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1 A basic Markov chain model of kinetochore-microtubule interactions
(Model I)

The interaction of a single kinetochore with microtubules is modeled as a birth/death (discrete-time) Markov
process. First, we consider a kinetochore that can bind up to n microtubules. The possible states are M =
{0, 1, 2, ..., n}. Transition probability from state i to j is pi,j = P (Xt+1 = j |Xt = i) , i, j ∈ M , where Xt

is the state at time t. As stated in the main text, we assume the association probability is proportional to the
surface area of a kinetochore available for microtubule attachment. Therefore, the association (birth) probability
is pk,k+1 = (n − k) b/n, 0 ≤ k ≤ n − 1 where b is the association probability of a single microtubule to a
free kinetochore. The dissociation (death) probability for state k is pk,k−1 = k d, 1 ≤ k ≤ n, because each
microtubule bound to a kinetochore (k microtubules in total) has the same dissociation probability d. The self-
transition probability is pk,k = 1 − (n − k) b/n − k d, 0 ≤ k ≤ n. As an example, consider a kinetochore that
can bind up to 2 microtubules. The possible states are {0, 1, 2}. The transition probability matrix is

R3 =

 p0,0 p0,1 p0,2

p1,0 p1,1 p1,2

p2,0 p2,1 p2,2

 =

 1− b b 0
d 1− 1

2b− d
1
2b

0 2d 1− 2d

 .

Fig. S1A shows a diagram of this Markov chain. This model is a variation on the M/M/s queue [1]. The Markov
chain consists of a single aperiodic recurrent class. Let uk be the steady-state probabilities of state k and U be
the row vector of uk, k = 0, 1, 2, ..., n. Applying the steady-state convergence theorem, then U = URn. This is
equivalent to a local balance equation: (1− k/n) b uk = (k + 1)d uk+1. Let ρ = b/d then,

(1− k/n)ρuk = (k + 1)uk+1, k = 0, 1, ..., n− 1. (4)

The normalization equation (the sum of all probabilities equals to 1) is
n∑
k=0

uk = 1. (5)

Eqs. (4) and (5) yield a unique solution:

uk =

(
n

k

)
(ρ/n)k(1 + ρ/n)−n, k = 0, 1, 2, ..., n, (6)

where
(
n
k

)
is the binomial coefficient ("n choose k"). When n is large, uk approaches the Poisson distribution

e−ρ ρk
/
k!. The mean and variance of uk, derived from Eq. (6), are nρ/(n+ ρ) and n2ρ

/
(n+ ρ)2 , respectively.

Fig. S1B shows an example of the probability distribution of uk (the number of attached microtubules) for n = 20.
As illustrated in this example, the stability of kinetochore-microtubule interaction can be controlled by ρ (i.e. d/b
ratio) alone.
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2 The extended model of kinetochore-microtubule interactions (Model II)
Now we consider the interaction of a kinetochore with bipolar spindles (Fig. 1B in the main text). There are
(n+ 1)(n+ 2)/2 possible states, e.g. 6 possible states for n = 2. We assign a unique index number to each state
denoted as sn(i, j):

sn(i, j) 7−→ i+ 1 +
(i+ j + 1)(i+ j)

2
, 0 ≤ i+ j ≤ n. (7)

We use these indices to construct the probability transition matrix in Mathematica codes. Using the same argument
for model I, the state transition probabilities are

sn(i, j)
n−i−j

n p
−→ sn(i+ 1, j),

sn(i, j)
n−i−j

n p
−→ sn(i, j + 1), (8)

sn(i, j)
i q−→ sn(i− 1, j),

sn(i, j)
j q−→ sn(i, j − 1),

where p, q are parameters with 0 ≤ p ≤ 1/2, 0 ≤ q ≤ 1/n. For example, the transition matrix Pn with n = 2 is

P2 =


1− 2p p p 0 0 0
q 1− p− q 0 p

2
p
2 0

q 0 1− p− q 0 p
2

p
2

0 2q 0 1− 2q 0 0
0 q q 0 1− 2q 0
0 0 2q 0 0 1− 2q

 .

Model II is fundamentally the same as Model I: b in Model I is equal to the combined probability of a microtubule
binding to a free kinetochore (= 2× p) in Model II. Dissociation probability of a single kMT is the same (d = q).
Hence ρ = 2p/q.

