
For the behavioral response meࢢ analysis, we wanted to quanࢢfy to which extent a spike train s was an outlier
within the enࢢre set of spike trains produced at 1st reward, i.e. howmuch it deviated from the discharge `typically'
emi�ed during that epoch (for any given neuron).

1 Principle of the computaࢢon of the deviaࢢon from a prototypical spike train

In order to evaluate how much a spike train s deviates from usual 1st reward acࢢvity, we thought of taking the
median of all pairwise dissimilariࢢes between this spike train s and any other spike train s′ emi�ed during the 1st

reward epoch. We then wondered which dissimilarity measure was appropriate.

The original Victor & Purpura distance d(s, s′) soon appeared problemaࢢc. Indeed, it sums the costs to match any
spike of train s to a spike of train s′ (S1 Text, [1]). Thus, all pairwise distances involving a trainwithmany spikes tend
to be larger than those involving a train with li�le spikes. For instance, let s = {0.1, 0.5} (i.e. it contains one spike
at meࢢ t = 0.1 s and a second spike at t = 0.5 s) and s′ = {0.11, 0.51}. Their distance is then d1(s, s′) = 2·0.01 q
(for an appropriate q ≤ 200). Now, if s = {0.1} and s′ = {0.11, 0.51}, then d2(s, s

′) = 1 + 0.01 q. Therefore,
if we take q to roughly match the temporal ji�er of ±0.01 s (i.e. q = 100 s−1), then d1 = d2, though during the
first distance computaࢢon the spike matching was as temporally precise as, and more reliable than, during the
second distance computaࢢon. In order to avoid this scaling with spike number, we divided the Victor & Purpura
distance by the number of mesࢢ when two spikes (from the two trials) were 'coincident' (i.e., 'matched' during
dissimilarity computaࢢon). Two spikes were considered 'coincident' when they were associated with a distance
d < Dmax = 2. There was no coincidence both in cases when a spike was deleted and then reinserted at the
right meࢢ (for q > 0), and in cases when a spike was simply removed or added. Note that for q = 0, the number
of 'coincidences' (i.e., 'spike matchings') is the spike count of the trial with fewer spikes. The normalized distance
was taken as:
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where Nc denotes the number of coincident spike pairs, tis the meࢢ of the ith coincident spike in train s, ⟨dt⟩
the mean ji�er among coincident spikes, and C the total cost for inserࢢng and/or deleࢢng spikes. The first term
quanࢢfies the dissimilarity due to coincident (i.e., 'matched') spikes, whereas the second term is the dissimilarity
due to unmatched spikes. For q > 0, this measure quanࢢfies the reliability of temporal coincidence detecࢢon
between two spike trains. For q = 0 s−1, it quanࢢfies the absolute spike count difference relaࢢve to the shared
spike count. In both cases, the normalized distance behaves similarly to an inverted signal-to-noise raࢢo. In this
interpretaࢢon, the signal is taken as the coincident spikes. The noise is the unmatched spikes, and the temporal
ji�er of coincident spikes relaࢢve to the considered 'coincidence window' for q > 0.

In the absence of coincident spikes, we simply used the original Victor & Purpura distance. For q = 0 s−1, the
absence of coincident spikes only happens when one spike train is empty. In this case, some intuiࢢve order rela-
onsࢢ are conserved. Let sx denote a spike train containing x spikes. Then: d(s0, sx) > d(s0, sy)when x > y, and
d(s0, sx) > d(s1, sx)when x > 1. For q > 0, the absence of matching spike could also happenwhen the distance
between two spike trains sx, sy is maximum and equal to x+ y, because no spikes are close enough in meࢢ to be
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advantageously matched. In this case, the distance grows with the number of spikes that are unmatchable, i.e.
very dissimilar, which appears sound. Recall that, because our results showed an increase of informaࢢon driven
by temporal spike matching, this 'no coincident spikes' situaࢢon was likely to be unfrequent.

Note that the new distance we designed has a different purpose and effect from the previously proposed division
by the sum of spike count in the two spike trains and, more generally, from other re-scaled spike train dissimilarity
measures [2]. Indeed, rather than bounding the measure, or merely averaging some ji�er staࢢsࢢcs, we tried
to build a measure that would evaluate dissimilariࢢes between spike trains as perceived by different plausible
decoders which are more or less sensiࢢve to spike mingࢢ and spike count, without being biased by the number
of spikes. Notably, we did not want the spikes that could not be matched to enter in the normalizaࢢon factor for
the dissimilarity measure (which would happen with a simple division by spike count).

