
Neuronal circuits can either detect coincident depolariza ons due to spa otemporally structured inputs, or loosely
integrate all incoming inputs during a given task epoch up to threshold (see main text Fig. 1c, [1, 2]). Our anal-
ysis of dACC ac vity sought an unambiguous post-synap c signaling of the task epoch during which dACC spike
trains were emi ed. This decoding approach is func onally relevant because different task epochs must result in
different behavioral strategy adapta on to op mize performance.

When func oning in a coincidence detec on mode, a post-synap c neural decoder might discharge specifically
to a given task epoch, if its input spike trains would have a spa otemporal structure more different between task
epochs than within this epoch. Alterna vely, a downstream neural integrator might become selec ve for task
epochs by receiving inputs from neurons that fire more in one task epoch (see main text Fig. 1,2).

The efficiency of a decoding strategy can be assessed by quan fying how dissimilar are spike trains within and
between categories, in terms of either (spa o)temporal structure or spike count. Within the theore cal frame-
work named spike train metrics, the distance or dissimilarity between two spike trains is measured as a func on
of both the importance of spike ming [3] and the spa al dis nc on between the ac vity from different input
neurons [4].

1 Single-unit spike train metrics

The distance d(s, s′) between two spike trains s, s′ is defined as the minimal cost to transform s into s′ [3]. This
transforma on consists in using one of the three following steps sequen ally:

• adding a spike, for a cost of 1;

• dele ng a spike, for a cost of 1;

• changing the me of a spike by an amount dt, for a cost q · dt, where q is a free parameter that determines
the importance of spike ming (also named ming sensi vity throughout the paper).

When q = 0 s−1, there is no cost for changing the ming. Consequently, the distance d(s, s′) corresponds to
the absolute spike count difference between the two spike trains. As q increases, changing the ming of spikes
becomes more and more costly. Thus, a small distance d(s, s′) implies that s and s′ have spikes that match in
me, i.e. the temporal structure must be conserved. Two spikes from s and s′ may be moved to be matched if
they are separated by at most 2/q second. Otherwise, it is less costly to delete the first spike and reintroduce a
new matching spike, for a total cost of 2. Therefore, 2/q gives the maximal between-trial interspike interval for
which ming is accounted for.

2 Mul -unit spike train metrics

A mul -unit spike train is defined as the pa ern of discharges from different neurons observed in a given trial,
each spike being labeled by the iden ty of the neuron that emi ed it. To compute the distance d(s, s′) between
two mul -unit spike trains s, s′, two parameters must be considered: the ming sensi vity q, and the degree of
dis nc on k between spikes fromdifferent neurons. For example, if two neurons emit spike trainswith sta s cally
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iden cal temporal structures and fire with uncorrelated noise, then pooling their responses can be be er for
decoding. Conversely, if two neurons emit opposed signals (for instance an increase vs. a decrease of spiking
in a given task epoch), then it is important to dis nguish between them to maximize informa on. The distance
d(s, s′) between two mul -unit spike trains is defined as the minimum cost to transform s into s′, by using the
steps previously described, with the addi onal possibility to change the iden ty of the neuron that fired a given
spike, for a cost k. If k = 0, the iden ty of neurons does not ma er at all. If k ≥ kmax = 2, the responses
are never matched between neurons, because removing a spike from a given neuron and replacing it by a spike
from another neuron at the correct me is less costly. In general, two spikes from two different neurons may
be matched if they are separated by less than (2−k)

q second —so only very coincident spikes are matched for
intermediate k values.

3 Classifica on

A leave-one-out process was used to classify a given spike train s into the task epochE producing themost similar
responses to s. The distance between s and the ac vity produced during E was defined as the median of the
pairwise distances between s and any (other) spike train s′ ∈ E. Therefore, one spike train s was predicted to
belong to the task epoch E that minimizedmedian (dq,k(s, s

′))s′∈E, s′ ̸=s.

Note that we also ran a decoding analysis of dACC ac vity by using a small-distance biased classifica on algorithm
orginally proposed by [3] (z = −2 in their eq. 5, i.e. the distance between s and the ac vity produced duringE is(
⟨(dq(s, s′))−2⟩s′∈E, s′ ̸=s

