
For the behavioral response me analysis, we wanted to quan fy to which extent a spike train s was an outlier
within the en re set of spike trains produced at 1st reward, i.e. howmuch it deviated from the discharge `typically'
emi ed during that epoch (for any given neuron).

1 Principle of the computa on of the devia on from a prototypical spike train

In order to evaluate how much a spike train s deviates from usual 1st reward ac vity, we thought of taking the
median of all pairwise dissimilari es between this spike train s and any other spike train s′ emi ed during the 1st

reward epoch. We then wondered which dissimilarity measure was appropriate.

The original Victor & Purpura distance d(s, s′) soon appeared problema c. Indeed, it sums the costs to match any
spike of train s to a spike of train s′ (S1 Text, [1]). Thus, all pairwise distances involving a trainwithmany spikes tend
to be larger than those involving a train with li le spikes. For instance, let s = {0.1, 0.5} (i.e. it contains one spike
at me t = 0.1 s and a second spike at t = 0.5 s) and s′ = {0.11, 0.51}. Their distance is then d1(s, s′) = 2·0.01 q
(for an appropriate q ≤ 200). Now, if s = {0.1} and s′ = {0.11, 0.51}, then d2(s, s

′) = 1 + 0.01 q. Therefore,
if we take q to roughly match the temporal ji er of ±0.01 s (i.e. q = 100 s−1), then d1 = d2, though during the
first distance computa on the spike matching was as temporally precise as, and more reliable than, during the
second distance computa on. In order to avoid this scaling with spike number, we divided the Victor & Purpura
distance by the number of mes when two spikes (from the two trials) were 'coincident' (i.e., 'matched' during
dissimilarity computa on). Two spikes were considered 'coincident' when they were associated with a distance
d < Dmax = 2. There was no coincidence both in cases when a spike was deleted and then reinserted at the
right me (for q > 0), and in cases when a spike was simply removed or added. Note that for q = 0, the number
of 'coincidences' (i.e., 'spike matchings') is the spike count of the trial with fewer spikes. The normalized distance
was taken as:
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where Nc denotes the number of coincident spike pairs, tis the me of the ith coincident spike in train s, ⟨dt⟩
the mean ji er among coincident spikes, and C the total cost for inser ng and/or dele ng spikes. The first term
quan fies the dissimilarity due to coincident (i.e., 'matched') spikes, whereas the second term is the dissimilarity
due to unmatched spikes. For q > 0, this measure quan fies the reliability of temporal coincidence detec on
between two spike trains. For q = 0 s−1, it quan fies the absolute spike count difference rela ve to the shared
spike count. In both cases, the normalized distance behaves similarly to an inverted signal-to-noise ra o. In this
interpreta on, the signal is taken as the coincident spikes. The noise is the unmatched spikes, and the temporal
ji er of coincident spikes rela ve to the considered 'coincidence window' for q > 0.

In the absence of coincident spikes, we simply used the original Victor & Purpura distance. For q = 0 s−1, the
absence of coincident spikes only happens when one spike train is empty. In this case, some intui ve order rela-
ons are conserved. Let sx denote a spike train containing x spikes. Then: d(s0, sx) > d(s0, sy)when x > y, and

d(s0, sx) > d(s1, sx)when x > 1. For q > 0, the absence of matching spike could also happenwhen the distance
between two spike trains sx, sy is maximum and equal to x+ y, because no spikes are close enough in me to be
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advantageously matched. In this case, the distance grows with the number of spikes that are unmatchable, i.e.
very dissimilar, which appears sound. Recall that, because our results showed an increase of informa on driven
by temporal spike matching, this 'no coincident spikes' situa on was likely to be unfrequent.

Note that the new distance we designed has a different purpose and effect from the previously proposed division
by the sum of spike count in the two spike trains and, more generally, from other re-scaled spike train dissimilarity
measures [2]. Indeed, rather than bounding the measure, or merely averaging some ji er sta s cs, we tried
to build a measure that would evaluate dissimilari es between spike trains as perceived by different plausible
decoders which are more or less sensi ve to spike ming and spike count, without being biased by the number
of spikes. Notably, we did not want the spikes that could not be matched to enter in the normaliza on factor for
the dissimilarity measure (which would happen with a simple division by spike count).