3 The model of kinetochore-microtubule interactions in meiosis and mi-
tosis (Model III)

The model of kinetochore-microtubule interactions in meiosis and mitosis is built from Model II, which we call
Model III. This model describes the state of a pair of kinetochores physically connected by a centromere chro-
matin (in mitosis and meiosis II) or a bivalent (in meiosis I) of homologous chromosomes, which is defined by
rn (i1, j1, i2, j2). Note that 0 ≤ p ≤ 1/4 and 0 ≤ q ≤ 1/2n in Model III because the total transition probability
from a given state including self-transition is 1. Also note that there is no direct transition from class 1 (free) to
class 5 (amphitelic, i.e. correct conformation).

As briefly mentioned in the main text, spindle tension stabilises the kMT attachments in amphitelic states (class
5), which is represented by the scaling with the parameter β. This applies to both mitosis and meiosis. The scaling
with the parameter β is exemplified by

rn(i1, 0, 0, j2)
i1β q−→ rn(i1 − 1, 0, 0, j2).

This rule also reduces the probability of transitions from class 5 to class 2 states (red arrow in Fig. 1E; with i1 = 1
in the above example).

The scaling of the probability of class 5 (amphitelic) to class 4 (merotelic) transitions with the parameter
α is based on the experimental evidences. In amphitelic states in mitosis, the kinetochore geometry in mitotic
chromosomes prevents each sister kinetochore from interacting with the microtubules from the opposite pole [2].
Therefore class 5 (amphitelic) to class 4 (merotelic) transitions are effectively eliminated in mitosis, i.e. α = 0.
In meiosis I, Nicklas suggested that the stability of amphitelic conformation is also gained by the aligned position
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of kinetochores with the pole-to-pole axis, with each kinetochore pointing at a pole [3]. A recent study of meiosis
I in mouse oocyte indeed revealed the restricted movement of kinetochores in amphitelic states (see supplemental
movies in Kitajima et al [4]). The scaling with the parameter α is exemplified by

rn(i1, 0, 0, j2)
n−i1

n αp
−→ rn(i1, 1, 0, j2).

With a similar reason transitions from class 2 (monotelic) to class 3 (syntelic) or 4 (merotelic) are reduced in
mitosis because the attached sister kinetochore are facing towards the pole from which the kMT emanates, while
the other unattached sister kinetochore are facing the opposite pole. Thus, these transitions (blue arrows in Fig.
1E) are scaled by the parameter 0 ≤ γ ≤ 1. For example,

rn(i1, 0, 0, 0)
γ p−→ rn(i1, 0, 1, 0),

rn(i1, 0, 0, 0)
n−i1

n γ p
−→ rn(i1, 1, 0, 0).

These scaling of the transitions by γ are unique to mitosis (and meiosis II); for meiosis I, γ = 1.
With sufficiently small α and β, class 5 becomes stable; when α = β = 0, transitions out of class 5 are not

possible. That means class 5 is an absorbing class in the Markov chain. This bias towards class 5 underpins the
probabilistic self-organisation of the system. By contrast, when α = β = 1 there is no bias towards class 5, that is,
amphitelic states are unstable. Note that when α 6= 0, β = 0, the process eventually ends up in either rn(n, 0, 0, n)
or rn(0, n, n, 0), that is, the class 5 states with maximal number of kMTs.

4 Steady-state PMF (probability mass function) in Model II
To calculate the steady-state PMF in Model II, consider it as a process of choosing the number of microtubules per
kinetochore and distributing them to left and right poles. Let k(≤ n) be the total number of microtubules attached

to the kinetochore and φn(i, j) be the PMF for state sn(i, j), then
k∑
i=0

φn(i, j) = uk, i+ j = k. φn(i, j) is derived

by distributing uk according to the binomial distribution:(
i+ j

i

)
(1/2)i(1/2)j =

(
k

i

)
(1/2)k, 0 ≤ i ≤ k.

