Supplementary information

The Salmonella effector protein SifA plays a dual role in virulence

Weidong Zhao¹, Thomas Moest¹, Yaya Zhao¹, Aude-Agnès Guilhon¹, Christophe Buffat^{2,3}, Jean-Pierre Gorvel¹ and Stéphane Méresse^{1,*}

¹Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.

²URMITE, Aix Marseille Université, CNRS UMR 6236-IRD 198, Marseille, France

³Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital de la Conception, Marseille, France

*Corresponding author: Stéphane Méresse; meresse@ciml.univ-mrs.fr; Tel: 33(0)4 91 26 91 15; Fax: 33(0)4 91 26 94 30

1

Fig. S1. Stability of ectopically expressed mutant forms of SifA. HeLa cells cells were transfected with vectors for expression of HA-tagged version of SifA, SifA^{L130D} or SifA(1-140) for 24 h. Cells were then treated with cycloheximide (100 µg/ml) for 0, 1, 2, 4, 8 and 12 hours to inhibit protein synthesis. Samples were examined for the presence of HA-tagged proteins by Western blotting. **(A**) Membranes were imaged using а chemiluminescence system. Representative image are shown. (B) The level of protein at each time point was quantified using the ImageJ software. The level of each protein at time 0 was set as 100% and the percentage of protein remaining at each time point was calculated and plotted. Three independent experiments are plotted. Linear regression analysis of each data set was carried out using the Prism software and used to calculate the proteins half-lives (8, 5.3, 9.1 h for SifA, SifA^{L130D} and SifA(1-140), respectively).

2

Fig. S2. *A C-terminally truncated form of SifA is secreted*. Strains expressing full length SifA-2HA or SifA(1-136)-2HA were tested *in vitro* for the secretion of effectors. A strain expressing SifA-2HA but unable to secrete T3SS-2 effectors (Δ *ssaV*, *sifA-2HA*) was used as negative control.

Table S1. Blood parameters for C57BL/6 and SKIP^{-/-} mice. Hematological parameters were measured in groups (n=6) of 8 weeks C57BL/6 and SKIP^{-/-} females using the hematology analyzer ABX Pentra 60 C (HORIBA ABX Diagnostic) calibrated for mouse cells. The plasma activities of aspartate (AST) and alanine aminotransferase (ALT) were determined in groups of 18 unsexed C57BL/6 and SKIP^{-/-} mice using a fully automated clinical chemistry analyser (Cobas C 501/502 analyser, Roche Diagnostics, Germany) and commercially available reagent kits. Unpaired t-tests were used to compare group means. *P* values are indicated.

	C57BL/6	SKIP⁻⁻	P value			
Hematology						
White blood cells (10 ³ /mm ³)	8,32 ± 1.34	8.05 ± 1.31	0.98			
Lymphocytes (%)	70.08 ± 3	76.01 ± 4.3	0.70			
Monocytes (%)	6.28 ± 1.7	5.33 ± 0.66	0.95			
Neutrophils (%)	22.45 ± 1.92	17.16 ± 3.51	0.73			
Eosinophils (%)	0.60 ±0.16	0.95 ± 0.48	0.98			
Basophils (%)	0.58 ± 0.31	0.53 ± 0.18	0.99			
Atypical lymphocyte (%)	0.56 ± 0.12	0.63 ± 0.23	0.99			
Large immature cells (%)	0.70 ± 0.21	0.55 ± 0.24	0.99			
Red blood cells (10 ⁶ / mm ³)	9.4 ± 0.27	8.99 ± 0.31	0.97			
Hemoglobinemia (g/d)	15.26 ±0.43	14.4 ± 0.56	0.95			
Hematocrit (%)	48.55 ± 1.36	46.36 ± 1.57	0.88			
mean corpuscular volume (µm ³)	51.66 ± 0.51	51.5 ± 1.04	0.99			
Mean Corpuscular Hemoglobin						
(pg)	16.21 ± 0.09	15.98 ± 0.16	0.98			
Mean Corpuscular Hemoglobin						
Concentration (g/d)	31.43 ± 0.2	31.06 ± 0.42	0.98			
Red cell distribution width (%)	11.95 ± 0.61	12.08 ± 0.25	0.99			
Platelet counts (10 ³ /mm ³)	686 ± 12	702 ± 78	0.03			
Mean platelet volume (µm ³)	5.63 ± 0.07	5.73 ± 0.29	0.99			
Clinical chemistry						
AST (U/I)	139 ± 104	170 ±157	0.5			
ALT (IU/I)	39 ± 25	57 ± 52	0.19			

