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1 Transfer entropy and its estimation from data.

Let {X;} and {Y;} be two strong-sense stationary stochastic processes. Recall that a stochastic process
is strong-sense stationary if the joint distribution for the process evaluated at finitely many time points is
invariant to an overall timeshift [3]. In our work, these would correspond to the activities, X;(u) and Xy(v),
of two users u and v. We use the notation XL,C to denote the values of the stochastic process from time
t —k to time ¢, X]_, = (X4, Xy— k1), - - -, X4—1,X;). The lag-k transfer entropy [6] of ¥ on X is defined
as

TEY, = H [XIX{5] - H [X|X{ 7 v, (1)
where
H [Xy|X;Z] = —E [logy p(X:| X, )] (2)
and
H [X| X7 Y5 = —E [log, p(X: | X2} Y] (3)

are the usual conditional entropies over the conditional (predictive) distributions p(z|z!”}) and p(z.|zi =}, yi~0).

This formulation was originally developed in [6], where transfer entropy was proposed as an information the-
oretic measure of directed information flow. Formally, recalling that H [XﬂXf:,ﬂ is the uncertainty in X;
given its values at the previous k time points, and that H [X,| X/}, ¥;'7;'] is the uncertainty in X; given the
joint process {(X¢, Y;)} at the previous k time points, transfer entropy measures the reduction in uncertainty
of X; by including information about Y::kl, controlling for the information in Xtt:,i. By the ‘conditioning
reduces entropy’ result [1]

H[X|Y,Z] < H[X|Y], (4)
we can see that transfer entropy is always non-negative, and is zero precisely when
H (X, X,7 ] = H [X X7, Y5

in which case knowing the past k lags of Y; does not reduce the uncertainty in X;. If the transfer entropy is
positive, then {Y;} is considered causal for {X;} in the Granger sense [2].

When estimating transfer entropy from finite data, we will assume that the process {(X;,Y;)} is jointly
stationary, which gives us that

p(xi|y=)) = p(api ) (5)



and

p(@elei” 5y "x) = p(ara e, o) (6)
for all ¢. That is, the predictive distribution only depends on the past, not on when the past is observed.
Given this assumption, we compute estimators for p(xx41|2¥) and p(xxi1|2¥,y¥) by ‘counting’: for each
possible marginal and joint past x’f and (x’f, y’f), we count the number of times a future of type z1 occurs,
and normalize to obtain the appropriate estimators of the one-step-ahead predictive distributions. Call these
estimators p(wp41|z¥) and p(zyy1|2¥,y¥). Then the plug-in estimator for the transfer entropy is

== (k) f -1 F —1 -1

TEy x = H [X:|X;Z; ] — H [Xe|X;2;, Y5 (7)
where we use the plug-in estimators H [Xde:;] and H [Xt\Xtt:,i, Y;t__kl] for the entropies. It is well known
that the plug-in estimator for entropy is biased [5]. To account for this bias, we use the Miller-Madow
adjustment to the plug-in estimator [4]. For a random variable X taking on finitely many values from an
alphabet X, the Miller-Madow estimator is

H[X] = H[X] + |?32; !

(8)

where |2\? | is the number of observed symbols from the alphabet X and n was the number of samples used
to estimate H|[X]. The definition of transfer entropy (1) can be rewritten in terms of joint entropies as

TEY, y = HX!|X{Z}] ~ HIX,|X{Z] Y] (9)

= H[Xy, X, 73] = HIX, 7)) = HIXo, X, 70 Y5+ HIXG T Y5, (10)

We then apply the Miller-Madow adjustment individually to each of the entropy terms. For example, for
the first term, we have

) I . ECa !
H[Xy, X[7}] = H[X{ ] = H[X{ ;] + Yy (11)

where |X*+1| is the number of (k + 1)-tuples we actually observe (of the 2¥*! possible tuples). Doing this
for each term, the overall Miller-Madow estimator for the transfer entropy is

(k) ~ _ ~ _ _
TEy = HX|X/Z}] —~ HIX,|XI2L Y (12)
= H[X,, X{3] = HIX[ 73] — HIXe, X720 Y5 + HIXL Y (13)
One possible problem with this estimator is that it can result in negative estimates of entropies. That usually
occurs when H is very small. In these cases, we set the estimator to zero.

References

[1] Thomas M Cover and Joy A Thomas. Elements of information theory. Wiley-Interscience, 2006.
[2] Clive William John Granger. Economic processes involving feedback. Inform. Control, 6(1):28-48, 1963.

=)

Geoffrey Grimmett and David Stirzaker. Probability and random processes. Oxford University Press,
2001.

[4] George A Miller. Note on the bias of information estimates. In H Quastler, editor, Information theory
in psychology II-B, pages 95-100. Glencoe, Illinois: Free Press, 1955.

<

Liam Paninski. Estimation of entropy and mutual information. Neural Comput., 15(6):1191-1253, 2003.

=

Thomas Schreiber. Measuring information transfer. Phys. Rev. Lett., 85(2):461-464, 2000.



