
Neuronal circuits can either detect coincident depolarizaࢢons due to spaࢢotemporally structured inputs, or loosely
integrate all incoming inputs during a given task epoch up to threshold (see main text Fig. 1c, [1, 2]). Our anal-
ysis of dACC acࢢvity sought an unambiguous post-synapࢢc signaling of the task epoch during which dACC spike
trains were emi�ed. This decoding approach is funcࢢonally relevant because different task epochs must result in
different behavioral strategy adaptaࢢon to opࢢmize performance.

When funcࢢoning in a coincidence detecࢢon mode, a post-synapࢢc neural decoder might discharge specifically
to a given task epoch, if its input spike trains would have a spaࢢotemporal structure more different between task
epochs than within this epoch. Alternaࢢvely, a downstream neural integrator might become selecࢢve for task
epochs by receiving inputs from neurons that fire more in one task epoch (see main text Fig. 1,2).

The efficiency of a decoding strategy can be assessed by quanࢢfying how dissimilar are spike trains within and
between categories, in terms of either (spaࢢo)temporal structure or spike count. Within the theoreࢢcal frame-
work named spike train metrics, the distance or dissimilarity between two spike trains is measured as a funcࢢon
of both the importance of spike mingࢢ [3] and the spaࢢal disࢢncࢢon between the acࢢvity from different input
neurons [4].

1 Single-unit spike train metrics

The distance d(s, s′) between two spike trains s, s′ is defined as the minimal cost to transform s into s′ [3]. This
transformaࢢon consists in using one of the three following steps sequenࢢally:

• adding a spike, for a cost of 1;

• deleࢢng a spike, for a cost of 1;

• changing the meࢢ of a spike by an amount dt, for a cost q · dt, where q is a free parameter that determines
the importance of spike mingࢢ (also named mingࢢ sensiࢢvity throughout the paper).

When q = 0 s−1, there is no cost for changing the .mingࢢ Consequently, the distance d(s, s′) corresponds to
the absolute spike count difference between the two spike trains. As q increases, changing the mingࢢ of spikes
becomes more and more costly. Thus, a small distance d(s, s′) implies that s and s′ have spikes that match in
,meࢢ i.e. the temporal structure must be conserved. Two spikes from s and s′ may be moved to be matched if
they are separated by at most 2/q second. Otherwise, it is less costly to delete the first spike and reintroduce a
new matching spike, for a total cost of 2. Therefore, 2/q gives the maximal between-trial interspike interval for
which mingࢢ is accounted for.

2 Mulࢢ-unit spike train metrics

A mulࢢ-unit spike train is defined as the pa�ern of discharges from different neurons observed in a given trial,
each spike being labeled by the idenࢢty of the neuron that emi�ed it. To compute the distance d(s, s′) between
two mulࢢ-unit spike trains s, s′, two parameters must be considered: the mingࢢ sensiࢢvity q, and the degree of
disࢢncࢢon k between spikes fromdifferent neurons. For example, if two neurons emit spike trainswith staࢢsࢢcally
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idenࢢcal temporal structures and fire with uncorrelated noise, then pooling their responses can be be�er for
decoding. Conversely, if two neurons emit opposed signals (for instance an increase vs. a decrease of spiking
in a given task epoch), then it is important to disࢢnguish between them to maximize informaࢢon. The distance
d(s, s′) between two mulࢢ-unit spike trains is defined as the minimum cost to transform s into s′, by using the
steps previously described, with the addiࢢonal possibility to change the idenࢢty of the neuron that fired a given
spike, for a cost k. If k = 0, the idenࢢty of neurons does not ma�er at all. If k ≥ kmax = 2, the responses
are never matched between neurons, because removing a spike from a given neuron and replacing it by a spike
from another neuron at the correct meࢢ is less costly. In general, two spikes from two different neurons may
be matched if they are separated by less than (2−k)

q second —so only very coincident spikes are matched for
intermediate k values.

3 Classificaࢢon

A leave-one-out process was used to classify a given spike train s into the task epochE producing themost similar
responses to s. The distance between s and the acࢢvity produced during E was defined as the median of the
pairwise distances between s and any (other) spike train s′ ∈ E. Therefore, one spike train s was predicted to
belong to the task epoch E that minimizedmedian (dq,k(s, s

′))s′∈E, s′ ̸=s.

Note that we also ran a decoding analysis of dACC acࢢvity by using a small-distance biased classificaࢢon algorithm
orginally proposed by [3] (z = −2 in their eq. 5, i.e. the distance between s and the acࢢvity produced duringE is(
⟨(dq(s, s′))−2⟩s′∈E, s′ ̸=s

) 1
−2

). We did not show thismethod in themain body because (i) it hinders classificaࢢon
based on spike count decoding, and (ii) it leads to an overall decrease of the number of significant units and of the
informaࢢon (all analyzed single units, signed-rank test onmaxq(< I >t), all ps < 10−5). These effects are likely
to be related to the frequent occurrence of zero pairwise distances in our dACC data set (due, for instance, to two
empty spike trains or, for q = 0 s−1, to two spike trains with the same spike count). Although the occurrence of
zero pairwise distances was more frequent within task epochs, given the high variability of our data (main text
Fig. 5c), it was also possible between task epochs. With the small-distance biased classificaࢢon, the presence of
at least one zero pairwise distance in both epochs triggered a chance-based clustering of spike trains, irrespecࢢve
of the 0-distance frequency in the two task epochs. Despite the lower classificaࢢon power of this method, it leads
to idenࢢcal conclusions regarding dACC coding properࢢes as themethod presented in main text (all analyses were
checked with bothmethods; results for the single-units classificaࢢon are shown in S5 Fig.). In general, for our very
variable data (main text Fig. 5c), it is likely that any classificaࢢon relying on outliers would be less efficient than a
classificaࢢon relying on a robust central value as the median.

