); 7.12-7.44 (m, 12H); 7.70 (d, *J* = 8.2 Hz, 2H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -148.59 (br); ¹³C-NMR (100 MHz, CDCl₃) δ 13.9; 21.5; 22.0 (d, *J*_{CF}= 3.7 Hz); 22.3; 31.7; 37.6 (d, *J*_{CF}= 22.1 Hz); 42.7 (d, *J*_{CF}= 20.5 Hz); 45.4 (d, *J*_{CF}= 5.9 Hz); 53.4 (d, *J*_{CF}= 29.1 Hz); 54.1; 93.0 (d, *J*_{CF}= 177.4 Hz); 126.2; 126.4; 126.9; 127.1; 127.7; 128.2; 128.4; 129.8; 132.4; 143.9; 145.4; 145.6; HRMS (ESI): *m*/*z* calcd. for [C₂₉H₃₄FNNaO₂S]⁺ 502.2186, found 502.2172; Mp: 190-191 °C.

5-Fluoro-5-methyl-3-phenyl-1-tosylpiperidine (3i)

This compound was prepared according to method A. Compound **3i** was isolated as a white solid by chromatography using pentane:Et₂O (5:1) eluent system (64.6 mg, 62%). Spectral data for the separated major diastereomer: ¹H-NMR (400 MHz, CDCl₃) δ 1.58 (d, *J* = 23.2 Hz, 3H); 1.65-1.84 (m, 1H); 1.99-2.14 (m, 2H); 2.28 (dd, *J* = 10.7, 6.8 Hz, 1H); 2.36 (s, 3H); 2.84-3.02 (m, 1H); 3.72-3.78 (m, 1H); 3.79-3.89 (m, 1H); 7.07-7.14 (m, 2H); 7.15-7.30 (m, 5H); 7.54 (d, J = 8.3 Hz, 2H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -138.50 (m); ¹³C-NMR (100 MHz, CDCl₃) δ 21.5; 23.4 (d, $J_{CF} = 24.2$ Hz); 40.2 (d, $J_{CF} = 11.2$ Hz); 42.2 (d, $J_{CF} = 21.3$ Hz); 52.5; 54.2 (d, $J_{CF} = 34.6$ Hz); 92.3 (d, $J_{CF} = 172.0$ Hz); 127.1; 127.4; 127.5; 128.8; 129.8; 133.0; 140.4; 143.8; HRMS (ESI): m/z calcd. for $[C_{19}H_{22}FNNaO_2S]^+$ 370.1247, found 370.1247; Mp: 154-155 °C.

5-Fluoro-5,6-dimethyl-3,3-diphenyl-1-tosylpiperidine (3j)

This compound was prepared according to method A. Compound **3j** was isolated as a white solid by chromatography using pentane:Et₂O (5:1) eluent system (82.7 mg, 63%). ¹H-NMR (400 MHz, CDCl₃) δ 1.15 (d, *J* = 7.0 Hz, 3H); 1.35 (d, *J* = 21.2 Hz, 3H); 2.29-2.50 (m, 4H); 2.85-2.96 (m, 1H); 3.39 (d, *J* = 13.6 Hz, 1H); 3.94 (dq, *J*_{H-F} = 13.3 *J*_{H-H} = 7.1 Hz, 1H); 4.73 (dd, *J* = 13.7, 1.7 Hz, 1H); 7.10-7.24 (m, 8H); 7.26-7.32 (m, 2H); 7.40 (d, *J* = 7.8 Hz, 2H); 7.62 (d, *J* = 8.3 Hz, 2H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -139.81 (m); ¹³C-NMR (100 MHz, CDCl₃) δ 12.9 (d, *J*_{CF} = 8.1 Hz); 21.5; 25.4 (d, *J*_{CF} = 24.2 Hz); 40.0 (d, *J*_{CF} = 19.2 Hz); 45.3; 46.4; 56.3 (d, *J*_{CF} = 22.7 Hz); 94.0 (d, *J*_{CF} = 178.6 Hz); 125.6; 126.1; 126.5; 127.39; 127.42; 127.8; 128.6; 129.4; 136.6; 143.3; 144.9; 147.4; HRMS (ESI): *m/z* calcd. for [C₂₆H₂₈FNNaO₂S]⁺ 460.1717, found 460.1722; Mp: 174-175 °C.

