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This SI is divided into 3 parts. In the first part, we complement the experimental procedure,
providing details about short-term depression analysis in the preBötzinger Complex, and we pro-
vide specific information about the modeling aspect. We describe the dynamics of the membrane
potential, synaptic facilitation and the two step synaptic depression model. We further describe
synaptic connections between neurons. In the second part, we present additional simulations.
The third part describes the legends for the movies mentioned in the main text.

1 Complement on the Material and Methods

1.1 Experimental procedure

Swiss mice (P0-P4) were anesthetized and dissected in artificial cerebrospinal fluid (ACSF) con-
taining (in mM): 132.5 NaCl, 8 KCl, 0.58 Na2HPO4, 8.5 NaHCO3, 30 D-glucose, 1.26 CaCl2,
1.15 MgCl2. Hindbrains were quickly removed and embedded within a 4% agarose block and
glued to the pedestal of a Leica microtome. Transverse slices were cut from the medulla (450 µm
thick) where the rostral surface was 400-500 µm caudal to the caudal end of the facial nucleus in
line with the calibrated atlas of [1]. Slices were then placed into a recording chamber and held
down by a platinum grid with nylon fibers. The slices were perfused with 30−31 ◦C extracellular
ACSF for at least 30 min before patch recording commenced.

Tissue was visualized using a Nikon Eclipse upright microscope in IR-DIC configuration using
a water-immersible 40x objective and a CoolSnap HQ2 camera (Photometrics, AZ) controlled
by Micro-Manager [2]. Whole-cell patch recordings were performed with a MultiClamp 700B,
digitized by a 1440a Digidata, and controlled by pClamp 10 (Molecular Devices, CA). The in-
tracellular patch solution contained (in mM): 123 K-gluconate, 21 KCl, 0.5 EGTA, 10 HEPES,
3 MgCl2. Picrotoxin (5 µM) and strychnine (5 µM) were bath-applied to block GABAA and
glycinergic synaptic currents.

Evoked excitatory postsynaptic currents (eEPSCs) were identified by patch-recording preBötC
respiratory neurons and electrically stimulating the midline of the slice just dorsal to the midline
aspect of the inferior olive (Fig. 3A-B) using an ISO-Flex stimulation isolation unit (A.M.P.I.,
Israel). Once a respiratory neuron was identified, the bath [K+] was dropped to 3 mM to reduce
spontaneous respiratory activity. Low-intensity electrical pulses were applied for 100 µs dura-
tion approximately every 9 s and the intensity increased until >50% of the pulses resulted in
eEPSCs observed in the voltage-clamp recording. After that, we switched to gap-free recording
and periodically stimulated trains of variable length and frequency to investigate the postsy-
naptic response. The eEPSCs were identified and quantified offline using PhysImage software
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(http://physimage.sourceforge.net/).

1.2 Hodgkin-Huxley Model of the membrane potential

To model the membrane potential of each neuron, we used a simplified Hodgkin-Huxley model,
where we considered the changes in Na+, K+ and leak channels. We further added the synaptic
currents generated from connected neurons. The resting potential of each neuron was at a mean
of −65.1 mV, distributed randomly according to a Gaussian distribution with variance 0.2. To
account for the spontaneous fluctuations of the membrane potential, we added a Gaussian noise
source term to the potential with a variance σ. The equations are

CV̇ = Iapp − INa − IK − IL +
∑

j

Isyn,j + σẆ (1)

ṅ = αn(1− n)− βnn (2)

where

INa = gNam
3
∞
h(V − ENa)

IK = gkn
4(V −EK)

IL = gL(V − EL)

m∞ =
αm

αm + βm

αk =
1

τk

θk − V

e
θk−V

τk − 1
for k = n,m

βk = ηke
−

V +65

σk

The variables m and n represent the opening of the Na+ and K+ channels respectively. We
used the following approximation for the closing of the Na+ channel h = (0.89 − 1.1n). The

synaptic current
∑

j

Isyn,j integrates the sum over all connecting neurons that we shall describe

next. The term Ẇ in eq. 1 represents the derivative of standard white noise. Indeed, in the dis-
cretized form, W (t+∆t)−W (t) =

√
∆tZ where Z is a Gaussian variable of mean 0 and variance 1.

