Text S1 – Supporting Information for the Paper "Followers Are Not Enough: A Multifaceted Approach to Community Detection in Online Social Networks" by D. Darmon, E. Omodei, J. Garland

1 Transfer entropy and its estimation from data.

Let $\{X_t\}$ and $\{Y_t\}$ be two strong-sense stationary stochastic processes. Recall that a stochastic process is strong-sense stationary if the joint distribution for the process evaluated at finitely many time points is invariant to an overall timeshift [3]. In our work, these would correspond to the activities, $X_t(u)$ and $X_t(v)$, of two users u and v. We use the notation X_{t-k}^t to denote the values of the stochastic process from time t-k to time t, $X_{t-k}^t = (X_{t-k}, X_{t-(k-1)}, \dots, X_{t-1}, X_t)$. The lag-k transfer entropy [6] of Y on X is defined as

$$TE_{Y \to X}^{(k)} = H\left[X_t | X_{t-k}^{t-1}\right] - H\left[X_t | X_{t-k}^{t-1}, Y_{t-k}^{t-1}\right],\tag{1}$$

where

$$H\left[X_{t}|X_{t-k}^{t-1}\right] = -E\left[\log_{2} p(X_{t}|X_{t-k}^{t-1})\right]$$
(2)

and

$$H\left[X_{t}|X_{t-k}^{t-1},Y_{t-k}^{t-1}\right] = -E\left[\log_{2}p(X_{t}|X_{t-k}^{t-1},Y_{t-k}^{t-1})\right]$$
(3)

are the usual conditional entropies over the conditional (predictive) distributions $p(x_t|x_{t-k}^{t-1})$ and $p(x_t|x_{t-k}^{t-1},y_{t-k}^{t-1})$. This formulation was originally developed in [6], where transfer entropy was proposed as an information theoretic measure of directed information flow. Formally, recalling that $H\left[X_t|X_{t-k}^{t-1}\right]$ is the uncertainty in X_t given its values at the previous k time points, and that $H\left[X_t|X_{t-k}^{t-1},Y_{t-k}^{t-1}\right]$ is the uncertainty in X_t given the joint process $\{(X_t,Y_t)\}$ at the previous k time points, transfer entropy measures the reduction in uncertainty of X_t by including information about Y_{t-k}^{t-1} , controlling for the information in X_{t-k}^{t-1} . By the 'conditioning reduces entropy' result [1]

$$H[X|Y,Z] \le H[X|Y],\tag{4}$$

we can see that transfer entropy is always non-negative, and is zero precisely when

$$H\left[X_{t}|X_{t-k}^{t-1}\right] = H\left[X_{t}|X_{t-k}^{t-1}, Y_{t-k}^{t-1}\right],$$

in which case knowing the past k lags of Y_t does not reduce the uncertainty in X_t . If the transfer entropy is positive, then $\{Y_t\}$ is considered causal for $\{X_t\}$ in the Granger sense [2].

When estimating transfer entropy from finite data, we will assume that the process $\{(X_t, Y_t)\}$ is jointly stationary, which gives us that

$$p(x_t|x_{t-k}^{t-1}) = p(x_{k+1}|x_1^k)$$
(5)

and

$$p(x_t|x_{t-k}^{t-1}, y_{t-k}^{t-1}) = p(x_{k+1}|x_1^k, y_1^k)$$
(6)

for all t. That is, the predictive distribution only depends on the past, not on when the past is observed. Given this assumption, we compute estimators for $p(x_{k+1}|x_1^k)$ and $p(x_{k+1}|x_1^k,y_1^k)$ by 'counting': for each possible marginal and joint past x_1^k and (x_1^k,y_1^k) , we count the number of times a future of type x_{k+1} occurs, and normalize to obtain the appropriate estimators of the one-step-ahead predictive distributions. Call these estimators $\hat{p}(x_{k+1}|x_1^k)$ and $\hat{p}(x_{k+1}|x_1^k,y_1^k)$. Then the plug-in estimator for the transfer entropy is

