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(ESM1) Proof that LpX is a normed space (slight modification of the proof of Theorem 2.8 in [1]). It is easy to ver-
ify that the expressions in (2.2) define norms if the integrals on the right hand sides are well-defined,
which we now check. So let u ∈ LpX . Then ũ := φ−(·)u(·) ∈ Lp(0, T ;X0). Define F : [0, T ] ×X0 → R by
F (t, x) = ‖φtx‖X(t). By assumption, t 7→ F (t, x) is measurable for all x ∈ X0, and if xn → x in X0, then
by the reverse triangle inequality,

|F (t, xn)− F (t, x)| ≤ ‖φt(xn − x)‖X(t) ≤ CX ‖xn − x‖X0
→ 0,

so x 7→ F (t, x) is continuous. Thus F is a Carathéodory function. Due to the condition |F (t, x)| ≤
CX ‖x‖X0

, by Remark 3.4.5 of [2], the Nemytskii operator NF defined by (NFx)(t) := F (t, x(t)) maps
Lp(0, T ;X0)→ Lp(0, T ), so that

‖NF ũ‖pLp(0,T ) =

∫ T

0

‖u(t)‖pX(t) <∞.

(ESM2) Proof of Lemma 2.3. First we show that if u ∈ Lp(0, T ;X0), then φ(·)u(·) ∈ LpX .

Let u ∈ Lp(0, T ;X0) be arbitrary. By density, there exists a sequence of simple functions un ∈ Lp(0, T ;X0)
with

‖un − u‖Lp(0,T ;X0) → 0

and thus for almost every t,
‖un(t)− u(t)‖X0

→ 0

for a subsequence, which we relabelled. We have that φtun(t)→ φtu(t) in X(t) by continuity; this implies

‖φtun(t)‖X(t) → ‖φtu(t)‖X(t) pointwise a.e. (1)

Write un(t) =
∑Mn

i=1 un,i1Bi(t) where the un,i ∈ X0 and the Bi are measurable, disjoint and partition
[0, T ]. Then

φtun(t) =

Mn∑
i=1

φt(un,i)1Bi(t) ∈ X(t).

Taking norms and exponentiating, we get

‖φtun(t)‖pX(t) =

Mn∑
i=1

‖φtun,i‖pX(t) 1
p
Bi

(t),

which is measurable (with respect to t) since, by assumption, the ‖φtun,i‖X(t) are measurable and a finite

sum of measurable functions is measurable. Thus, by (1), ‖φtu(t)‖X(t), is measurable. Finally,∫ T

0

‖φtu(t)‖pX(t) ≤
∫ T

0

CpX ‖u(t)‖pX0
= CpX ‖u‖

p
Lp(0,T ;X0) ,

so φ(·)u(·) ∈ LpX .

So there is a map from Lp(0, T ;X0) to LpX and vice-versa from the definition of LpX . The isomorphism
between the spaces is T : Lp(0, T ;X0)→ LpX where

Tu = φ(·)u(·), and T−1v = φ−(·)v(·).

It is easy to check that T is linear and bijective. The equivalence of norms follows by the bounds on
φ−t : X(t)→ X0

1

CX
‖u(t)‖X(t) ≤ ‖φ−tu(t)‖X0

≤ CX ‖u(t)‖X(t) .
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(ESM3) (Slight modification of the proof of Lemma 2.13 in [1]) By consideration of the Caratheodory map
F : [0, T ]×X∗0 ×X0 → R defined by

F (t, x∗, x) = 〈φ∗−tx∗, φtx〉X∗(t),X(t)

and using Remark 3.4.2 of [2], given g ∈ LpX∗ and f ∈ LqX , we have with g̃ := φ∗(·)g(·) and f̃ := φ−(·)f(·)
that t 7→ 〈φ∗−tg̃(t), φtf̃(t)〉X∗(t),X(t) = 〈g(t), f(t)〉X∗(t),X(t) is measurable, since t 7→ g̃(t) and t 7→ f̃(t) are
measurable.