1.3 Model of the synaptic dynamics

To characterize the synaptic dynamics, we built a two pool model that accounted for two different
time scales of depression. Indeed, synaptic depression results from the depletion of the readily
releasable pool (RRP) (Fig. 1A), where synaptic vesicles are gathered at the membrane before
fusion. We also accounted for the other pool of recycling vesicles (recycling pool, RP) that are
diffusing. Finally after fusion, vesicles are not participating in any of the two previous pools.
This state is described as recovering. In the present model, we considered that the total amount
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of vesicles at a synapse is constant. Thus the fraction yfree (resp. ydock) of vesicles in the RP
(resp. RRP), with the fraction of recovering vesicles yrec satisfies the conservation equation

yfree + ydock + yrec = 1. (3)

Finally, the synaptic facilitation variable x reflects all possible mechanisms that enhance vesicular
release, and thus is associated with an increase in the release probability [3]. It is given by

ẋ =
X − x

τf
+ k(1− x)H(V − T ), (4)

where τf is the facilitation rate, X its value at equilibrium, and H is the Heaviside function.
The facilitation x increases due to the term k(1− x) during an Action Potential (AP), when the
membrane potential V is above a threshold T (H(V − T ) = 1), and relaxes back to equilibrium
when V is below T (H(V − T ) = 0).

We shall now present the mass action equations that describe the vesicular exchanges between
different pools. The amount of vesicles in the RP depends on the arrival of vesicles from the

recovering state, given by the flux Φ→RP =
yrec
τrec

, where τrec is the delivery time. The outward

flux of vesicles is proportional with the rate constant τdock to the fraction of available sites
(ymax

dock − ydock) at RRP, where y
max
dock is the maximal number of sites in the RRP, and to the fraction

of available vesicles in the RP. Finally, the outward Φ→RRP is generated in the absence of an AP
by the intrinsic turn over, when the membrane potential is below a threshold T . However, when
the membrane potential is above the threshold T , Φ→RRP depends on the facilitation variable x
and we finally get

Φ→RRP =
1

τdock
(ymax

dock − ydock) yfree

[

1 +
x−X

X
H(V − T )

]

. (5)

Finally,

ẏfree = Φ→RP − Φ→RRP (6)

=
yrec
τrec

−
1

τdock
(ymax

dock − ydock) yfree

[

1 +
x−X

X
H(V − T )

]

.

The equation for the fraction ydock of vesicles in the RRP is given by the balances of inward
vesicles arriving from the RP, Φ→RRP (eq. 5), and on the flux of released vesicles ΦRRP→, which
vanishes in the absence of an AP. Following a stimulation, it is proportional to the fraction ydock
of vesicles in the RRP and to the facilitation variable x with a rate τrel:

ΦRRP→ =
1

τrel
ydock

(

x−X

X

)

H(V − T ). (7)

Balancing the fluxes Φ→RRP − ΦRRP→ leads to

ẏdock =
1

τdock
(ymax

dock − ydock) yfree

[

1 +
x−X

X
H(V − T )

]

(8)

−
1

τrel
ydock

x−X

X
H(V − T ).
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Finally, changes in the amount of recovering vesicles yrec is equal to the difference of the fluxes
Φ→RRP and Φ→RP, which leads to

ẏrec = ΦRRP→ − Φ→RP =
1

τrel
ydock

x−X

X
H(V − T )−

yrec
τrec

. (9)

In summary, using the conservation equation 3, we obtain the following system of equations

ẋ =
X − x

τf
+ k(1− x)H(V − T )

ẏfree =
1− yfree − ydock

τrec
−

1

τdock
(ymax

dock − ydock) yfree

[

1 +
x−X

X
H(V − T )

]

(10)

ẏdock =
1

τdock
(ymax

dock − ydock) yfree

[

1 +
x−X

X
H(V − T )

]

−
1

τrel
ydock

x−X

X
H(V − T ).

1.4 Computing the synaptic current Isyn

To compute the synaptic current between two connected neurons, we used the synaptic model
described above. The postsynaptic current i(t), due to an action potential generated in the
presynaptic neuron is proportional to the amount of released vesicles (ydock(t)− ydock(t0)), where
t0 is the time of the presynaptic AP. It is set to zero when the RRP is empty.

To account for the inherent discrepancy between the continuous description of the fraction
of vesicles in the RRP and the actual discrete number, we imposed an empty RRP when the
variable ydock was below ymin

dock = 0.04. This minimal value for ydock corresponds to a total of
around twenty-five vesicles in the synapse and to a mean maximal number of vesicles in the RRP
of 4.5. The threshold ymin

dock was chosen by plotting the variable ydock during a protocol where
the membrane potential V was constantly stimulated at 60 Hz for 2 seconds, which reflects the
mean spike frequency during bursting. The variable ydock decreased abruptly during the first 500
ms, and then slowed down before reaching an asymptotic regime. From these considerations, we
chose the value of threshold ymin

dock in the intermediate regime, before ydock enters its asymptotic
regime (Fig. S1F, the red line shows the asymptotic regime, when the tangent of ydock(t) is equal
to the limit value of the one at infinity, computed by a numerical fit).