2 Classifica on with the new normalized metrics d∗

We expected the normalized distance d∗(s, s′) to show similar classifica on ability as compared to the classical
Victor & Purpura distance d. Indeed, for any spike train s, since both the intra- and inter-task epoch distances d
to s will increase with the spike count of s, a smaller d for a given task epoch s ll indicates a greater similarity
rela ve to the other task epoch(s). To corroborate this hypothesis, we tested the 1st reward classifica on with
the normalized metrics. To do so, we used the very same trials that have been extracted for the response me
analysis. Both the number and the iden ty of the significant neurons were consistent with those found with
the classical metrics (Monkey M: 65 significant neurons vs. 61, of which 57 are shared; monkey P: 50 significant
neurons in both cases, 44 shared). The classifica on results were also equivalent, as confirmed by a rank sum test
comparing themaximum (over ming sensi vity values) me-averaged informa on among significant neurons (all
ps > 0.74). In addi on, the normalized metrics uncovered an increase of me-averaged informa on with ming
sensi vity adapta on, independently in both monkeys (Friedman ANOVA on me-averaged informa on < I >t,
all p < 10−8; qopt = 15s−1 and 10s−1 for monkey M and P respec vely showed higher rank than q = 0 a er
post-hoc comparisons with Tukey's honestly significant criterion).

3 During response- me predic on, even in cases when the predic on power of q = 0 and
qopt was equivalent, these performances appeared to rely on different mechanisms

It is interes ng to note that the ming-sensi ve measure d∗(qopt) is also influenced by spike count. Hence, one
might wonder whether the predic on power of d∗(qopt) could come exclusively from spike count, while spike-
ming differences would act as a negligible noise. Our data actually strongly argue against this possibility and are

consistent with a significant effect of spike- ming. Indeed:

1. Using d∗(qopt ≈ 10s−1) allowed to significantly improve behavioral predic on in monkey M (main text
fig. 8), and to significantly improve 1st reward vs. repe on classifica on compared to d∗(q = 0) in both
monkeys (signed-rank test among neurons with significant classifica on abili es, comparing < I(qopt) >t

and < I(q = 0) >t, monkey M, p = 2.9 10−4; monkey P, p = 1.4 10−3). Hence, using qopt ≈ 10s−1 on
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the typical interspike intervals present in our spike trains indeed led to substan al changes of d∗ compared
to q = 0.

2. Concerning the behavioral predic on in monkey P, we can also show that even though d∗(qopt) and d∗(q =

0) both led to similar performance, they probably did it for different reasons (i.e. they probably relied on
different neurons and different analysis windows). Indeed, if temporal sensi vity had a negligible impact
on the D̄ measure (Materials and Methods), then the differenceDiffD̄ = D̄(qopt)− D̄(q = 0/s) should
be negligible noise. Under this hypothesis, adding a surrogate noise Diffsurr

D̄
(with sta s cs similar to

DiffD̄) to D̄(q = 0/s) should lead to a surrogate of D̄(qopt): Diffsurr
D̄

+ D̄(q = 0/s) = D̄(qopt)
surr.

This D̄(qopt)
surr should then have a similar bias score b (seeMaterials andMethods) to the bias score of the

original D̄(qopt). We tested this hypothesis, crea ng 1000 surrogatesDiffsurr
D̄

fromDiffD̄ by randomly
shuffling the values of DiffD̄ between neurons (iden cal conclusions were also reached when shuffling
between analysis windows or between both neurons and analysis windows). Importantly, only 2 % of these
surrogates had bias scores b superior or equal to the one of the original D̄(qopt) (using analysis windows
ending between 0.1 and 1s by steps of 0.1 s for bias score computa on, as in main text). In other words,
the null hypothesis (sta ng that temporal sensi vity at qopt = 10/s was only producing spurious negligible
changes in d∗ rela ve to q = 0) could be rejected with a p-value of 0.02. Similar results were reached when
compu ng the bias score using only analysis windows during which q = 0was leading to a substan al value
of D̄ (analysis windows between 250 and 450 ms, increasing in steps of 50 ms, p=0.011). Hence, the bias
scores of qopt = 10/s and q = 0 appeared to reach similar values by relying on different neurons and
analysis windows. This suggests that in monkey P, there is a subset of neurons for which the devia on from
the prototypical spike count be er predicts behavior, and there are other neurons for which the devia on
from the prototypical temporal pa ern be er predicts behavior.

These results further emphasize that, in bothmonkeys, the significant bias score obtainedwhen using qopt = 10/s

indeed suggest the relevance of dACC post-first-reward spike ming during downstream stages of processing.
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