) 1
−2

). We did not show thismethod in themain body because (i) it hinders classifica on
based on spike count decoding, and (ii) it leads to an overall decrease of the number of significant units and of the
informa on (all analyzed single units, signed-rank test onmaxq(< I >t), all ps < 10−5). These effects are likely
to be related to the frequent occurrence of zero pairwise distances in our dACC data set (due, for instance, to two
empty spike trains or, for q = 0 s−1, to two spike trains with the same spike count). Although the occurrence of
zero pairwise distances was more frequent within task epochs, given the high variability of our data (main text
Fig. 5c), it was also possible between task epochs. With the small-distance biased classifica on, the presence of
at least one zero pairwise distance in both epochs triggered a chance-based clustering of spike trains, irrespec ve
of the 0-distance frequency in the two task epochs. Despite the lower classifica on power of this method, it leads
to iden cal conclusions regarding dACC coding proper es as themethod presented in main text (all analyses were
checked with bothmethods; results for the single-units classifica on are shown in S5 Fig.). In general, for our very
variable data (main text Fig. 5c), it is likely that any classifica on relying on outliers would be less efficient than a
classifica on relying on a robust central value as the median.

A confusion matrix was built, in which the entryNij on line i and column j was the number of spike trains coming
from task epoch i and predicted to belong to task epoch j. If a trial was equally distant to several epochs, the
frac on 1

Nclosest epochs
was added to all these epochs. The informa on Iraw in the confusion matrix was:

Iraw =
1

N

∑
i,j

Nij · ln
( Nij ·N∑

k Nik ·
∑

l Nlj

)
(1)

with N =
∑

i,j Nij . This corresponds to the mutual informa on between the actual classifica on of trials and
the classifica on that one would get if the predic on were perfect. Hence, Iraw is always maximal for perfect
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predic on, though the absolutemaximum value depends on the balance of number of trials between the two task
epochs. Therefore, we also computed a normalized informa on Inorm by dividing Iraw by its maximal (perfect
predic on) value:

Inorm =
Iraw

− 1
N

∑
i

(∑
j Nij

)
· ln

(∑
j Nij

N

) (2)

Note that the informa on has the advantage to intrinsically account for the distribu on of the number of data
points in different categories to be classified, which is not the case of some other measures of classifica on per-
formance, such as percentage of correct [5]. This was important in our case because there were much less 1st

reward or errors trials compared to repe on trials (S1 Table).

The informa on es mate is, in general, biased when only finite data is available. However, because the spike
train metrics method makes the assump on that spike trains within one task-epoch appear more similar to one
another than spike trains taken from two different task-epochs, it is globally less likely to generate the huge finite
sample posi ve bias observed with the ‘raw’ binning method [6]. Because classical analy cal formulae for bias
es ma on cannot be applied to the case of the confusion matrix [3], the bias was es mated empricially as the
mean informa on computed in 1000 data sets created by randomly permu ng the trials between task-epochs.
This bias es mate was subtracted from the informa on es mate in the original data. In rare cases when slightly
nega ve values were reached a er bias-sustrac on, the final informa on value was set to 0. Note that we verified
that the qopt found for the 1st reward vs. repe on classifica on was iden cal with or without bias correc on,
even though this classifica on had the smallest number of trials and could therefore be more sensi ve to finite-
sample effects. More generally, we assessed the possible remaining presence of a bias by compu ng for each
neuron (or pair of neuron) the minimum trial number over task-epochs Ntrial min. We then compared different
sta s cs related to informa on (e.g. increase in informa on thanks to temporal sensi vity, gain in informa on
during paired decoding, ...) between neurons (resp. pairs) with Ntrial min that was higher vs. lower than the
median. While several factors may cause a difference between the group of high and low trial number (such as
behavioral differences between sessions of different dura ons, ...), a finite-sample bias would be expected to have
a very specific impact on the sta si cal measurements. Indeed, a given effect may result from a bias if, consistenly
in the two monkeys, the effect would decrease in the high trial number group and if this effect would be smallest
in monkey M (which had the highest trial number, see S1 Table). This pa ern was never observed, arguing that
our results are very unlikely to reflect a finite-sample bias.

4 Interpreta on of the classifier as a downstream decoding network and non-triviality of
the ming-related informa on improvement

The classifica on algorithm described in the previous sec on can be related to the performance of different dow-
stream neuronal circuits (main text Fig. 1). Indeed, the channels and membrane proper es of single neurons can
be approximately described by decaying filters (on the order of ms to hundreds of ms) of input spike trains [7]. In
addi on, the neuronal network's architecture can create decays onmuch longer mescales, or even quasi-perfect
integra on, which may implement short-term memory [8, 9].

When the downstream neuronal network acts as an integrator, it effec vely 'sees' input spike trains through their
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spike-count, and it would perform a classifica on tantamount to the metrics with q = 0 s−1.