After a bursting event, we implemented a refractory period (RefP) reflecting that in order
for the synapse to recover and for a vesicle to be released, several vesicles need to accumulate at
the active zone. This refractory period is monitored using the facilitation variable x, and ends
when it reaches the value xRefP = 0.31, close to its equilibrium value X = 0.3 (eq. 4).
Finally, when a presynaptic AP arrived at a time t0, which does not fall into the refractory period
window, the synaptic current is

it0(t) = KI(ydock(t)− ydock(t0))H(V − T )H
(

ydock − ymin
dock

)

, (11)
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where KI is a constant, which converts the proportion of fused vesicles during an AP, into a
postsynaptic current. For spikes arriving at times tk, the synaptic current is for t ∈ [tk, tk+1],

Isyn(t) =

{

0 during a refractory period

itk(t− τdel), else
(12)

where τdel = 1 ms is a delay.

1.5 Constructing the network connectivity

We present now the connectivity map for the network that we implemented between neurons.
Neurons were distributed on a square lattice (Fig. 1B) and were connected randomly according
to the probability distribution

P(i → j) = exp(−d(i, j)2/(2s2)) (13)

for neuron i and j and the parameter s, that is specified later on, and where d(i, j) is the Euclid-
ian distance between neurons i and j normalized by the minimal distance between two neurons.
For s = 0.9, the mean number of output connections per neurons was around 3.7, and the mean
total number of connections was around 7.5.

As presented in Fig. S2, the probability to connect directly to one of the 8 proximal neigh-
bors was around 0.3, whilst for the second square it dropped to 0.1. More than 99 % of the
network (around 396 neurons out of 400) were part of the network. Thus only few neurons were
completely isolated.

1.6 Summary of the network dynamics

For a neuronal network consisting of 20 x 20 (i.e. 400) neurons organized on a square lattice,
we modeled the synaptic properties and voltage as previously described. We studied various
network configurations (for various s) and also studied the effect of changing the size. However,
during each simulation, the connections will be kept fixed. In summary, each neuron is then
described by four differential equations (one for the action potential and three for the synaptic
dynamics, Fig. S1, see also movies S1-S2-S3)

C V̇i = −INa − IK − IL +
∑

j connected to i

Isyn,j + σẆ

ẋi =
X − xi

τf
+ k(1− xi)H(V − T ) (14)

ẏfree,i =
1− yfree,i − ydock,i

τrec
−

1

τdock
(ymax

dock − ydock,i) yfree,i

[

1 +
xi −X

X
H(V − T )

]

ẏdock,i =
1

τdock
(ymax

dock − ydock,i) yfree,i

[

1 +
xi −X

X
H(V − T )

]

−
1

τrel
ydock,i

xi −X

X
H(V − T ),
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Figure S1: Histogram of the number of output connections per neuron, and network
rhythmic activity with 400 neurons. A: Histogram of the number of output connections per
neuron associated to Fig. 1B. Here, the mean number of output connections is 3.75. B: Mean
voltage V, depression and facilitation average over the network. C: Bursting duration histogram
(average over one network monitored during 900 sec): the mean burst duration is 708 ± 140
ms. D: Interburst interval histogram (mean : 5.1 ± 1.2 sec). The histogram of the interburst
interval displays two different peaks at T=4.3 sec and T=5.4 sec, which shows that the rhythm is
multimodal. E: Zoom on the voltage V , the facilitation variable x and the two scaled depression
variable Yfree = yfree/y

max
free and Ydock = ydock/y

max
dock for a single neuron during sixteen seconds. The

red bars represent the refractory period coming after a burst. F: Dynamics of the depression
variable ydock during a 60 Hz stimulation lasting two seconds. The red line shows the asymptotic
regime. 6



where i = 1..400. All the simulations are performed in MATLAB (Mathworks, MA), using the
RK4-ode solver with a step time ∆t = 0.05 ms, and with the set of parameters described in
Table 1. Results are expressed as mean ± S.E.M. MATLAB code for this model is accessible on
the authors’ website (http://www.bionewmetrics.org).