The stereochemistry was determined on the basis of the coupling constant between H(6) and F(5), which is 13.3 Hz. This coupling constant indicates a *cis* geometry for H(6) and F(5). In the case of *trans* geometry of H(6) and F(5) a larger coupling constant is expected (about 36 Hz, see ref [3] SI). Since H(6) and F(5) are *cis*, the two methyl groups Me(5) and Me(6) should also be in *cis* position. On the basis of this, the relative configuration of the Me(5) and Me(6) groups of **3k** was assigned as *trans*.

5-Fluoro-5,6-dimethyl-3,3-diphenyl-1-tosylpiperidine (3k)

This compound was prepared according to method A. Compound **3k** was isolated as a white solid by chromatography using pentane:Et₂O (5:1) eluent system (85.3 mg, 65%). ¹H-NMR (400 MHz, CDCl₃) δ 0.85 (dd, *J* = 6.8, 3.0 Hz, 3 H); 0.91 (d, *J* = 25.1 Hz, 3H); 2.42 (s, 3 H); 2.56-2.65 (m, 1H); 2.78 (t, *J* = 13.7 Hz, 1H); 2.99 (d, *J* = 13.4 Hz, 1H); 4.00 (q, *J* = 6.84 Hz, 1H); 4.78 (d, *J* = 13.6 Hz, 1H); 7.15-7.24 (m, 4H); 7.25-7.34 (m, 6H); 7.58 (d, *J* = 7.8 Hz, 2H); 7.74 (d, *J* = 8.3 Hz, 2H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -134.11 (m); ¹³C-NMR (100 MHz, CDCl₃) δ 8.3 (d, *J*_{CF} = 5.2 Hz); 21.5; 25.5 (d, *J*_{CF} = 24.4 Hz); 39.9 (d, *J*_{CF} = 22.9 Hz); 46.4; 46.6 (d, *J*_{CF} = 12.1 Hz); 56.2 (d, *J*_{CF} = 27.3 Hz); 93.6 (d, *J*_{CF} = 174.1 Hz); 126.1; 126.2; 126.7; 127.5; 127.6; 128.4; 128.7; 129.8; 136.8; 143.8; 144.4; 146.7; HRMS (ESI): *m/z* calcd. for [C₂₆H₂₈FNNaO₂S]⁺ 460.1717, found 460.1714; Mp: 172-173 °C.

3-Fluoro-3-methyl-1-tosylpyrrolidine (31)^[4]

This compound was prepared according to method A. Compound **31** was isolated as a white solid by chromatography using pentane:Et₂O (5:1) eluent system (54.0 mg, 70%). ¹H-NMR (400 MHz, CDCl₃) δ 1.45 (d, *J* = 20.5 Hz, 3H); 1.75-1.95 (m, 1H); 2.03-2.15 (m, 1H); 2.43 (s, 3H); 3.23-3.40 (m, 2H); 3.43-3.61 (m, 2H); 7.32 (d, *J* = 8.0 Hz, 2H); 7.71 (d, *J* = 8.4 Hz, 2H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -140.89 (m); ¹³C-NMR (100 MHz, CDCl₃) δ 21.5; 21.8 (d, *J*_{CF} = 21.5 Hz); 37.7 (d, *J*_{CF} = 23.6 Hz); 46.9; 58.3 (d, *J*_{CF} = 25.7 Hz); 100.3 (d, *J*_{CF} = 176.0 Hz); 127.5; 129.6; 133.7; 143.6; HRMS (ESI): *m/z* calcd. for [C₁₂H₁₆FNNaO₂S]⁺ 280.0778, found 280.0788; Mp: 105-107 °C.

The spectral data is in agreement with the literature values of ref [4].

3-Fluoro-3-methyl-1-tosylpiperidine (3m)

This compound was prepared according to method A. Compound **3m** was isolated as a white solid by chromatography using pentane:Et₂O (5:1) eluent system (59.4 mg, 73%). ¹H-NMR (400 MHz, CDCl₃) δ 1.32-1.54 (m, 4H); 1.55-1.65 (m, 1H); 1.72-1.92 (m, 2H); 2.43 (s, 3H); 2.66-2.83 (m, 2H); 3.23-3.41 (m, 2H); 7.32 (d, *J* = 8.0 Hz, 2H); 7.65 (d, *J* = 8.3 Hz, 2H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -148.97 (br); ¹³C-NMR (100 MHz, CDCl₃) δ 21.2 (d, *J*_{CF} = 4.41 Hz); 21.5; 24.3 (d, *J*_{CF} = 23.5 Hz); 34.5 (d, *J*_{CF} = 22.7 Hz); 45.5; 53.9 (d, *J*_{CF} = 26.4 Hz); 90.6 (d, *J*_{CF} = 174.6 Hz); 127.6; 129.6; 133.7; 143.5; HRMS (ESI): *m/z* calcd. for [C₁₃H₁₈FNNaO₂S]⁺ 294.0934, found 294.0949; Mp: 104-105 °C.

