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Supplementary Figure 1, cont’d. (A) The unattached dumbbell in its
mean position in the traps holding and stretching it. The displacement of
Bead 1 from this mean position is its lab-coordinate x1. The displacements
of Bead 2 from its mean position is its lab-coordinate x2. The stage, with
the larger platform bead with a myosin S1 fragment on top, is here shown
in its mean position. The physical point on the stage which, averaged over
stage oscillations, coincides with the mean position of Bead 1 (white mark
on stage), is used to mark the position of the stage. Its displacement from its
mean position is the coordinate xdrv of the stage in the lab, where “drv” is
shorthand for “drive.” (B) The moment t1 when the myosin attaches to the
dumbbell; in the case shown here, xdrv(t1) > 0 and increasing. Note that the
scale of the x-axes is exaggerated in comparison with the separation between
the dumbbell beads: These 1µm-diameter beads are separated typically by
3 to 5µm, while the amplitude Adrv of the harmonic translation of the stage
is chosen typically to be 50 nm. Drawn to scale, this amplitude is little more
than the width of the tick-marks on the x-axes, and −Adrv ≤ xdrv(t) ≤ Adrv.
The size of the motor fragment and the thickness of the actin filament are
both even more exaggerated. The shape shown here of the bent actin is
not physical, but an artists’s rendition of the physical bending, which is
maximal at the points of attachment of the beads. (C) Later, at t > t1 and
xdrv(t) > xdrv(t1), the stage has pulled the dumbbell with it, which makes
Bead 1 pull back on the myosin with a positive load that, in the shown
geometry, is numerically larger than the small negative load from Bead 2.
Due to compliance in the left half of the dumbbell, x1(t) < xdrv(t)−xdrv(t1).



Supplementary Note 1:
Forces on a molecular motor attached to a har-
monically oscillated compliant dumbbell

A: Motion of an unattached, compliant dumb-

bell

The next section presents a useful pedagogical toy, the rigid dumbbell. It
does not represent our reality: Experimentally, we found that the dumbbell
showed its compliance even in the unattached state. This observation is
explained by the top panel in Supplementary Figure 1, which follows Fig. 5
in Ref. 1: The actin “handle” of the dumbbell is attached tangentially to the
two dumbbell beads. Thus, the distance between the two dumbbell beads
easily changes in response to changes in the force that stretches the dumbbell:
It requires only one degree of change in the orientation of the actin filament
at its point of attachment to a bead to allow the center of a 1µm-diameter
bead to displace itself 9 nm, which is seen as follows.

In a stretched dumbbell, the pull on the beads keeps them in close physical
contact with the actin filament even if the link to the filament is flexible.
The filament is tangential to both beads (Supplementary Figure 1), so 1◦ of
change of direction of the filament at a point of contact, makes the radius
of the bead to the point of contact rotate by 1◦ as well. Since the radius is
0.5µm long, the center of the bead is displaced by 1◦/360◦ × 2π× 500 nm =
9 nm. This displacement takes place in the direction parallel to the filament’s
direction at its point of contact, so the displacement’s component along the
x-axis is shorter than 9 nm.

In the dumbbell’s unattached, oscillating state, the force stretching the
dumbbell may oscillate as the dumbbell is dragged back and forth in the
two traps holding it by the oscillatory flow of fluid surrounding it. If the
two traps are Hookean springs with identical stiffnesses and the two beads
have identical drag coefficients, the separation between the beads will not
oscillate while the dumbbell’s position in the traps does. Our traps were
not sufficiently identical to ensure constant separation, so our dumbbells
displayed compliance even in their unattached states.
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B: Motion of an unattached, rigid dumbbell

Consider the motion of an unattached, rigid dumbbell in response to the
harmonic force on it caused by harmonic stage-oscillations. This simplest
possible case of dumbbell motion illustrates aspects of the motion of an at-
tached, compliant dumbbell. So it is a good starting point.

B-i: Definitions

Let x1 and x2 denote the lab-coordinates of Bead 1 and Bead 2, respec-
tively, measured along the direction of the dumbbell and stage oscillation.
Let the origin on the x1-axis be the time-averaged position of Bead 1 in the
unattached state of the dumbbell. With a similar definition of x2 for Bead 2,
the net trapping force on the dumbbell is zero when the beads are at these
origins. In these considerations we leave out Brownian motion. It is easily
added to Eq. (1) below, see Ref. 2, but by leaving it out, we arrive at trajec-
tories that are already averaged with respect to Brownian motion, and hence
ready for fitting to experimental trajectories.