Hence, using Eq. (6),

φn(i, j) = uk ×
(
k

i

)
(1/2)k

=
(

1 +
ρ

n

)−n ( ρ
2n

)i+j n!

i!j!(n− i− j)!
. (9)

Let Φn = (φn(0, 0), φn(0, 1), φn(1, 0), φn(0, 2), φn(1, 1), ..., φn(n− 1, 1), φn(n, 0)). Then, by applying Eq. (8)
and (9), we find Φn.Pn = Φn, which is consistent with the equilibrium at steady states.

5 Size of the Markov chains
The size of a Markov chain in Model II (total number of states) corresponds to the maximum of the sn(i, j)
indices according to Eq. (7), which is (n + 1)(n + 2)/2. The total number of states in the full model (Model
III) is thus (n + 1)2 (n+ 2)2

/
4, which grows rapidly as n increases (Fig. S2A). Note that class 4 becomes

predominant as the system size gets larger (Fig. S2B). Consequently, the number of possible state transitions also
increases exponentially with the system size (Fig. S2C), which corresponds to the number of non-zero entries in
the probability transition matrix.
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6 First passage time to class 5
For a Markov chain of Model III, the mean first passage time fi to class 5 from state i is obtained as the solution
of linear equations [5]:

fi =

{
1 +

∑
j /∈class 5

pi,jfj , i /∈ class 5,

0, i ∈ class 5.

f1 in Fig. 2A was calculated by incrementing p and q by 0.005 (50 × 10 points) and in Figs. S3A and S3D by
0.0001 (100 × 100 points). For a given value of q (= 0.0005), the minimum f1 plateaus as n grows (Fig. S3B),
although the number of states and transitions increase rapidly (Figs. S2A and S2C). For meiosis I, the q/p ratio for
the minimum f1 approaches ∼1 as n increases (Fig. S3C). For mitosis, the optimal q/p ratio is somewhat skewed
(Fig. S3D).

7 PMF time series of rn (i1, j1, i2, j2)

It is straightforward to calculate the PMF of rn (i1, j1, i2, j2) at each time point from the transition probability
matrix. We classified the PMFs according to Fig. 1D and calculated the sums for each class to obtain Fig. 2B to
G. Fig. S4 shows the PMF time series in meiosis I with α = 0, β = 1 (a) and α = 1, β = 0 (b) (n = 10, p = q =
0.05). Class 4 is predominant in these condition as well.

The dynamics are qualitatively very similar with any n; this is mainly because the structure of the Markov
chain remains the same as the size of the chain grows (Fig. 1B and S2E). We have used n = 10 for most of the
analysis as a representative value. We extensively explored the dynamics with different values of n and found
fundamentally no diffence in the behavior of the Markov chain by altering n (for example, n = 10 versus 15 in
Figs. S5B, C, E and F).

8 Invariant dynamics of the Markov process with constant q/p ratio
As long as q/p ratio (relative kMT dissociation rate) remains the same, the steady-state probabilities of rn (i1, j1, i2, j2)
stay the same for all p, q pairs. The PMF time series are also almost invariable (but with different time scales) as
long as q/p ratio remains constant, illustrated by the examples shown in Fig. S5. Only the time scale changes,
which is inversely proportional to

√
p q. Strictly speaking, although steady-state probabilities are identical, PMFs

at any given moment are not exactly the same: these small differences come about by the assumption that only
a single event happens in every state transition. Differences are small enough to be ignored when p and q are
sufficiently small. From a biological perspective, the change in time scale with the same dynamics has a different
meaning: the faster the association and dissociation of kMTs, the more efficient the chromosome biorientation.
See also the section ’Biorientation attempts’ below.

9 Probability distribution of kMTs at steady states in meiosis I.

Class 5
Steady state probability distributions of the number of kMTs in class 5 for n = 10, p = 0.1, q = 0.05 are shown
in Fig. S8B as density plots. Total probability of class 5 is indicated for each panel. Gray scale is normalized to
the total probability of class 5. When α and β are sufficiently small, class 5 (amphitelic) states are stable, i.e. the
number of kMTs are close to the maximum. Otherwise, only a few microtubules on average are attached to each
kinetochore.