3-Fluoro-3-methyl-1-tosylazepane (3n)

This compound was prepared according to method A. Compound **3n** was isolated as a white solid by chromatography using pentane:Et₂O (5:1) eluent system (59.9 mg, 70%). ¹H-NMR (400 MHz, CDCl₃) δ 1.46 (d, *J* = 21.9 Hz, 3H); 1.51-2.01 (m, 6H); 2.42 (s, 3H); 2.86-3.00 (m, 1H); 3.15-3.28 (m, 1H); 3.42-3.56 (m, 2H); 7.30 (d, *J* = 8.2 Hz, 2H); 7.67 (d, *J* = 8.3 Hz, 2H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -139.15 (m); ¹³C-NMR (100 MHz, CDCl₃) δ 21.0 (d, *J*_{CF} = 5.2 Hz); 21.5; 26.1 (d, *J*_{CF} = 24.3 Hz); 30.0; 39.1 (d, *J*_{CF} = 23.5 Hz); 50.9; 57.5 (d, *J*_{CF} = 33.8 Hz); 96.9 (d, *J*_{CF} = 170.2 Hz); 127.1; 129.7; 136.0; 143.3; HRMS (ESI): *m/z* calcd. for [C₁₄H₂₀FNNaO₂S]⁺ 308.1091, found 308.1096; Mp: 95-96 °C.

5-Fluoro-5-methyl-3,3-diphenyltetrahydro-2*H*-pyran (5a)

This compound was prepared according to method A. Compound **5a** was isolated as a white solid by chromatography using pentane:Et₂O (15:1) eluent system (50.3 mg, 62%). ¹H-NMR (400 MHz, CDCl₃) δ 1.22 (d, *J* = 21.7 Hz, 3H); 2.59 (dd, *J* = 26.4, 13.5 Hz, 1H); 2.82-2.96 (m, 1H); 3.57 (dd, *J* = 24.0, 12.0 Hz,

1H); 3.79-3.94 (m, 2H); 4.41 (dd, J = 12.3, 1.9 Hz, 1H); 7.15-7.45 (m, 10H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -145.57 (br); ¹³C-NMR (100 MHz, CDCl₃) δ 24.1 (d, $J_{CF} = 24.2$ Hz); 44.4 (d, $J_{CF} = 19.8$ Hz); 45.7 (d, $J_{CF} = 2.2$ Hz); 74.23 (d, $J_{CF} = 25.7$ Hz); 74.32; 90.8 (d, $J_{CF} = 174.1$ Hz); 125.9; 126.3; 127.0; 127.5; 128.0; 128.4; 145.6; 145.8; HRMS (ESI): m/z calcd. for [C₁₈H₁₉FNaO]⁺ 293.1312, found 293.1301; Mp: 138-139 °C.

5-Cyclohexyl-3-fluoro-3-methyltetrahydro-2*H*-pyran (5b)

This compound was prepared according to method A. Compound **5b** was isolated as a liquid by chromatography using pentane:Et₂O (15:1) eluent system (36.3 mg, 65%). ¹H-NMR (400 MHz, CDCl₃) δ 1.12-1.17 (m, 2H); 1.23 (d, *J* = 20.1 Hz, 3H); 1.34-1.54 (m, 7H); 1.64-1.74 (m, 2H); 1.99-2.11 (m, 1H); 2.99 (d, *J* = 11.4 Hz, 1H); 3.23 (dd, *J* = 35.1, 12.5 Hz, 1H); 3.78-3.93 (m, 2H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -146.74 (m); ¹³C-NMR (100 MHz, CDCl₃) δ 21.5 (d, *J*_{CF} = 16.9 Hz); 24.1; 24.3; 26.4; 32.8 (d, *J*_{CF} = 5.2 Hz); 36.8; 43.9 (d, *J*_{CF} = 20.7 Hz); 74.6; 74.8; 76.0; 91.8 (d, *J*_{CF} = 172.4 Hz); HRMS (ESI): *m*/*z* calcd. for [C₁₁H₁₉FNaO]⁺ 209.1312, found 209.1321.