Since the dumbbell is rigid, x1 = x2, and a single x-coordinate, xdb, will
describe its motion in the direction of its axis and the stage motion. We use
xdb = x1 = x2. The dumbbell is trapped with Hookean stiffness κdb ≈ κ1+κ2
and experiences a Stokes drag with coefficient γdb ≈ γ1 + γ2, where κi and γi
are, respectively, the stiffness of Trap i and Stokes drag coefficient of Bead i,
i = 1, 2. Actually we expect γdb to be larger than γ1 + γ2 because the
actin ”handle” of the dumbbell also contributes to the drag coefficient of the
dumbbell.

B-ii: Equation of motion for unattached, rigid dumb-
bell

Newton’s 2nd law with vanishing inertial term gives the equation of motion,

0 = −κdb xdb − γdb(ẋdb − vdrv) . (1)

It is linear in xdb with an inhomogeneous source term proportional to the
known stage-velocity, vdrv, since this is also the velocity of the buffer fluid,
which drives the motion of the dumbbell:

vdrv(t) = Adrv ωdrv cos(ωdrvt) . (2)
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Here Adrv is the amplitude of the harmonic oscillation of the position of the
stage, and ωdrv is its cyclic frequency:

xdrv(t) = Adrv sin(ωdrvt) . (3)

We have chosen the origin of our time axis to be a point in time when xdrv = 0
and vdrv > 0. Thus, phase-angles of other oscillations are measured relatively
to those of the stage position; vdrv, e.g., is phase-shifted π/2 ahead of xdrv.

B-iii: Solution xdb(t) to equation of motion

The dynamic equation (1) for xdb is solved (Sec. IIIB in Tolic-Nørrelykke et
al., 2006) by

xdb(t) =
Adrv

[1 + (fc,db/fdrv)2]1/2
cos(2πfdrv(t− τdb))

=
vdrv(t− τdb)

[(2πfc,db)2 + (2πfdrv)2]1/2

=
xdrv(t− τdb + tdrv/4)

[1 + (fc,db/fdrv)2]1/2
, (4)

where we have introduced the period tdrv of stage oscillations, the corner
frequency fc,db for the trapped dumbbell, and its inverse, the characteristic
relaxation time, τdb, for the dumbbell in the trap;

2πfc,db =
κdb
γdb

; τdb =
1

2πfc,db
=
γdb
κdb

. (5)

B-iv: Typical parameter values; approximations to xdb(t)

Typical values are fdrv = 200 Hz and fc,db ≈ 2 kHz. So (fc,db/fdrv)2 ≈ 100.
Consequently, we commit less than 1% error with the approximation

xdb(t) ≈ vdrv(t− τdb)

2πfc,db

=
fdrv
fc,db

xdrv(t− τdb + tdrv/4) , (6)

which shows that the dumbbell oscillates with approximately 10% of the
amplitude of the stage and trails the stage velocity by τdb.
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At fc,db = 2 kHz, τdb = 80µs, to be compared with the 5 ms period of the
stage at 200 Hz. It shows that the dumbbell responds almost instantly to the
drag force cause by the stage motion, with a delay of only 0.016 period, i.e.,
a phase angle of -0.1 radian or -6◦. Thus, within a 2% error we can ignore
τdb and have

xdb(t) ≈ vdrv(t)

2πfc,db

=
fdrv
fc,db

xdrv(t+ tdrv/4) (7)

i.e., the dumbbell coordinate is phase shifted π/2, one fourth of a stage
period, ahead of the stage coordinate. This phase shift ahead should not
confuse, if one remembers that it is the stage velocity that drives the position
of the unattached dumbbell away from zero, and this happens essentially in
synchrony, with the dumbbell position trailing the stage velocity only by τdb.

C: Motion of an attached, compliant dumb-

bell

C-i: Definitions

We neglect the compliance of the attachment of the dumbbell to the stage,
i.e., the compliance in the S1, its linkage to the platform bead, and in the
platform bead. We trust it to be negligible compared to the compliance
in the dumbbell itself (Dupuis et al., 1997). With this approximation, the
point of attachment between dumbbell and S1 simply follows the stage. This
approximation decouples the dynamics of the two parts of the dumbbell that
connect at the attachment point. Consequently, we can treat those two parts
independently. We start with the part including Bead 1.