Class 1 to 4
Steady state probability distributions of the number of kMTs in classes 1 to 4 for n = 10, p = 0.1, q = 0.05
are shown in Fig. S8C as density plots. Although the total probabilities are greatly affected by the parameters α
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and β, the distribution of the number of kMTs of non-class 5 states barely changes. This is presumably because
the size of the non-amphitelic classes (mainly class 4) in total is significantly larger than that of class 5 (Fig.
S2B), buffering the influence of class 5. Thus, N̄ = nρ/(n + ρ) (the exact solution in the random condition
α = β = γ = 1) is also an approximate of the steady state distribution of kMTs in meiosis I for non-amphitelic
states when α 6= 1, 0 < β 6= 1.

10 Number of kMTs at steady states in class 5 — an analytical approxi-
mation

When α = 0, the number of kMTs for states in class 5 can be estimated analytically without explicitly calculating
the PMF, which is computationally expensive for large n. The reason why it is possible becomes apparent by
looking at the Markov chain’s structure and transitions — when α = 0, transitions from class 5 to class 2 are still
possible, but not to class 4 anymore. Note that for large n the number of transitions between class 5 and class 4 is
far larger than the one between class 5 and class 2 (Fig. S2D).

Because of its limited communication with other classes when α = 0, class 5 behaves as if it is a disjoint class
at steady states. Its two sub-classes (e.g. left and right square grids in Fig. S2E) have the identical probability
distribution by symmetry, which can be approximated by

ψn(i, j) = φn(i, 0)× φn(0, j)

= 2−(i+j)ui uj

=

(
n

i

)(
n

j

)( ρ̄
2n

)i+j (
1 +

ρ̄

n

)−2n

,

where 1 ≤ i, j ≤ n and ρ̄ = ρ/β = 2p
βq . We now compute the conditional expectation of the number of kMTs i

(or j) given the state s is in class 5:

E(i|s ∈ class 5) =

n∑
i=1

n∑
j=1

(ψn(i, j)× i)
/ n∑
i=1

n∑
j=1

ψn(i, j)

= N̄5.

After a lengthy algebra, it simplifies to Eq. (3) in the main text. Similarly,

E
(
i2
∣∣ s ∈ class 5

)
=

n∑
i=1

n∑
j=1

(
ψn(i, j)× i2

)/ n∑
i=1

n∑
j=1

ψn(i, j).

After another lengthy calculation, variance of i is reduced to:

Var(i|s ∈ class 5) = E
(
i2
∣∣ s ∈ class 5

)
− (E(i|s ∈ class 5) )2

=
ρ̄
(
2 + ρ̄

n

)n−2 (
2
(
2 + ρ̄

n

)n − 2n (2 + ρ̄)
)((

2 + ρ̄
n

)n − 2n
)2 . (10)

Eqs. (3) and (10) fit very well to the exact number of kMTs derived from the steady-state PMF (Fig. S8A). When n
is small (e.g. n = 4), the approximation diverges a little from the exact values, but is still pretty good (not shown).
The mean and variance approach n and 0, respectively, as ρ̄→∞.

11 Probability of synchrony

Computing the probability of synchrony
We compute the probability of synchrony at time T = t, i.e. the probability that the process in every chain is in the
same class (in particular class 5) at the same time. This is illustrated by an example below, which shows the state
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(class) transtions of each process (Ch.1 to 4) from T = 0 to 20. Synchrony in class 5 is highlighted in red, which
occurs at T = 18.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Ch.1 1 2 1 1 1 1 1 1 2 3 4 4 4 4 4 2 2 2 5 5 5
Ch.2 1 1 1 1 1 1 1 1 2 4 4 4 4 4 4 4 5 5 5 5 5
Ch.3 1 2 1 1 1 1 1 2 3 3 2 5 5 5 5 5 5 5 5 5 5
Ch.4 1 2 3 3 2 2 2 3 4 4 4 4 5 5 5 5 5 5 5 5 5

Let s[t] be the state of a single Markov process at time T = t, a(t)
j be the probability of s[t] = j and k be the

total number of chains. In the above example, k = 4. Also let P (t)
s and P (t)

as be the probability of synchrony and
asynchrony at T = t, respectively. Then,

P (t)
s = θt

k,

P (t)
as = 1− P (t)

s ,

= 1− θtk, (11)

where
θt = P (s[t] ∈ class 5) =

∑
j

a
(t)
j , j ∈ class 5.