(ESM4) Such a choice is possible because by definition of supremum, for any δ > 0, there exists an element
x̃i,t ∈ X(t) of norm 1 such that

sup
x∈X(t)
‖x‖X(t)=1

|〈x∗i,t, x〉X∗(t),X(t)| − |〈x∗i,t, x̃i,t〉X∗(t),X(t)| < δ. (2)

Then setting xi,t = x̃i,t sign(〈x∗i,t, x̃i,t〉X∗(t),X(t)) and choosing δ = ε
2‖h‖L1(0,T )

implies (2.5).

(ESM5) Proof of Lemma 2.8. For q < ∞, it is easy to check that φt : L
q(Ω0) → Lq(Ω(t)) is a linear homeo-

morphism satisfying the additional boundedness requirements. Therefore, let us discuss q = ∞. Let
u ∈ L∞(Ω(t)). We have

‖u‖L∞(Ω(t)) = ess sup
x∈Ω(t)

|u(x)| = ess sup
y∈Ω0

|u(Φ0
t (y))| = ‖ũ‖L∞(Ω0)

because Φ0
t is a diffeomorphism so null sets are mapped to null sets. Now an application of Lemma 2.3

yields the result. The above calculation also shows that the norm is preserved for q =∞.

(ESM6) Proof of Lemma 2.9. That the embedding is continuous is obvious. Let wn be a bounded sequence in

W (H1, H−1). Then φ−(·)wn is a bounded sequence inW(H1, H−1), and byW(H1, H−1)
c
↪−→ L2(0, T ;L2(Ω0)),

there is a subsequence φ−(·)wnk
→ w̃ that converges in L2(0, T ;L2(Ω0)). Hence wnk

→ φ(·)w in L2
L2 .

(ESM7) Proof of Theorem 2.10. First we prove the following.

1 Lemma. Let {wn} and w be functions such that {w̃n} and w̃ are measurable (eg. membership of L1
L1

will suffice). If for almost all t ∈ [0, T ],

wn(t, x)→ w(t, x) for almost all x ∈ Ω(t)

|wn(t, x)| ≤ C for almost all x ∈ Ω(t) for all n,

then for almost all t ∈ [0, T ], |w(t, x)| ≤ C a.e. in Ω(t).

Proof. The first statement implies that there exist null sets N and Mt such that for all t ∈ [0, T ]\N ,
|wn(t, x)| → |w(t, x)| for all x ∈ Ω(t)\Mt. The second statement is that for all t ∈ [0, T ]\Sn, |wn(t, x)| ≤ C
for all x ∈ Ω(t)\Rn,t where again Sn and Rn,t are null sets. Combining these, we find that for all
t ∈ [0, T ]\ (N ∪

⋃
Sn), |w(t, x)| ≤ C for all x ∈ Ω(t)\ (Mt ∪

⋃
Rn,t). We conclude after recalling that the

countable union of null sets is null.

In this proof, N, N̂,Mt and M̂t are null sets.

Define vn = wn − w. Then the first premise means that for all t ∈ [0, T ]\N, for all ε > 0, there exists K
such that if n ≥ K, |vn(t, x)| ≤ ε for all x ∈ Ω(t)\Mt; if we set y = Φt0(x), this is |ṽn(t, y)| ≤ ε for all
y ∈ Ω0\Φt0(Mt). In other words,

ṽn(t, y)→ 0 for all y ∈ Ω0\Φt0(Mt). (3)

The second premise is for t ∈ [0, T ]\N̂ , |vn(t, x)| ≤ |w(t, x)| + |g(t, x)| ≤ 2|g(t, x)| for all x ∈ Ω(t)\M̂t

(where we used Lemma 1 and chose N̂ and M̂t to take into account the null sets of the lemma), i.e.,
|ṽn(t, y)| ≤ 2|g̃(t, y)| for all y ∈ Ω0\Φ̂t0(Mt), which implies

|ṽn(t, y)|q ≤ 2q|g̃(t, y)|q for all y ∈ Ω0\Φt0(M̂t). (4)