2 Complementary simulations

2.1 Decreasing the network connectivity gradually suppresses the en-
dogenous rhythm. Fig. S2

To study the influence of scaling synaptic connections, we decreased the value of the connectivity
parameter s from 0.9 (initial network) to 0.7, (connection probability, see eq. 13 and Fig. S2A),
while keeping the neuronal resting membrane potentials at the same values. We first investigated
how the connecting probability was decreased for increased distances between neurons (Fig. S2B).
Each block represents the probability to connect neighboring neurons: the first four closest are
on bar 1 and so on (see details on Fig. S2B). In summary, as long as s ≥ 0.85 (mean number
of output connections MCN = 3.2) the network dynamics is not much affected (Fig. S2C-D-E).
However, lowering s below 0.75 leads to MCN = 2.3, the bursting pattern remains, but the
interburst intervals show a large variability, lasting in some cases 25 sec instead of 5 sec. For
s < 0.7, (MCN = 1.9), the rhythm disappears, the network can generate bursts between silent
periods that can last more than 100 seconds. This result is confirmed by the power spectrum
analysis (Fig. S2D). We conclude here that a minimal network connectivity is required to induce
periodic bursting patterns.

The neuronal connectivity characterized here by the variable s is the key parameter governing
the network rhythm. We could discern three different regimes depending on the value of s: for
s < 0.8, the network expresses irregular bursting patterns, due to a high variability in the
interburst interval duration. In that case, the mean number of connections per neurons (MCN) is
below 3. This small amount of connections prevents the propagation of Action Potentials (APs)
within the network, preventing the recruitment of neurons required for burst induction (Supp
Movie S6). When the connectivity parameter s is in the range 0.8−1, MCN varies approximatively
between 3 and 5. The network expresses regular bursting patterns, and APs propagate quickly
within the whole network (Supp Movie S3). Finally, when the parameter s > 1, the MCN > 5,
and network bursts cannot terminate (Fig. S2F). Interestingly, during these periods, the RRP
never empties (Fig. S2F). This results from the low spiking frequency (around 20 Hz) during
bursting, which permits a steady-state refilling of vesicles. This low frequency results from the
high efficient propagation of AP in the network, as illustrated in Movie S7. Indeed, an AP can
generate a wave of APs that crosses the entire network very quickly, followed by another wave
of depolarization, which prevents the recurrent excitation observed in Movie S3. Thus a high
connectivity between neurons leads to waves of APs in the networks, as studied in [4].
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Figure S2: Effect of connectivity on the network rhythm A: Example of a network (400
neurons) connected with parameter s = 0.75 (Materials and Methods). B: Empirical distri-
bution of neuronal connections. C: Mean membrane potential for networks generated with
s = 0.9, 0.85, 0.75 and 0.7, where the mean number of output connections per neuron (MCN ) is
3.8, 3.2, 2.3 and 1.9 respectively. D: Power spectrum of the mean membrane potential computed
for the entire network. E: Mean and CV of the burst duration, interburst interval and the period
as a function of s. F: Time dependent plot of the voltage and the scaled variables Yfree, Ydock

and x for a single neuron chosen randomly from the network in the case of a very high network
connectivity, when s = 1.1 (MCN = 6).
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2.2 Histograms of the interburst interval for four different network
realizations. Fig. S3

Neuronal network dynamics can also be characterized by the interburst interval. Indeed, different
network realizations with identical synaptic and electrophysiological parameters lead to different
interburst interval distributions, while the mean is identical (Fig. S3).
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Figure S3: Histograms of the interburst interval for four different network realiza-
tions, generated with identical synaptic and electrophysiological parameters (400
neurons). The networks have different neuronal organization. The histograms show several
peaks, at different times: top-left) Tpeaks=4.3 and 5.4 sec. top-right) Tpeaks=3.8, 4.5, 4.9 and
5.7 sec. bottom-left) Tpeaks=4.3, 5.2 and 5.6 sec. bottom-right) Tpeaks=4.0 and 4.4 sec.

9



2.3 Influence of the synaptic properties on the network. Fig. S4-S5

To explore the parameter space in our model, we studied the influence of four key synaptic
parameters on the network rhythm: the facilitation time constant τf , the vesicular fusion time
τrel, the docking time τdock and the recovery time τrec (the synaptic dynamics is summarized in
the system of eqs. 10 and the associated parameters are reported in Table 1). Using a neuronal
network containing 400 neurons, we ran simulations similar to Fig. 1D and the results are shown
in Fig. S4. We evaluated how the rhythm was altered when changing the four parameters (time
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Figure S4: Responses of the network and mean synaptic properties. We have shown
below the neuronal response, the graph for x (facilitation), Yfree (depression 1), Ydock (depression
2). We changed the parameter written on top of each sub-figure. The rest of the parameters are
the ones in Table 1.

scales) described above and ran simulations for 100 sec, and varied the different time scales (one
at a time) while fixing the others. The results are shown in figure Fig. S5.