A confusion matrix was built, in which the entryNij on line i and column j was the number of spike trains coming
from task epoch i and predicted to belong to task epoch j. If a trial was equally distant to several epochs, the
fracࢢon 1

Nclosest epochs
was added to all these epochs. The informaࢢon Iraw in the confusion matrix was:

Iraw =
1

N

∑
i,j

Nij · ln
( Nij ·N∑

k Nik ·
∑

l Nlj

)
(1)

with N =
∑

i,j Nij . This corresponds to the mutual informaࢢon between the actual classificaࢢon of trials and
the classificaࢢon that one would get if the predicࢢon were perfect. Hence, Iraw is always maximal for perfect
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predicࢢon, though the absolutemaximum value depends on the balance of number of trials between the two task
epochs. Therefore, we also computed a normalized informaࢢon Inorm by dividing Iraw by its maximal (perfect
predicࢢon) value:

Inorm =
Iraw

− 1
N

∑
i

(∑
j Nij

)
· ln

(∑
j Nij

N

) (2)

Note that the informaࢢon has the advantage to intrinsically account for the distribuࢢon of the number of data
points in different categories to be classified, which is not the case of some other measures of classificaࢢon per-
formance, such as percentage of correct [5]. This was important in our case because there were much less 1st

reward or errors trials compared to repeࢢࢢon trials (S1 Table).

The informaࢢon esࢢmate is, in general, biased when only finite data is available. However, because the spike
train metrics method makes the assumpࢢon that spike trains within one task-epoch appear more similar to one
another than spike trains taken from two different task-epochs, it is globally less likely to generate the huge finite
sample posiࢢve bias observed with the ‘raw’ binning method [6]. Because classical analyࢢcal formulae for bias
esࢢmaࢢon cannot be applied to the case of the confusion matrix [3], the bias was esࢢmated empricially as the
mean informaࢢon computed in 1000 data sets created by randomly permuࢢng the trials between task-epochs.
This bias esࢢmate was subtracted from the informaࢢon esࢢmate in the original data. In rare cases when slightly
negaࢢve values were reached a[er bias-sustracࢢon, the final informaࢢon value was set to 0. Note that we verified
that the qopt found for the 1st reward vs. repeࢢࢢon classificaࢢon was idenࢢcal with or without bias correcࢢon,
even though this classificaࢢon had the smallest number of trials and could therefore be more sensiࢢve to finite-
sample effects. More generally, we assessed the possible remaining presence of a bias by compuࢢng for each
neuron (or pair of neuron) the minimum trial number over task-epochs Ntrial min. We then compared different
staࢢsࢢcs related to informaࢢon (e.g. increase in informaࢢon thanks to temporal sensiࢢvity, gain in informaࢢon
during paired decoding, ...) between neurons (resp. pairs) with Ntrial min that was higher vs. lower than the
median. While several factors may cause a difference between the group of high and low trial number (such as
behavioral differences between sessions of different duraࢢons, ...), a finite-sample bias would be expected to have
a very specific impact on the staࢢsiࢢcal measurements. Indeed, a given effect may result from a bias if, consistenly
in the two monkeys, the effect would decrease in the high trial number group and if this effect would be smallest
in monkey M (which had the highest trial number, see S1 Table). This pa�ern was never observed, arguing that
our results are very unlikely to reflect a finite-sample bias.

4 Interpretaࢢon of the classifier as a downstream decoding network and non-triviality of
the ming-relatedࢢ informaࢢon improvement

The classificaࢢon algorithm described in the previous secࢢon can be related to the performance of different dow-
stream neuronal circuits (main text Fig. 1). Indeed, the channels and membrane properࢢes of single neurons can
be approximately described by decaying filters (on the order of ms to hundreds of ms) of input spike trains [7]. In
addiࢢon, the neuronal network's architecture can create decays onmuch longer ,mescalesࢢ or even quasi-perfect
integraࢢon, which may implement short-term memory [8, 9].

When the downstream neuronal network acts as an integrator, it effecࢢvely 'sees' input spike trains through their
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spike-count, and it would perform a classificaࢢon tantamount to the metrics with q = 0 s−1.