$$\widehat{\text{TE}}_{Y \to X}^{(k)} = \hat{H} \left[X_t | X_{t-k}^{t-1} \right] - \hat{H} \left[X_t | X_{t-k}^{t-1}, Y_{t-k}^{t-1} \right]$$
(7)

where we use the plug-in estimators $\hat{H}\left[X_t|X_{t-k}^{t-1}\right]$ and $\hat{H}\left[X_t|X_{t-k}^{t-1},Y_{t-k}^{t-1}\right]$ for the entropies. It is well known that the plug-in estimator for entropy is biased [5]. To account for this bias, we use the Miller-Madow adjustment to the plug-in estimator [4]. For a random variable X taking on finitely many values from an alphabet X, the Miller-Madow estimator is

$$\tilde{H}[X] = \hat{H}[X] + \frac{|\hat{\mathcal{X}}| - 1}{2n} \tag{8}$$

where $|\hat{\mathcal{X}}|$ is the number of observed symbols from the alphabet \mathcal{X} and n was the number of samples used to estimate $\hat{H}[X]$. The definition of transfer entropy (1) can be rewritten in terms of joint entropies as

$$TE_{Y\to X}^{(k)} = H[X_t|X_{t-k}^{t-1}] - H[X_t|X_{t-k}^{t-1}, Y_{t-k}^{t-1}]$$

$$\tag{9}$$

$$= H[X_t, X_{t-k}^{t-1}] - H[X_{t-k}^{t-1}] - H[X_t, X_{t-k}^{t-1}, Y_{t-k}^{t-1}] + H[X_{t-k}^{t-1}, Y_{t-k}^{t-1}], \tag{10}$$

We then apply the Miller-Madow adjustment individually to each of the entropy terms. For example, for the first term, we have

$$\tilde{H}[X_t, X_{t-k}^{t-1}] = \tilde{H}[X_{t-k}^t] = \hat{H}[X_{t-k}^t] + \frac{|\widehat{\mathcal{X}^{k+1}}| - 1}{2n},\tag{11}$$

where $|\widehat{\mathcal{X}^{k+1}}|$ is the number of (k+1)-tuples we actually observe (of the 2^{k+1} possible tuples). Doing this for each term, the overall Miller-Madow estimator for the transfer entropy is

$$\widetilde{TE}_{Y\to X}^{(k)} = \tilde{H}[X_t|X_{t-k}^{t-1}] - \tilde{H}[X_t|X_{t-k}^{t-1}, Y_{t-k}^{t-1}]$$
(12)

$$= \tilde{H}[X_t, X_{t-k}^{t-1}] - \tilde{H}[X_{t-k}^{t-1}] - \tilde{H}[X_t, X_{t-k}^{t-1}, Y_{t-k}^{t-1}] + \tilde{H}[X_{t-k}^{t-1}, Y_{t-k}^{t-1}]. \tag{13}$$

One possible problem with this estimator is that it can result in *negative* estimates of entropies. That usually occurs when \hat{H} is very small. In these cases, we set the estimator to zero.

References

- [1] Thomas M Cover and Joy A Thomas. Elements of information theory. Wiley-Interscience, 2006.
- [2] Clive William John Granger. Economic processes involving feedback. Inform. Control, 6(1):28–48, 1963.
- [3] Geoffrey Grimmett and David Stirzaker. *Probability and random processes*. Oxford University Press, 2001.
- [4] George A Miller. Note on the bias of information estimates. In H Quastler, editor, *Information theory in psychology II-B*, pages 95–100. Glencoe, Illinois: Free Press, 1955.
- [5] Liam Paninski. Estimation of entropy and mutual information. Neural Comput., 15(6):1191–1253, 2003.
- [6] Thomas Schreiber. Measuring information transfer. Phys. Rev. Lett., 85(2):461–464, 2000.