6-Cyclohexyl-3-fluoro-3-methyloxepane (5c)

This compound was prepared according to method A. Compound **5c** was isolated as a liquid by chromatography using pentane: Et_2O (15:1) eluent system (36.1 mg, 60%). ¹H-NMR (400 MHz, CDCl₃) δ 1.22-1.48 (m,

14H); 1.66-1.96 (m, 3H); 3.29 (d, J = 12.3 Hz, 1H); 3.44 (dd, J = 30.0, 13.6 Hz, 1H); 3.62 (d, J = 12.4 Hz, 1H); 3.89 (dd, J = 18.6, 13.5 Hz, 1H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -142.33 (m); ¹³C-NMR (100 MHz, CDCl₃) δ 21.6 (d, $J_{CF} = 1.5$ Hz); 24.9 (d, $J_{CF} = 25.1$ Hz); 26.4; 30.9; 32.9 (d, $J_{CF} = 23.5$ Hz); 33.6; 35.9; 37.5; 80.5; 80.7; 82.0; 97.7 (d, J_{CF} = 170.2 Hz); HRMS (ESI): m/z calcd. for $[C_{12}H_{21}FNaO]^+$ 223.1469, found 223.1473.

Dimethyl 3-fluoro-3-methylcyclopentane-1,1-dicarboxylate (7a)

This compound was prepared according to method B. Compound **7a** was isolated as an oil by chromatography using pentane:Et₂O (10:1) eluent system (36.0 mg, 55%). ¹H-NMR (400 MHz, CDCl₃) δ 1.49 (d, J = 21.0 Hz, 3H); 1.66-1.86 (m, 1H); 2.00-2.14 (m, 1H); 2.17-2.27 (m, 1H); 2.30-2.46 (m, 1H); 2.56-2.74 (m, 2H); 3.72 (s, 3H); 3.74 (s, 3H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -135.03 (m); ¹³C-NMR (100 MHz, CDCl₃) δ 23.8 (d, $J_{CF} = 26.4$ Hz); 32.7; 38.4 (d, $J_{CF} = 23.5$ Hz); 46.4 (d, $J_{CF} = 24.3$ Hz); 52.9 (d, $J_{CF} = 11.0$ Hz); 59.6; 103.6 (d, $J_{CF} = 171.0$ Hz); 171.8; 172.8; HRMS (ESI): m/z calcd. for [C₁₀H₁₅FNaO₄]⁺ 240.0847, found 240.0870.

Diethyl 3-fluoro-3-methylcyclopentane-1,1-dicarboxylate (7b)

This compound was prepared according to method B. Compound **7b** was isolated as an oil by chromatography using pentane:Et₂O (10:1) eluent system (44.3 mg, 60%). ¹H-NMR (400 MHz, CDCl₃) δ 1.20-1.27 (m, 6H); 1.48 (d, *J* = 21.0 Hz, 3H); 1.66-1.85 (m, 1H); 2.00-2.13 (m, 1H); 2.14-2.24 (m, 1H); 2.30-2.46 (m, 1H); 2.55-2.71 (m, 2H); 4.13-4.23 (m, 4H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -134.83 (m); ¹³C-NMR (100 MHz, CDCl₃) δ 14.0; 23.9 (d, *J*_{CF} = 26.0 Hz); 32.6; 38.4 (d, *J*_{CF} = 24.2 Hz); 46.3 (d, *J*_{CF} = 24.6 Hz); 59.7; 61.6 (d, *J*_{CF} = 14.7 Hz); 103.6 (d, *J*_{CF} = 171.1 Hz); 171.3; 172.3; HRMS (ESI): *m*/*z* calcd. for [C₁₂H₁₉FNaO₄]⁺ 269.1160, found 269.1162.

Diethyl 4-fluoro-2,2,4-trimethylcyclopentane-1,1-dicarboxylate (7c)

This compound was prepared according to method B. Compound **7c** was isolated as an oil by chromatography using pentane: Et_2O (10:1) eluent system (62.5 mg, 76%). ¹H-NMR (400 MHz, CDCl₃) δ 1.19 (s, 3H);

1.24-1.35 (m, 9H); 1.54 (d, J = 22.0 Hz, 3H); 2.02-2.29 (m, 2H); 2.47 (dd, J = 18.1, 16.0 Hz, 1H); 2.84-2.99 (m, 1H); 4.11-4.30 (m, 4H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -118.28 (m); ¹³C-NMR (100 MHz, CDCl₃) δ 14.0; 24.8; 25.6; 27.0; 27.3; 30.9; 45.5; 47.3 (d, $J_{CF} = 27.2$ Hz); 53.6 (d, $J_{CF} = 22.9$ Hz); 61.1 (d, $J_{CF} = 24.2$ Hz); 66.9; 101.6 (d, $J_{CF} = 171.5$ Hz); 170.1; 171.6; HRMS (ESI): m/z calcd. for $[C_{14}H_{23}FNaO_4]^+$ 297.1473, found 297.1479.