The time constant for vesicular recovery τrec has almost no influence on the cycle period and
the burst duration (Fig. S5A). The influence of the time scale for switching from the RP to
RRP (τdock) is also almost negligible, but decreasing τdock to a value of 50 ms leads to a network
desynchronization (Fig. S4B and Fig. S5B) and disruption of the rhythm.

Increasing the time constant for the vesicular depletion in the RRP (τrel) from 10 ms to 60
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Figure S5: Synaptic dynamics at the network level: Mean and CV of the burst duration,
the interburst interval, the cycle period (left y-axis, sec), and the spiking frequency during bursts
(right y-axis, Hz) as a function of τrec (A), τdock (B), τrel (C) and τf (D). All the other parameters
are the same as described in Table 1, except ymin

dock (eq.10 of SI), which is computed for each value
of τx. The network is the same for each simulation.

11



ms widely increases the cycle periods from 2.9 ± 0.6 sec to 10.7 ± 0.1 sec, and also the burst
duration from 200 ± 100 ms to 772 ± 115 ms. In addition, past the value τrel = 75 ms, the
rhythm is unstable, with cycle periods of 75.1 ± 61.9 sec, and burst duration of 851 ± 138 ms
(Fig. S4C).

Finally, by increasing the time constant for the facilitation variable (τf ), the cycle period
increases linearly. More interestingly, decreasing τf from 700 ms to 250 ms widely increases the
cycle period and variability from 5.3 ± 0.8 sec to 16.1 ± 13.8 sec respectively. This increase is
due to the difficulty in recruiting neighboring neurons, as the facilitation variable x(t) drops to
its steady state too quickly. However, the burst duration is stable, changing from 650 ± 100 ms
to 666 ± 100 ms.

Technically, when we modified these four time constants, the dynamics of Ydock (Ydock =
Ydock

ymax
dock

)

are changed and we had to modify the value of ymin
dock accordingly. Indeed, the value of ymin

dock is
chosen to represent the value of Ydock that accounts for the emptiness of the RRP. This parameter
is key in the transformation from the continuous model and the discrete number of vesicles (see
Supplementary Information section “Computing the synaptic current”). To choose ymin

dock for the
previous set of parameters (Table 1), we applied a 60 Hz stimulation protocol to a single neuron,
and chose for termination of release the first time for which the derivative of Ydock(t) is equal
to the limit value of the tangent at infinity, computed by a numerical fit. We applied the same
procedure for each of the four time-related parameters. We then ran simulations for each value
during 300 sec while keeping the same neuronal network. For τf = 50 ms, 100 ms, 250 ms and
τrel = 75 ms, 100 ms, the cycle period was above 10 sec, and we ran longer simulations for about
1500 sec to obtain enough cycles.
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2.4 Modification of the spiking frequency during a burst. Fig. S6

The mean spiking frequency during bursts is around 60 Hz, and is stable under the different
conditions we imposed to the model. This frequency was not fixed, but emerged as a results
of the simulations with the parameters of the model described in Table 1. To determine which
parameters could control this frequency, we decreased the re-polarization constants αn and βn

in equation 2, that govern potassium dynamics in the HH model. This results in slowing down
the dynamic of the variable n, which increases the refractory period of the AP. It also reduces
the minimal current Iapp needed to induce an AP. To compare the dynamics of the model for
different values of αn and βn, we also modify the amplitude of the voltage noise σ and the synaptic
strength KI : when parameters αn and βn are scaled by a factor 0.35 in eq. 2, the AP-threshold
in the HH dynamic reduces from -21.6 mV to -28.4 mV. After we further reduce the amplitude
of the noise σ eq. 1 from 0.4 to 0.2, and the synaptic strength KI (eq. 11) from 2666 to 2250,
we simulated the bursting activity of the network and the results are presented in Fig. S6, which
affect the network dynamics as follows:
-the spiking frequency is decreased during a burst, from 59 Hz to 34.8 ± 10 Hz,
-the mean number of spikes within a burst is decreased from 42 to 10.4,
-the burst duration is decreased from 694 ± 138 ms to 315 ± 225 ms,
-the cycle period has decreased from 5.5 ± 1 sec to 3.4 ± 1.7 sec.
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Figure S6: Burst Spiking Frequency A: Time dependent plot of the voltage V , the facilitation
variable x, and the scaled variables Yfree, Ydock for a single neuron chosen randomly from the
network for a scaling of variables αn and βn of 0.35, with parameter σ = 0.2 and KI = 2252
(the mean bursting duration is 315 ± 225 ms, and the mean cycle period is 3.4 ± 1.7 s). B:
Magnification of V , x, Ydock and Isyn for the neuron of Fig. S6A, during 1.5 s
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2.5 Effect of deleting random neurons on the network activity. Fig. S7