Thus from (3) and (4), by the dominated convergence theorem, we have(∫
Ω0

|ṽn(t)|q
) 1

q

→ 0 for t ∈ [0, T ]\(N ∪ N̂).
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This is precisely the statement that for all t ∈ [0, T ]\(N∪N̂), ‖ṽn(t)‖Lq(Ω0) → 0. We know ‖ṽn(t)‖Lq(Ω0) ≤
2 ‖g̃(t)‖Lq(Ω0) and the right hand side is in Lp(0, T ) by assumption. So again we use the dominated
convergence theorem which tells us that ∫ T

0

‖ṽn(t)‖pLq(Ω0) → 0,

i.e., ṽn = w̃n − w̃ → 0 in Lp(0, T ;Lq(Ω0)) or w̃n → w̃ in Lp(0, T ;Lq(Ω0)).

(ESM8) We have∫ T

0

〈u̇n(t), u+
n (t)〉H−1(Ω(t)),H1(Ω(t)) =

∫ T

0

∫
Ω(t)

∂•u+
n (t)u+

n (t)

=

∫ T

0

1

2

d

dt

∫
Ω(t)

u+
n (t)2 − 1

2

∫ T

0

∫
Ω(t)

u+
n (t)2∇Ω ·w

=
1

2

∫
Ω(T )

u+
n (T )2 − 1

2

∫
Ω0

u+
n (0)2 − 1

2

∫ T

0

∫
Ω(t)

u+
n (t)2∇Ω ·w.

(ESM9) To see this, let us show that if wn(x) → w(x) pointwise a.e. in Ω, then g(wn(x)) → g(w(x)) pointwise
a.e. in Ω. Fix x such that w(x) > 0. Then for every ε, there exists an Nε such that if n ≥ Nε, we have
|wn(x)− w(x)| ≤ ε. In other words, w(x)− ε ≤ wn(x) ≤ w(x) + ε. So if we pick ε = ε′ small enough, we
find wn(x) ≥ w(x) − ε′ ≥ 0. Therefore it follows that g(wn) = 1 for n ≥ Nε′ . This shows that when x
is s.t w(x) > 0, g(wn) → g(w) = 1 pointwise. When x is such that g(x) < 0, a similar argument shows
again that we get convergence. When x is such that w(x) = 0, we cannot control the sign of wn(x) but
∇w = 0 on the set w = 0.

(ESM10) Proof of Lemma 3.5. Testing with Eε(uε) gives

〈∂•(Eε(uε(t))), Eε(uε(t))〉V ∗(t),V (t) +

∫
Ω(t)

∇Ωuε(t)∇Ω(Eε(uε(t)))+
∫

Ω(t)

(Eε(uε(t)))2∇Ω ·w

=

∫
Ω(t)

f(t)Eε(uε(t))

which, since ∇Ωuε∇Ω(Eε(uε)) = (Eε)′(uε)|∇Ωuε|2 ≥ |∇Ωuε|2 gives us

1

2

d

dt
‖Eε(uε(t))‖2L2(Ω(t)) +

∫
Ω(t)

|∇Ωuε(t)|2 +
1

2

∫
Ω(t)

(Eε(uε(t)))2∇Ω ·w ≤
∫

Ω(t)

f(t)Eε(uε(t)).

Integrating over time and using the previous estimate, we find

1

2
‖Eε(uε(T ))‖2L2(Ω(T )) +

∫ T

0

∫
Ω(t)

|∇Ωuε(t)|2 ≤
1

2
(1 +M)2|Ω0|+ C1(T,M,w, f).

For the time derivative:

‖∂•(Eεuε)‖L2
H−1
≤ sup
v∈L2

H1 ,

‖v‖=1

∫ T

0

∫
Ω(t)

|∇Ωuε(t)∇Ωv(t) + Eε(uε(t))v(t)∇Ω ·w|+
∫ T

0

∫
Ω(t)

|f(t)v(t)|

≤ C2(T,Ω,M,w, f).