Let t1 denote the point in time when the S1 attaches to the dumbbell
handle. For t ≤ t1, x1(t) = xdb(t), where xdb(t) is given in Eq. (4) for the
case of a rigid, unattached dumbbell. To keep things simple, we will proceed
with this case, using xdb(t1) as initial condition for the dynamics of x1(t)
for t > t1. It will disappear so fast from the description of the attached
dumbbell that this choice does not matter. If we used the more correct
initial condition, the coordinate x1(t1) of a compliant, unattached dumbbell,
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it would disappear equally fast from the description, so we don’t bother to
find it by solving for the motion of a compliant, unattached dumbbell.

The S1 attaches at a point on the dumbbell handle that we don’t see
and hence don’t know. Since it isn’t the midpoint, typically, Bead 1’s and
Bead 2’s connection to the attachment-point have different compliances. For
moderate relative movement of beads with respect to their attachment points,
it is reasonable to assume that each compliance is well modeled by a Hookean
spring. Let κ

(cp)
1 and κ

(cp)
2 denote the stiffnesses of these two springs.

C-ii: Equation of motion for bead in attached, compli-
ant dumbbell

At the instant attachment occurs (Supplementary Figure 1, Panel B), our
reference-point on the stage is located at xdrv(t1), but it keeps moving, now
with the dumbbell moving along with it. At a later time it is located at
xdrv(t) (Supplementary Figure 1, Panel C). The difference, xdrv(t)−xdrv(t1),
would, if the dumbbell were rigid, describe the displacement of every point
on the dumbbell relatively to where it were at time t1, when we have added
to it the displacement δx of the dumbbell caused by the power stroke of the
S1. The sign of δx depends on the direction of the power stroke.

At a later time t, Bead 1 would thus, if the dumbbell were rigid, have
coordinate

x
(rg)
1 (t) = x1(t1) + xdrv(t)− xdrv(t1) + δx (8)

= A

(
ωdrv

ωc

cos(ωdrvt1) + sin(ωdrvt)− sin(ωdrvt1)

)
+ δx .

The actual coordinate x1(t) of Bead 1 will differ from x
(rg)
1 (t) due to

compliance, and this difference then causes a restoring Hookean force

F
(cp)
1 (t) = −κ(cp)1

(
x1(t)− x(rg)1 (t)

)
. (9)

The difference between x1(t) and x
(rg)
1 (t) also causes a drag force on Bead 1:

since x1(t) − x
(rg)
1 (t) is not constant, the velocity in the lab of Bead 1,

dx1/dt(t) = ẋ1(t), generally differs from the velocity of the buffer fluid, which

moves with the stage and x
(rg)
1 (t), and hence velocity vdrv(t). The ensuing

drag force on Bead 1 equals −γ1(ẋ1(t)− vdrv(t)).
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Ignoring inertia, the total force on Bead 1 is zero at all times t according
to Newton’s 2nd law,

0 = −κ1x1 + F
(cp)
1 − γ1(ẋ1 − vdrv)

= −κ1x1 − κ(cp)1

(
x1 − x(rg)1

)
− γ1 (ẋ1 − vdrv)

= −γ1ẋ1 − (κ1 + κ
(cp)
1 )x1 + κ

(cp)
1 x

(rg)
1 + γ1vdrv . (10)

This is the equation of motion for x1. The equation of motion for x2 is
obtained by substituting subscript 1 for 2 in Eqs. (8–10).

C-iii: Physical meaning of terms in equation of motion
for x1

Imagine x
(rg)
1 (t) is positive and growing. This is the trajectory that Bead 1

would need to follow in order to follow the stage in unison. Imagine that
it does not do that perfectly: Imagine x1(t) also is positive and growing,

but trailing behind x
(rg)
1 (t), because it is held back by the trap to some

extent, and the compliance of its connection with the stage allows it to yield
somewhat to the force from the trap (Supplementary Figure 1, Panel C).
Thus, the force from the trap is negative, while the drag force from the
buffer fluid is positive. The sum of these two forces is transmitted through
the compliant dumbbell to the S1. It is not quite the trapping force −κ1x1
that we can measure by monitoring Bead 1’s displacement x1 in Trap 1. The
force transmitted to the S1 is reduced in magnitude by the drag force, and
equals −κ1x1 − γ1 (ẋ1 − vdrv).

The question now is how much the drag-force matters in the case of finite
compliance. If it is negligible, the load on the myosin from Bead 1 equals the
force that we can measure as −κ1x1. To decide whether this simplification
is reasonable, we solve the full problem below.