We used Eq. (11) for Figs. 4A and S3E. Now we consider the probability of synchrony attempts. For this, we need
some events and their probabilities defined. The probability of biorientation attempts P (t)

+ in a single process is

P
(t)
+ = P (s[t− 1] /∈ class 5 ∧ s[t] ∈ class 5)

=
∑
i,j

a
(t−1)
i pi,j , i /∈ class 5, j ∈ class 5,

where pi,j is the transition probability from state i to j. Likewise, the probability of biorientation loss P (t)
− is

P
(t)
− =

∑
i,j

a
(t−1)
j pj,i, i /∈ class 5, j ∈ class 5.

The probability of biorientation maintainance P (t)
0 of a process is

P
(t)
0 = P (s[t− 1] ∈ class 5 ∧ s[t] ∈ class 5)

=
∑
i,j

a
(t−1)
i pi,j , i ∈ class 5, j ∈ class 5.

Let m be the number of Markov processes in class 5 at T = t. Note that a synchrony attempt occurs only when all
m processes that are in class 5 stay in class 5 and the remaining k−m processes undergo transition from non-class
5 to class 5 states. The probability of such a synchrony attempt, P (t)

as,s, is

P (t)
as,s = P (asynchrony at T = t− 1 ∧ synchrony at T = t)

=

k−1∑
m=0

(
k

m

)(
P

(t)
+

)
k−m

(
P

(t)
0

)
m,

where
(
k
m

)
is the binomial coefficient. Note that Fig. S9A may help understand the following derivation of formu-

lae.

The probability of synchrony maintenance P (t)
s,s is

P (t)
s,s = P (synchrony at T = t− 1 ∧ synchrony at T = t)

= P (t)
s − P (t)

as,s.
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Likewise, the probability of asynchrony maintenance P (t)
as,as is

P (t)
as,as = P (asynchrony at T = t− 1 ∧ asynchrony at T = t)

= P (t)
as − P (t)

s,as.

The probability of synchrony loss P (t)
s,as is obtained by

P (t)
s,as = P (synchrony at T = t− 1 ∧ asynchrony at T = t)

= P (t−1)
s − P (t)

s,s

= P (t−1)
s −

(
P (t)
s − P (t)

as,s

)
= P (t)

as,s −
(
P (t)
s − P (t−1)

s

)
. (12)

P
(t)
s,as can also be obtained by

P (t)
s,as =

k∑
m=1

(
k

m

)(
P

(t)
−

)
m
(
P

(t)
0

)
k−m.

At steady states, the conditional probability of synchrony loss given the present state is in synchrony isP (∞)
s,as /P

(∞)
s ,

therefore the mean duration (half-life) of synchrony is P (∞)
s /P

(∞)
s,as . Fig. 4C was derived by this formula.

Now we examine when the synchrony happens for the first time, i.e. the probability of the first synchrony at
T = t, denoted by P (t)

fs . With α = β = 0, once a process is in class 5, it is trapped in the class (i.e. P (t)
s,as = 0).

Therefore P (t)
fs = P

(t)
as,s. When α and β are small, the majority of synchrony attempts are for the first time; in

addition, as k gets larger (number of processes, i.e. pairs of sister chromatids in mitosis or bivalents in meiosis I),
synchrony becomes a rarer event. Thus, the probability of synchrony loss P (t)

s,as are small at any given moment for
large k and small α and β. In such a condition, it is therefore possible to approximate P (t)

fs with P̃ (t)
fs :

P̃
(t)
fs = P (0)

as

×

(
t−1∏
τ=1

P (asynchrony at T = τ − 1 ∧ asynchrony at T = τ |asynchrony at T = τ − 1)

)
×P (asynchrony at T = t− 1 ∧ synchrony at T = t|asynchrony at T = t− 1)

=

(
t−1∏
τ=1

P
(τ)
as,as

P
(τ−1)
as

)
× P

(t)
as,s

P
(t−1)
as

, t = 2, 3, 4... .

It is apparent that for α = β = 0 (therefore P (t)
s,as = 0), P̃ (t)

fs = P
(t)
as,s. Fig. S9B shows an example of P̃ (t)

fs
together with Monte Carlo simulation results (probability in 5,000 simulations), demonstrating a good fit of the
approximation to the simulation result.