For q > 0s−1, the metrics is be er interpreted through the equivalent similarity between spike trains. For any
pair of spikes separated by an interval δ ≥ 0 and associated with a Victor and Purpura cost (or dissimilarity) d(δ),
we can define the similarity S = Dmax − d(δ). Dmax = 2 is both the maximum dissimilarity between two
spikes and the sum of the costs of removing a spike and of reinser ng a new spike at the right me (see main
text Fig. 2a right). Hence, for δ ≤ 2

q , S(δ) = 2 − q δ, and else S = 0. This similarity can be related to the
maximal depolariza on reached through the summa on of two excitatory post-synap c poten al (EPSPs) that
would be caused by the two compared spikes. Indeed, if we take the (realis c) choice of an exponen al synap c
trace A exp(− t

τ ), we can no ce that the maximal depolariza on reached a er summa on of the two filtered
synap c traces is A + A exp(− δ

τ ). We can finally define an 'excess depolariza on' E above a baseline (here, the
depolariza on reachedwith a single spike): E(δ) = A exp(− δ

τ ). The func onsS(δ) andE(δ) have similar shapes
and may be matched; in par cular, we can equate:

• the maximal amplitudes of S and E: A = Dmax = 2

• the integrals of S and E:
∫
f(δ)dδ = Aτ =

∫
S(δ)dδ = 2

q

In other words, the (synap c) decaying me-scale τ can bematched to 1
q ([10]; see also [11, 12] for related ideas).

For paired spikes, the more similar the two spikes are according to the Victor and Pupura distance, the more
excitedwould a dowstreamdecoder (reac ngwith a me-scale≈ 1

q ) be through summa on of the depolariza ons
induced by the two spike trains. Finally, when addi onal spikes are present in one spike train, each spurious spike
induces an increase in the total dissimilarity equal to half the maximal dissimilarity that a spike pair can reach.
Similarly, an isolated spike induces a spurious depolariza on of maximal amplitude ≈ A once, while a maximally
dissimilar spike pair reaches this depolariza on twice (once for each spike of the pair).

The metrics therefore accounts for plausible constraints of the downstream circuits in terms of signal processing,
assuming the presence of one main decaying mescale for input filtering. Analysis techniques explicitly using
exponen al filtering for spike train classifica on were indeed found to behave almost iden cally to the Victor and
Purpura distance [11, 12, 13]. This is why the performance of the classifica on procedure is tantamount to the
performance of these different decoding downstream circuits (rather than to themaximumamount of informa on
that a perfect decoder, without any constraint, could reach).

Importantly, the presence of (task-epoch-specific) temporal structure does not necessarily cause an improvement
of the decoding performance with a value qopt > 0 compared to q = 0. Indeed, temporal modula ons may co-
vary with spike-count differences, implying a redundancy between the spike-count based and spike- ming-based
informa on. Further, the temporal informa on accessible to a biologically plausible decoder might reveal less
robust than a me-integrated spike count. This is par cularly likely to happen in cases when the spike rate is con-
sistently higher in one task-epoch compared to the other, leading to a between-task-epoch spike count difference
that is consistent over me. This difference could be detected with more and more accuracy when evidence is ac-
cumulated over me through integra on, leading to an efficient averaging-out of the noisy devia ons over me.
This configura on (firing rate consistently higher in one task-epoch) seems to qualita vely occur for dACC firing
rates (main text Fig. 1c, Fig. 3). Along those lines, previous ar cles reported an absence of ming-sensi vity-
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related informa on improvement even in the presence of category-specific temporal modula ons in the spiking
response [14, 13] (see in par cular the fig. 2a in [13]). Hence, as pointed out in [13], the spike-train-based classifi-
ca on does not detect all the exis ng mescales of the analyzed neuronal ac vity. Instead, the spike-train-based
classifica on aims at tes ng whether the reliability of temporal structure could allow a plausible downstream de-
coder to take advantage of it, which relates to the biological plausibility of temporal informa on transmission [15].

5 Algorithms and numerical methods

We ran all calcula ons on a cluster of 320 nodes (Consorzio Interuniversitario per le Applicazioni di Supercalcolo
Per Università e Ricerca CASPUR), on a private cluster and on a PC laptop, usingMATLAB (we adapted Victor's code,
freely available at h p://www-users.med.cornell.edu/∼jdvicto/metricdf.html). For the single-unit decoding and
response me analysis, we used Reich's c/MEX code and a modified MATLAB non-vectorized algorithm, respec-
vely. For the mul -unit decoding analysis, we adapted Kreuz's vectorized algorithm in MATLAB code (to handle
the case of empty spike trains). Unlessmen onedotherwise, qwas variedwithin [0, 5, 10, 15, 20, 25, 30, 35, 40, 60,
80]s−1, whereas k was varied within [0,0.25,0.5,0.75,1,1.25,1.5,1.75,2].
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