For q > 0s−1, the metrics is be�er interpreted through the equivalent similarity between spike trains. For any
pair of spikes separated by an interval δ ≥ 0 and associated with a Victor and Purpura cost (or dissimilarity) d(δ),
we can define the similarity S = Dmax − d(δ). Dmax = 2 is both the maximum dissimilarity between two
spikes and the sum of the costs of removing a spike and of reinserࢢng a new spike at the right meࢢ (see main
text Fig. 2a right). Hence, for δ ≤ 2

q , S(δ) = 2 − q δ, and else S = 0. This similarity can be related to the
maximal depolarizaࢢon reached through the summaࢢon of two excitatory post-synapࢢc potenࢢal (EPSPs) that
would be caused by the two compared spikes. Indeed, if we take the (realisࢢc) choice of an exponenࢢal synapࢢc
trace A exp(− t

τ ), we can noࢢce that the maximal depolarizaࢢon reached a[er summaࢢon of the two filtered
synapࢢc traces is A + A exp(− δ

τ ). We can finally define an 'excess depolarizaࢢon' E above a baseline (here, the
depolarizaࢢon reachedwith a single spike): E(δ) = A exp(− δ

τ ). The funcࢢonsS(δ) andE(δ) have similar shapes
and may be matched; in parࢢcular, we can equate:

• the maximal amplitudes of S and E: A = Dmax = 2

• the integrals of S and E:
∫
f(δ)dδ = Aτ =

∫
S(δ)dδ = 2

q

In other words, the (synapࢢc) decaying me-scaleࢢ τ can bematched to 1
q ([10]; see also [11, 12] for related ideas).

For paired spikes, the more similar the two spikes are according to the Victor and Pupura distance, the more
excitedwould a dowstreamdecoder (reacࢢngwith a ≈me-scaleࢢ 1

q ) be through summaࢢon of the depolarizaࢢons
induced by the two spike trains. Finally, when addiࢢonal spikes are present in one spike train, each spurious spike
induces an increase in the total dissimilarity equal to half the maximal dissimilarity that a spike pair can reach.
Similarly, an isolated spike induces a spurious depolarizaࢢon of maximal amplitude ≈ A once, while a maximally
dissimilar spike pair reaches this depolarizaࢢon twice (once for each spike of the pair).

The metrics therefore accounts for plausible constraints of the downstream circuits in terms of signal processing,
assuming the presence of one main decaying mescaleࢢ for input filtering. Analysis techniques explicitly using
exponenࢢal filtering for spike train classificaࢢon were indeed found to behave almost idenࢢcally to the Victor and
Purpura distance [11, 12, 13]. This is why the performance of the classificaࢢon procedure is tantamount to the
performance of these different decoding downstream circuits (rather than to themaximumamount of informaࢢon
that a perfect decoder, without any constraint, could reach).

Importantly, the presence of (task-epoch-specific) temporal structure does not necessarily cause an improvement
of the decoding performance with a value qopt > 0 compared to q = 0. Indeed, temporal modulaࢢons may co-
vary with spike-count differences, implying a redundancy between the spike-count based and spike-ࢢming-based
informaࢢon. Further, the temporal informaࢢon accessible to a biologically plausible decoder might reveal less
robust than a me-integratedࢢ spike count. This is parࢢcularly likely to happen in cases when the spike rate is con-
sistently higher in one task-epoch compared to the other, leading to a between-task-epoch spike count difference
that is consistent over .meࢢ This difference could be detected with more and more accuracy when evidence is ac-
cumulated over meࢢ through integraࢢon, leading to an efficient averaging-out of the noisy deviaࢢons over .meࢢ
This configuraࢢon (firing rate consistently higher in one task-epoch) seems to qualitaࢢvely occur for dACC firing
rates (main text Fig. 1c, Fig. 3). Along those lines, previous arࢢcles reported an absence of -vityࢢming-sensiࢢ
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related informaࢢon improvement even in the presence of category-specific temporal modulaࢢons in the spiking
response [14, 13] (see in parࢢcular the fig. 2a in [13]). Hence, as pointed out in [13], the spike-train-based classifi-
caࢢon does not detect all the exisࢢng mescalesࢢ of the analyzed neuronal acࢢvity. Instead, the spike-train-based
classificaࢢon aims at tesࢢng whether the reliability of temporal structure could allow a plausible downstream de-
coder to take advantage of it, which relates to the biological plausibility of temporal informaࢢon transmission [15].

5 Algorithms and numerical methods

We ran all calculaࢢons on a cluster of 320 nodes (Consorzio Interuniversitario per le Applicazioni di Supercalcolo
Per Università e Ricerca CASPUR), on a private cluster and on a PC laptop, usingMATLAB (we adapted Victor's code,
freely available at h�p://www-users.med.cornell.edu/∼jdvicto/metricdf.html). For the single-unit decoding and
response meࢢ analysis, we used Reich's c/MEX code and a modified MATLAB non-vectorized algorithm, respec-
.velyࢢ For the mulࢢ-unit decoding analysis, we adapted Kreuz's vectorized algorithm in MATLAB code (to handle
the case of empty spike trains). Unlessmenࢢonedotherwise, qwas variedwithin [0, 5, 10, 15, 20, 25, 30, 35, 40, 60,
80]s−1, whereas k was varied within [0,0.25,0.5,0.75,1,1.25,1.5,1.75,2].
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