Diethyl 4-fluoro-2,4-dimethylcyclopentane-1,1-dicarboxylate (7d)

This compound was prepared according to method B. Compound 7d was isolated as an oil by chromatography using pentane:Et₂O (10:1) eluent EtOOC system (46.9 mg, 60%). The ¹H-NMR and ¹⁹F-NMR data of major diastereomer: ¹H-NMR (400 MHz, CDCl₃) δ 1.02 (d, J = 7.1 Hz, 3H); 1.20-1.29 (m, 6H); 1.49 (d, J = 21.1 Hz, 3H); 1.90-2.30 (m, 2H); 2.40-2.78 (m, 2H); 3.04-3.20 (m, 1H); 4.07-4.28 (m, 4H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -130.68 (m); the ¹H-NMR and ¹⁹F-NMR data of minor diastereomer: ¹H-NMR (400 MHz, CDCl₃) δ 1.10 (d, J = 7.2 Hz, 1.5H); 1.20-1.29 (m, 3H); 1.42 (d, J = 21.7 Hz, 1.5H); 1.90-2.30 (m, 1H); 2.40-2.78 (m, 1H); 2.90-3.04 (m, 0.5H); 4.07-4.28 (m, 2H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -124.74 (m); ¹³C-NMR (100 MHz, CDCl₃) δ 13.96; 13.98; 14.06; 14.08; 15.9; 16.1; 24.1 (d, J_{CF} = 26.4 Hz); 27.0 (d, J_{CF} = 28.0 Hz); 38.8; 39.5; 46.3 (d, J_{CF} = 22.8 Hz); 46.4 (d, $J_{CF} = 22.8$ Hz); 46.5 (d, $J_{CF} = 17.7$ Hz); 47.2 (d, $J_{CF} = 24.3$ Hz); 61.27; 61.28 (d, J_{CF} = 18.7 Hz); 63.0; 101.4 (d, J_{CF} = 175.5 Hz); 102.3 (d, J_{CF} = 170.0 Hz); 170.0; 171.3; 171.6; 171.8; HRMS (ESI): m/z calcd. for $[C_{13}H_{21}FNaO_4]^+$ 283.1316, found 283.1325.

References

- [1] a) G. C. Geary, E. G. Hope, K. Singh, A. M. Stuart, *Chem. Commun.* 2013, 49, 9263; b) V. Matoušek, E. Pietrasiak, R. Schwenk, A. Togni, *J. Org. Chem.* 2013, 78, 6763; c) P. Eisenberger, I. Kieltsch, R. Koller, K. Stanek, A. Togni, *Org. Synth.* 2011, 88, 168.
- [2] a) W. Q. Kong, P. Feige, T. D. Haro, C. Nevado, Angew. Chem. Int. Ed. 2013, 52, 2469; b) A. P. Dobbs, S. J. J. Guesné, R. J. Parker, J. Skidmore, R. A. Stephenson, M. B. Hursthouse, Org. Biomol. Chem. 2010, 8, 1064; c) Y. Jeong, D-Y. Kim, Y. Choi, J-S. Ryu, Org. Biomol. Chem. 2011, 9, 374; d) J. Kempson, W. J. Pitts, J. Barbosa, J. Guo, O. Omotoso, A. Watson, K. Stebbins, G. C. Starling, J. H. Dodd, J. C. Barrish, R. Felix, K. Fischer, Bioorg. Med. Chem. Lett. 2005, 15, 1829.
- [3] T. Wu, G. Y. Yin, G. S. Liu, J. Am. Chem. Soc. 2009, 131, 16354.
- [4] J. Cui, Q. Jia, R-Z. Feng, S-S. Liu, T. He, C. Zhang, Org. Lett. 2014, 16, 1442.

NMR spectra of products 3a-3n, 5a-5c and 7a-7d

86⁻281-----

19.051-----

65.651----

14.841-----

62.131-----

69`8#1-----

09.861-----

18.051-----

11.461-----

89[.]971-----

-145.33