Table S2. Salmonella strains and plasmids

Name	Description	Reference		
Strains				
12023	Wild-type S. Typhimurium (Salmonella enterica subsp.	38		
	<i>enterica</i> , strain NCTC 12023)			
DH215K	12023 Δ <i>sif</i> A::Km ^R	20		
DH215sc4	12023 Δ <i>sif</i> A::FRT	20		
ΔsseG	12023 ΔsseG::aphT	25		
WZ012	12023 s <i>ifA-2HA</i> ::Km ^R	37		
WZ012sc4	12023 sifA-2HA::FRT	This study		
AAG057	12023 ΔssaV::Km ^R	This study		
WZ039	12023 sifA ^{L130D} -2HA ::Km ^R	This study		
WZ020	12023 sifA(1-136)::Km ^R	This study		
WZ019	12023 sifA(1-136)-2HA::Km ^R	This study		
WZ041	12023 s <i>ifA-2HA ΔssaV</i> ::Km ^R	This study		
WZ043	ΔsseJ pipB2-2HA::Km ^R	This study		
WZ042	ΔsseJ ΔsifA::Km ^R	This study		
Plasmids				
pKD4-SifA-2HA,	pKD4 derivative for chromosomal exchange of sifA by	37		
C987	sifA-2HA			
pKD4-SifA ^{L130D} -	pKD4 derivative for chromosomal exchange of sifA by	This study		
2HA, C988	sifA ^{L130D} -2HA			

Table S3. Oligonucleotides

Primer	Sequence	Intend
O-461	GCTGTGAAGTCATGGGGAATCTTTATTTTGATATGAAAGATCGCCCGG	sifA ^{L130D}
	ΑΤΑΤΤΤΤΑΑΑΑΤΟ	
O-464	GCTGTGAAGTCATGGGGAATCTTTATTTTGATATGAAAGATCGCCCGG	sifA ^{L130D}
	ATTATC	
O-466	ATTCCCCATGACTTCACAGCTAAAGGTATCGGTATTTTG	sifA ^{L130D}
O-601	CTGGAGTCGCAATGCGTTCATGGTTAGGTGAGGGAGTCAGGGCGCG	∆ssaV
	TGTAGGCTGGAGCTGCTTC	
O-602	GGCTCTCCTCCTAATTCCTGCCATGACAAAATCGGTACGTCGCATA	∆ssaV
	TGAATATCCTCCTTAG	
O-686	CTGATTGCCAGTCTCTTTTAAAAATTATATTACATCCGATGCGCCCGC	WZ039
	AGTTGAGATAAAAAGGG	
O-687	GGCCATTTAAATGACTATTCTCATCCGATCCGGTCATATGCGGCCATA	WZ039
	TGAATATCCTCCTTAG	
0-71	GCCTGGCAAGAGGTTACTCAGTAGGCAAACAGGAAGCATATGAATAT	WZ020,
	CCTCCTTAG	WZ019,
		WZ045
O-744	GTCATGGGGAATCTTTATTTTTAATGAAAGATCGCCCGGATTAAGTGT	WZ020
	AGGCTGGAGCTGCTTC	
O-745	GTCATGGGGAATCTTTATTTTTAATGAAAGATCGCCCGGATTATCCG	WZ019
	TATGATGTGCCGGATTATGCGTATCCGTATGATGTGCCGGATTATGCG	
	TAAGTGTAGGCTGGAGCTGCTTC	