We randomly suppressed different neurons (from 25 to 200 in a network of 400 neurons) by
removing their connections with the rest of the network. We ran, for each number of removed
neurons, three simulations for 100 sec. and for different random network realizations. We found
that the rhythm was not changed by adding more simulations. However the rhythm period kept
increasing when deleting more neurons. When at least 125 neurons are suppressed, the rhythm
period exceeds 15 seconds, and thus we increased the time window of simulation to 300 seconds
to observe many cycles. When removing 175 neurons, the number of bursts decreased drastically,
leading to quiet periods lasting more than 300 seconds, and to rhythm disruption.

We compare in Fig. S7 the rhythm period obtained by suppressing an increasing number of
neurons in the simulations, with lesioning by cumulative single-cell laser ablation (Fig. 5c in [5]).
Interestingly, we could fit both the experimental and simulation data with a single exponential
curve (Fig. S7A), although we found that a double exponential is a better approximation (dashed
curve in Fig. S7A). The goodness of fit as measured by the summed square of residuals (SSE) =
0.002. To compare the bursting period, we first normalized by the one obtained in the absence
of any neuronal removal. Since the number of removed neurons to rhythm disruption was not
known, we used our numerical simulations to estimate this number. We found that the rhythm
was completely abolished between 150 and 175 neurons removed, and fixed 160 for a complete
rhythm disruption (Fig. S7A). We represent the average time-dependent voltage changes over
the neuronal population (Fig. S7B) and the associated power spectrum density (PSD) absolute
value (Fig. S7C).

When no neurons are removed, (Fig. S7C, red, x-axis is in logarithmic scale) the absolute value
of the PSD presents a main peak around f0 =0.2 Hz (fundamental frequency), followed by several
peaks at different frequencies that are integer multiples of f0 and represents the harmonics. This
analysis shows that our system is almost periodic, with a mean frequency around 0.2 Hz.When
50 neurons are removed (12.5 % of the network), the network activity is not seriously damaged;
with 100 neurons (25 % of the network), the rhythm starts to be affected and it disappears by
removing 175 neurons and more. The mean burst duration (interburst intervals, periods) are
plotted in Fig. S7D. Interestingly, during neuronal lesioning, the burst duration remains quite
stable, with a mean spike frequency around 58.1 ± 2 Hz during burst.

The fraction of lesioned neurons leading to burst termination in our model is around 40%,
whereas in [5], the estimated value coming from experiments was between 15 and 20 %, showing
that our model is too robust. This robustness could result from the mean-field modeling used
for the synaptic dynamics, which does not account for synaptic failures. To test this hypothesis,
we modified this aspect of the model, by introducing a release probability parameter Prel in the
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Figure S7: Effect of deleting random neurons on the network activity. A: Compar-
ison between simulations (blue) and experimental results (red, extracted from [5]). B: Mean
membrane potential when 0, 50, 100, and 125 neurons are removed, corresponding to 400, 350,
300 and 275 remaining neurons. C: Power spectrum associated with B (logarithmic scale). D:
Mean and CV of the burst duration, interburst interval and rhythm period for several removed
neurons. E: Mean membrane potential when 0, 40, 60, 80 neurons are removed in a network of
400 neurons, with a release probability Prel=0.8.
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system of eqs. 10 governing vesicular release:

ẋ =
X − x

τf
+ k(1− x)H(V − T )

ẏfree =
1− yfree − ydock

τrec
−

1

τdock
(ymax

dock − ydock) yfree

[

1 +
x−X

X
H(V − T )

]

(15)

ẏdock =
1

τdock
(ymax

dock − ydock) yfree

[

1 +
x−X

X
H(V − T )

]

−
1

τrel
ydock

x−X

X
H(V − T )H(r − Prel),

where r is a uniform random variable on [0, 1]. We used a value of this parameter Prel=0.8. We
simulated the network and we found the following changes: the cycle period is increased from
5.0 ± 1 to 9.8 ± 4.1 sec. When removing 80 neurons, we observe very few bursts with IBIs
lasting more than 80 sec, and a clear disruption of the rhythm (Fig. S7E). We conclude that by
introducing a stochastic release, our model can now replicate the disruption of the rhythm with
a similar robustness as in lesioning experiments.