C-iv: How to recover the rigid dumbbell from the com-
pliant dumbbell in the limit of no compliance

Equation (10) simplifies in the limit of zero compliance. This is the limit of

κ
(cp)
1 →∞. In that limit, x1 differs infinitesimally from x

(rg)
1 , just enough to

make −κ(cp)1

(
x1 − x(rg)1

)
= κ1x1, while the drag-force term, −γ1 (ẋ1 − vdrv),

vanishes in that limit, because x1 → x
(rg)
1 means ẋ1 → ẋ

(rg)
1 = vdrv.
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C-v: Solution to equation of motion for x1

The solution to Eq. (10) for t ≥ t1 is

x1(t) = e−(t−t1)/τ1x1(t1)

+

∫ t

t1

dt′e−(t−t
′)/τ1

(
vdrv(t′) +

κ
(cp)
1

γ1
x
(rg)
1 (t′)

)
= e−(t−t1)/τ1x1(t1)

+

∫ t

t1

dt′

τ1
e−(t−t

′)/τ1

(
κ
(cp)
1

κ1 + κ
(cp)
1

x
(rg)
1 (t′) + τ1 vdrv(t′)

)
(11)

where we have introduced the characteristic time τ1 for the relaxation of
Bead 1 in the combined Hookean force fields from the optical trap and from
the compliant section of the dumbbell between Bead 1 and the dumbbell’s
point of attachment to the stage,

τ1 =
γ1

κ1 + κ
(cp)
1

<
γ1
κ1
≈ τdb . (12)

The first term on the right-hand side of Eq. (11) is a transient term that dies
out exponentially fast in time with characteristic time τ1. It represents the
memory in x1(t) of its value at time t1. The same exponentially decreasing
“memory weight-factor” is seen also under the integrand in Eq. (11). It
weighs the importance of past values (i.e., values at times before t) of the
rest of the integrand for the value of x1(t). In that rest of the integrand,

x
(rg)
1 (t′) is the coordinate of the point on the stage that Bead 1 would follow

if it followed the stage with rigor, i.e., with no compliance in the dumbbell,
with κ

(cp)
1 = ∞. Compliance reduces the amplitude of this contribution to

the trajectory of x1(t) by the factor κ
(cp)
1 /(κ1 + κ

(cp)
1 ). The velocity vdrv in

the integrand represents the velocity of the buffer fluid in the lab-frame of
reference, but it is also the velocity of the stage, and hence of x

(rg)
1 . This is

used in the second of the following approximations to Eq. (11).

C-vi: Approximate solution revealing physics at play

We could insert the known explicit expressions for x
(rg)
1 (t) and vdrv(t) on

the right-hand side of Eq. (11) and obtain the exact analytical expression
of this equation of motion. That approach yields a complicated result. The
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complications specify details on a time scale that we barely resolve, that
of τ1. Instead, we use the following simple approximation. It is precise
because it keeps term to order τ1/tdrv in the description, and by doing only
that it reveals the physics at play well: Consider the case of τ1 � tdrv,
i.e., the relaxation time τ1 of the bead under the combined force of optical
trap and dumbbell compliance is much shorter than the period of the stage
oscillation. In this case, the functions vdrv(t′) and x

(rg)
1 (t′) in the integrand

in Eq. (11) change negligibly in the brief range of t′-values with t′ ≤ t where
the exponential weight-factor exp(−(t−t′)/τ1) in Eq. (11) differs significantly

from zero. We consequently can approximate vdrv(t′) and x
(rg)
1 (t′) with their

values in t′ = t − τ1, the mean value of t′ with respect to the weight-factor
exp(−(t − t′)/τ1). The same exponential factor makes the first term on the
right-hand side of Eq. (11) negligible for t− t1 � τ1. Taken together, these
approximations give

x1(t) =
κ
(cp)
1

κ1 + κ
(cp)
1

x
(rg)
1 (t− τ1) + τ1 vdrv(t− τ1) (13)

=
κ
(cp)
1

κ1 + κ
(cp)
1

(
x
(rg)
1 (t− τ1) +

γ1

κ
(cp)
1

vdrv(t− τ1)

)
(14)