Timing of first synchrony and q/p ratio
We asked how q/p ratio affects the timing of first synchrony. We also asked how efficiently synchrony can be
achieved in a slightly compromized condition, i.e. α = β = 0.05. Fig. S9C shows the probability of first
synchrony in meiosis I at each time point with decreasing q value (n = 10, p = 0.05 and the number of bivalents
k = 5). When p = q = 0.05, first synchrony happens most frequently around T = 100; By T = 400 synchrony
takes place at least once in ∼ 99.7% of cases (not shown). As q/p ratio declines, the timing of first synchrony
spreads more and more over time, becoming unpredictable. Therefore, synchrony does happen relatively efficiently
with the right q/p ratio even in a slightly compromized condition with α = β = 0.05. For a fixed value of
p = 0.05, the probability of synchrony at steady state (at any give moment) is 0.66 with q = 0.05, but only 0.017
when q = 0.01. For k = 20, the probability declines to 0.19 with q = 0.05 and 8.3×10−8 with q = 0.01. Thus,
keeping the balance of q/pratio is all the more important for the cell with a large number of chromosomes. This
principle applies to both mitosis and meiosis I.
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12 Bi-orientation attempts

Probability of bi-orientation attempts
Probability of biorientation attempts at time T = t , µt, is

µt =
∑
i,j

a
(t)
i pi,j , i /∈ class 5, j ∈ class 5,

where a(t)
i is the probability of the process in state i at time t and pi,j is the transition probability from state i to

j. µt can also be interpreted as the mean number of attempts to biorientation at time t. Fig. S10A shows a plot of
µt by this formula (analytical solution) and simulations (parameters: n = 5, p = q = 0.01, α = β = 0.1; 10,000
simulations). Fig. S10B shows an example of probability time series of biorientation attempts, with p = q = 0.05
versus p = q = 0.01 (n = 10, α = β = 0.1). With the same q/p ratio, their PMF time series are almost identical
(not shown) if the time scale is adjusted. Because of this change of time scale, the probability (i.e. frequency) of
biorientation attempts also changes. In this example, the probability at steady states (at any time point) decreases
from ∼0.033 with p = q = 0.05 to ∼0.0066 with p = q = 0.01.

Mean number of biorientation attempts before absorption
The number of biorientation attempts before the onset of anaphase is equivalent in our model to the total number
of transitions to class 5 from either class 2 or class 4 before absorption (referred as M̄ hereafter; Fig. 4D). This
can be computed by first calculating the mean total number of times the process is in each transient state before
absorption, starting from class 1. We denote this number as M(i), i ∈ (transient states). There are two absorbing
states when β = 0, so the total number of transient states is l = (total number of states) − 2. M(i) is obtained
from the so-called fundamental matrix N defined as N = (I −Q)−1, where I is the l× l identity matrix and Q is
the l × l submatrix of P (the transition probability matrix):

P =

(
Q R
O S

)
.

Q defines the transition within the transient states. O is a 2× l matrix with all 0’s; R concerns the transtion from
transient to absorbing states; S is the 2× 2 identity matrix in our model. The first row of N corresponds to M(i).
The formula for fundamental matrices (and also for the mean and variances of absorption time) is according to
Kemeny and Snell [6]. Computing the mean of M̄,

〈
M̄
〉
, is straightforward using M(i):〈

M̄
〉

=
∑
i

∑
j

M(i) pi,j ,

where i ∈ (class2 ∨ class4), j ∈ class 5 and pi,j is the transition probability from state i to j. Note that, when
α = 0, M̄ = 1 for all n ≥ 1 because once in class 5 the process never leaves the class.
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(uk) for n = 20 and ρ as indicated. See Additional file 1 for details.
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first passage time in meiosis I (B) and the corresponding q/p ratio (C) for a fixed value of q 
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plateaus as n grows. (D) A density plot of the mean first passage time in mitosis. (E) Probabilities 
of synchrony in mitosis over time. k = number of pairs of sister chromatids, p = 0.05, β = 0. 
(F) Half-life of synchrony at steady states in mitosis. k = 5, p = q = 0.05. β needs to be small to 
maintain synchrony. In (D, E, F), n =10, α = 0 and γ = 0.1.
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