2.6 Consequences of gradually decreasing the synaptic strength. Fig. S8

To study the consequences of decreasing the synaptic strength, we decreased parameter KI

in the model, which has an effect equivalent to applying [NBQX], an antagonist of AMPARs
that mediate synaptic transmission and underlie respiratory drive in the preBötzinger Complex
[6]. We implemented the numerical procedure as follows: we chose a network with randomly
connected neurons and ran simulations over 300 seconds while decreasing values of KI , from
100% KI = 2666 to 60% KI = 1600 in steps of 2%. For values lower than 70%, we ran
simulations for 900 seconds to account for a sufficient amount of periods. We observed a steep
increase in the rhythm period, with no major changes in burst duration (Fig. S8). The rhythm
started to be highly irregular at 68%, with interburst intervals lasting more than 100 seconds,
and disappeared around 60%. The curve is well-fitted by a double exponential (dashed curve in
Fig. S8A, SSE = 0.94). To compare with experimental data extracted from [6], we considered
that the control conditions in simulations (100% control) corresponds to 0.001 µM [NBQX]. We
then scaled the abscissa of the simulation plot so that the two curves best match (Fig. S8A).
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Figure S8: Consequences of gradually decreasing synaptic strength, comparison with
experimental data. A: Comparison between simulations (blue) and experimental results (red,
extracted from [6]). Results are presented as mean ± S.E.M. B: Mean potential over all the
network for different values of the fraction of the initial synaptic strength, controlled via KI . C:
Power spectrum of the mean membrane potential computed for several fractions of KI . D: Mean
and CV of the burst duration, interburst interval, and rhythm period for several fractions of KI .
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2.7 Depolarizing neurons increases the rhythm frequency. Fig. S9-
S10-S11

Changing (depolarizing and hyperpolarizing) the membrane potential affects bursting: to depo-
larize (hyperpolarize) neurons, we added (or subtracted) a current Iapp to their current balance
equation (Fig. S9). This current is equivalent to increasing the extracellular potassium con-
centration [K+] and the probability of ectopic spikes. To compare experimental and simulation
data, we scaled the abscissa and superimposed the two curves, where 9 mM [K+] corresponds to
control conditions (I = 0, no additional current).

At 9 mM [K+], the correspondence between preBötC and XIIn activity is known to be al-
most one-to-one [7], whereas at 6 mM and 3 mM [K+], Kam et al [8] observed burstlets in the
preBötC activity that do not show up in XIIn activity. Burstlets are characterized by smaller
amplitude than preBötC bursts. In our model, for Iapp=-0.25 pA and Iapp=-0.5 pA, we observe
periods of times during the interburst interval where several neurons are spiking together but no
population-wide activity is generated (see the red line in Fig. S10A).

This effect recalls the pre-inspiratory patterns observed in control conditions (Iapp=0 pA,
green line in Fig. S10A): before each spike, a small group of tens of neurons, that differs from
one burst to another, spike together, and recruit the entire network for a bursting event (see Supp
Movie S3). Those neurons could represent the pre-inspiratory neurons observed experimentally.
We postulate that after hyperpolarization of the network (Iapp=-0.25 pA), those groups of neurons
fail to recruit the entire network; likely because of the hyperpolarization that makes recruitment
more difficult. These patterns, formed by small groups of tens of spiking neurons that do not
trigger a burst, show similarities with the burstlets observed experimentally [8]. Nevertheless,
burstlet activity observed in [8] is widespread in the preBötC and not restricted to a small num-
ber of neurons like in our model.

To investigate how hyperpolarization of the network modifies the rhythm’s dynamics, we
plotted Poincaré maps of the cycle periods when Iapp = -0.25 pA over 1000 sec (Fig. S10B, nine
runns). We observed a wide, quasi-periodic distribution comparable to the experimental results
observed in ([8], Figure 1D), which was different from the single cluster expected when the sys-
tem is regularly periodic (Iapp = 0 pA, Fig. S10C). We conclude that hyperpolarization of the
network modifies the rhythm’s dynamics and an almost periodic regime appears as revealed by
the Poincaré maps.