≈ κ
(cp)
1

κ1 + κ
(cp)
1

x
(rg)
1

(
t− τ1 + γ1/κ

(cp)
1

)
=

κ
(cp)
1

κ1 + κ
(cp)
1

x
(rg)
1

(
t+

κ1

κ
(cp)
1

τ1

)
, (15)

where Eq. (15) involves yet an approximation. It uses that vdrv is the velocity

of x
(rg)
1 , and is valid only for γ1/κ

(cp)
1 � tdrv. Equation (15) shows that Bead 1

on a compliant dumbbell oscillates with an amplitude that is a fraction of

the stage amplitude, the fraction
κ
(cp)
1

κ1+κ
(cp)
1

, and phase-shifted ahead of the

stage position. It is ahead of the stage position, as far as phase is concerned,
because it does not quite follow the stage as far as amplitude is concerned.
This deficiency in amplitude causes a drag force on Bead 1 that pushes it
in the direction the stage moves. It responds to this by shifting its position
in the direction that the stage velocity points, which phase shifts the cycles
of x1(t) towards the phase of vdrv. This phase shift is positive. It is also
always less than π/2, the phase of vdrv relatively to xdrv. This is physically
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obvious, and follows mathematically from Eq. (14) by inserting the explicit

expressions for x
(rg)
1 (t) and vdrv(t) in it. Then it can be rewritten as

x1(t) = x
(0)
1 + ∆x1 sin (ωdrv(t− τ1) + φ1) (16)

where the cycle mean value x
(0)
1 is irrelevant for the phase, the phase shift

φ1 ∈ [0, π/2] is defined by

tanφ1 =
γ1ωdrv

κ
(cp)
1

, (17)

and the amplitude ∆x1 is

∆x1 =
κ
(cp)
1

κ1 + κ
(cp)
1

Adrv

cosφ1

. (18)

The phase shift of x1(t) in Eq. (16), φ1 − ωdrvτ1, is always positive for our
parameter values, because its negative term is numerically small, −ωdrvτ1 ≈
−0.1, while φ1 is the arctan of a number strictly larger than that, though it
also is small, typically.

C-vii: Load on S1 from Bead 1

The load L1(t) on S1 from Bead 1 equals minus the force on Bead 1 from
trap and drag force. Thus the load is

L1 = κ1x1 + γ1(ẋ1 − vdrv) = F
(cp)
1 = −κ(cp)1

(
x1 − x(rg)1

)
(19)

where we have used Eq. (10). We find x1 − x(rg)1 from Eq. (13) by using the

very good approximation x
(rg)
1 (t− τ1) + τ1vdrv(t− τ1) ≈ x

(rg)
1 (t). With that

L1(t) = −κ(cp)1

(
x1(t)− x(rg)1 (t)

)
=

κ1κ
(cp)
1

κ1 + κ
(cp)
1

x
(rg)
1 (t− τ1) . (20)

Note that both the cycle average and the amplitude of oscillations in this
result remain unchanged if we entirely ignore the drag force. With γ1 = 0,
these two parameters remain the same in the approximation we have worked
in here, which is a calculation up to and including the first order in τ1/tdrv.
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This load has a cycle-average

〈L1〉 = κ1x
(0)
1 =

κ1κ
(cp)
1

κ1 + κ
(cp)
1

〈x(rg)1 〉 (21)

and oscillates harmonically with amplitude

∆L1 =
κ1κ

(cp)
1

κ1 + κ
(cp)
1

Adrv , (22)

i.e., as if the only effect of compliance is to reduce the amplitude of oscillations
by the factor κ

(cp)
1 /(κ1 + κ

(cp)
1 ).

The main effect of the drag force on Bead 1 in the attached, compliant
dumbbell is to produce a small positive phase shift, φ1−ωdrvτ1, in this bead’s
positions.

C-viii: Load on S1 from Bead 1 plus Bead 2

The load on S1 from Bead 2 is modeled like that from Bead 1. It oscillates
with the same frequency as that from Bead 1, but typically with different
amplitude and phase shift. The two phase shifts, φ1−ωdrvτ1 and φ2−ωdrvτ2,
are both so small that even if they are not exactly the same, we can safely
assume that the two loads, L1(t) and L2(t), are in phase. Consequently, the
total load of the S1 from the dumbbell, F (t) = L1(t)+L2(t), has a mean that
equals the sum of means, and its amplitude equals the sum of amplitudes,

F0 = 〈L1〉+ 〈L2〉 , (23)

∆F = ∆L1 + ∆L2 , (24)

which we have used after measuring L1(t) and L2(t). Not that it matters:
If one wants to account for a difference between the phase-shifts of the two
beads, one simply calculates F0 and ∆F directly from F (t) = L1(t) + L2(t)
or includes the effect of the phase difference in Eqs. (23) and (24).

We conclude that we can treat the experiment as if only the trapping
forces load the S1 and hence do this in phase with each other. We can ignore
the drag force on the attached dumbbell because it mainly phase-shifts the
load, without changing its mean value and its amplitude of oscillations.
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