2 Classificaࢢon with the new normalized metrics d∗

We expected the normalized distance d∗(s, s′) to show similar classificaࢢon ability as compared to the classical
Victor & Purpura distance d. Indeed, for any spike train s, since both the intra- and inter-task epoch distances d
to s will increase with the spike count of s, a smaller d for a given task epoch sࢢll indicates a greater similarity
relaࢢve to the other task epoch(s). To corroborate this hypothesis, we tested the 1st reward classificaࢢon with
the normalized metrics. To do so, we used the very same trials that have been extracted for the response meࢢ
analysis. Both the number and the idenࢢty of the significant neurons were consistent with those found with
the classical metrics (Monkey M: 65 significant neurons vs. 61, of which 57 are shared; monkey P: 50 significant
neurons in both cases, 44 shared). The classificaࢢon results were also equivalent, as confirmed by a rank sum test
comparing themaximum (over mingࢢ sensiࢢvity values) me-averagedࢢ informaࢢon among significant neurons (all
ps > 0.74). In addiࢢon, the normalized metrics uncovered an increase of me-averagedࢢ informaࢢon with mingࢢ
sensiࢢvity adaptaࢢon, independently in both monkeys (Friedman ANOVA on me-averagedࢢ informaࢢon < I >t,
all p < 10−8; qopt = 15s−1 and 10s−1 for monkey M and P respecࢢvely showed higher rank than q = 0 a[er
post-hoc comparisons with Tukey's honestly significant criterion).

3 During response-ࢢme predicࢢon, even in cases when the predicࢢon power of q = 0 and
qopt was equivalent, these performances appeared to rely on different mechanisms

It is interesࢢng to note that the veࢢming-sensiࢢ measure d∗(qopt) is also influenced by spike count. Hence, one
might wonder whether the predicࢢon power of d∗(qopt) could come exclusively from spike count, while spike-
mingࢢ differences would act as a negligible noise. Our data actually strongly argue against this possibility and are
consistent with a significant effect of spike-ࢢming. Indeed:

1. Using d∗(qopt ≈ 10s−1) allowed to significantly improve behavioral predicࢢon in monkey M (main text
fig. 8), and to significantly improve 1st reward vs. repeࢢࢢon classificaࢢon compared to d∗(q = 0) in both
monkeys (signed-rank test among neurons with significant classificaࢢon abiliࢢes, comparing < I(qopt) >t

and < I(q = 0) >t, monkey M, p = 2.9 10−4; monkey P, p = 1.4 10−3). Hence, using qopt ≈ 10s−1 on
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the typical interspike intervals present in our spike trains indeed led to substanࢢal changes of d∗ compared
to q = 0.

2. Concerning the behavioral predicࢢon in monkey P, we can also show that even though d∗(qopt) and d∗(q =

0) both led to similar performance, they probably did it for different reasons (i.e. they probably relied on
different neurons and different analysis windows). Indeed, if temporal sensiࢢvity had a negligible impact
on the D̄ measure (Materials and Methods), then the differenceDiffD̄ = D̄(qopt)− D̄(q = 0/s) should
be negligible noise. Under this hypothesis, adding a surrogate noise Diffsurr

D̄
(with staࢢsࢢcs similar to

DiffD̄) to D̄(q = 0/s) should lead to a surrogate of D̄(qopt): Diffsurr
D̄

+ D̄(q = 0/s) = D̄(qopt)
surr.

This D̄(qopt)
surr should then have a similar bias score b (seeMaterials andMethods) to the bias score of the

original D̄(qopt). We tested this hypothesis, creaࢢng 1000 surrogatesDiffsurr
D̄

fromDiffD̄ by randomly
shuffling the values of DiffD̄ between neurons (idenࢢcal conclusions were also reached when shuffling
between analysis windows or between both neurons and analysis windows). Importantly, only 2 % of these
surrogates had bias scores b superior or equal to the one of the original D̄(qopt) (using analysis windows
ending between 0.1 and 1s by steps of 0.1 s for bias score computaࢢon, as in main text). In other words,
the null hypothesis (staࢢng that temporal sensiࢢvity at qopt = 10/s was only producing spurious negligible
changes in d∗ relaࢢve to q = 0) could be rejected with a p-value of 0.02. Similar results were reached when
compuࢢng the bias score using only analysis windows during which q = 0was leading to a substanࢢal value
of D̄ (analysis windows between 250 and 450 ms, increasing in steps of 50 ms, p=0.011). Hence, the bias
scores of qopt = 10/s and q = 0 appeared to reach similar values by relying on different neurons and
analysis windows. This suggests that in monkey P, there is a subset of neurons for which the deviaࢢon from
the prototypical spike count be�er predicts behavior, and there are other neurons for which the deviaࢢon
from the prototypical temporal pa�ern be�er predicts behavior.

These results further emphasize that, in bothmonkeys, the significant bias score obtainedwhen using qopt = 10/s

indeed suggest the relevance of dACC post-first-reward spike mingࢢ during downstream stages of processing.
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