To clarify the mechanism of these low amplitude events (red in Fig. S10A) in our study,
we now show using numerical simulations (Fig. S11) that contrary to the burst activity, which
extends through the neuronal network, during these events, the synaptic properties (depression
and facilitation) are not involved, preventing the recruitment of the network.
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Figure S9: Consequence of a global neuronal depolarization on the network rhythm.
A: Comparison between experimental results published in [7] (red) and simulations (blue). The
experimental results are obtain by moving the extra-cellular potassium concentration from 3
mM to 12 mM. To compare with the simulations, we scaled the abscissa and superimposed the
two curves, taking into account that 9 mM corresponds to control conditions. The green circle
represents the mean frequency in control conditions (at 9 mM [K+], green arrowhead), which
differs during the experimental protocol. B: Mean potential over all the network for different
values of I. C: Power spectrum associated with C. D: Mean and CV of the burst duration,
interburst duration and rhythm period for several values of the applied current Iapp.
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Figure S10: Network-wide hyperpolarization A: Time dependent plot of the number of
spikes in the network when no current is applied (Iapp = 0 pA, top), and when the network is
hyperpolarized (Iapp = -0.25 pA, bottom). Note the increasing spiking activity preceding the
burst (green bars) in both plots. The red bars show periods when several neurons are spiking
together but fail to recruit the network, which show similarities (but see text) with the burstlets
observed experimentally. B-C: Poincaré maps of the cycle periods of one random neuron when
Iapp = 0 pA (B) and Iapp =-0.25 pA (C). The network is recorded over 1000 sec (nine runs),
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difference in the axes range in B and C.
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2.8 Minimal number of stimulations for burst induction.

To determine the minimal number of neurons necessary for inducing a network burst (Fig. 2D), we
depolarized an increasing number of randomly chosen neurons. In practice, within the HH-model,
we generated trains from 1 to 6 events consisting of 100 mV-depolarization during 0.05 ms with
an interval separation of 17 ms between the train (at 60 Hz). This 60 Hz-frequency corresponds
to the endogenous spiking dynamics. We started running the network at time t = 0 while we
generated the stimulation at time t=550 ms, where steady state is achieved. We then monitored
for 2 seconds the activity. A burst was detected when 80% of the neurons were spiking one
second after initiation. We could then estimate the probability of bursting for different numbers
of pulses and stimulated neurons.

2.9 Inspiratory drive currents. Fig. S12

Experimentally, respiratory preBötC neurons receive a volley of inward synaptic currents that
typically last for hundreds of milliseconds, peak at more than 100 pA, occur at periodic intervals,
and are referred to as inspiratory drive currents (Fig. S12).
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Figure S12: Inspiratory drive currents in an experimentally-recorded preBötC neuron
A: Inspiratory drive currents in voltage-clamp configuration. The command voltage was -60 mV,
and this is an expanded view of the trace displayed in the middle of Fig. 3C. B: Individual bursts
(i., ii., iii.) are shown at a faster timescale.
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Tables

Table 1: Parameters of synaptic transmission

Parameter Description Value
x Facilitation variable
ydock First depression variable
yfree Second depression variable
X Equilibrium value of x 0.3
xRefP Threshold for refractory period 0.31
ymax
free Maximum value of yfree 0.82
ymax
dock Maximum value of ydock 0.18
ymin
dock Minimum value of ydock 0.04
k Facilitation parameter 0.08
τf Facilitation time constant 700 ms
τdock First time constant for ydock 738 ms
τrel Second time constant for ydock 47 ms
τrec Time constant for the recovery 3000 ms
τdel Delay of the synaptic response 1 ms
KI Synaptic strength 2666
s Connectivity 0.9
σ Amplitude of voltage noise 0.89 (pA.cm−2)2.ms−1

T Action Potential threshold −58 mV
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Table 2: Hodgkin-Huxley

Parameter Description Value
C Capacitance 1 µF.cm−2

gNa Conductance of Na2+-current 120 mS.cm−2

VNa Equilibrium potential of Na2+-current 50 mV
τm Parameter for m 10 ms
θm Parameter for m −40 mV
ηm Parameter for m 4
σm Parameter for m 18
gK Conductance of K+-current 36 mS.cm−2

VK Equilibrium potential of K+-current −77 mV
gL Conductance of leak current 0.3 mS.cm−2

VL Equilibrium potential of leak current −54.4 mV
τn Parameter for n 100 ms
θn Parameter for n −55 mV
ηn Parameter for n 0.125
σn Parameter for n 80
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