(ESM11) First, we need the following lemma.

2 Lemma. The map

λ→
∫ T

0

∫
Ω(t)

x(t)U(u(t) + λv(t)) ∀u, v, x ∈ L2
L2

is continuous on [0, 1].
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Proof. Consider for a.a t

Ft(λ) =

∫
Ω(t)

x(t, y)U(u(t, y) + λv(t, y)) dy.

The integrand is evidently continuous with respect to λ, and |x(t, y)U(u(t, y) + λv(t, y))| ≤ (|u(t, y)| +
|v(t, y)|)|w(t, y)| (because λ ≤ 1) and the right hand side is integrable over Ω(t). Thus Ft is continuous.
Now consider

λ 7→
∫ T

0

Ft(λ) dt.

We just showed that the integrand λ 7→ Ft(λ) is continuous, and |Ft(λ)| ≤ ‖u(t)‖L2(Ω(t)) ‖w(t)‖L2(Ω(t)) +

‖v(t)‖L2(Ω(t)) ‖w(t)‖L2(Ω(t)), and the right hand side is integrable. Therefore
∫ T

0
Ft(λ) is continuous in

λ.

Let us pick w = χ− λx, where λ ∈ [0, 1] and x ∈ L2
L2 . Then this becomes∫ T

0

∫
Ω(t)

λx(u− U(χ− λx)) ≥ 0.

Since λ is positive, we can divide through this expression by λ, and then we can send λ→ 0 to receive by
continuity (see Lemma 2) ∫ T

0

∫
Ω(t)

x(u− U(χ)) ≥ 0.

This then implies that u = U(χ).

(ESM12) Proof of Lemma 3.7. To see this, for s ∈ (0, T ], consider the function χε,s(t) = min
(
1, ε−1(s− t)+

)
which

has a weak derivative

χ′ε,s(t) =


0 : t ∈ (0, s− ε)
− 1
ε : t ∈ (s− ε, s)

0 : t ∈ (s, T )

.

Take the test function in (1.3) to be χε,T η where η ∈W (H1, L2),

−
∫ T

0

∫
Ω(t)

(χ̇ε,T (t)η(t) + χε,T (t)η̇(t))e(t) +

∫ T

0

∫
Ω(t)

χε,T (t)∇Ωu∇Ωη(t) =

∫ T

0

∫
Ω(t)

χε,T (t)f(t)η(t)

+

∫
Ω0

χε,T (0)e0η(0)

and this becomes

1

ε

∫ T

T−ε

∫
Ω(t)

η(t)e(t)−
∫ T

0

∫
Ω(t)

χε,T (t)η̇(t)e(t) =

∫ T

0

∫
Ω(t)

χε,T (t) (f(t)η(t)−∇Ωu(t)∇Ωη(t))

+

∫
Ω0

χε,T (0)e0η(0).

Send ε→ 0 and use the Lebesgue differentiation theorem on the left hand side to yield∫
Ω(T )

η(T )e(T )−
∫ T

0

∫
Ω(t)

η̇(t)e(t) =

∫ T

0

∫
Ω(t)

(
−∇Ωu(t)∇Ωη(t) +

∫
Ω(t)

f(t)η(t)

)
+

∫
Ω0

e0η(0).

(ESM13) The regularisations aε exist for the following reason. Define ã = a ◦ Φ0
t , and note that 0 ≤ ã ≤ 1 and

ã ∈ L2((0, T ) × Ω0) (it is measurable since it is piecewise measurable). By density of C2([0, T ]× Ω0) ⊂
L2((0, T ) × Ω0), there exist ãε ∈ C2([0, T ]× Ω0) that satisfy 0 ≤ ãε ≤ 1 a.e. and ‖ãε − ã‖L2((0,T )×Ω0) ≤
CHε. But

CH ‖aε − a‖L2
L2
≤ ‖ãε − ã‖L2(0,T ;L2(Ω0)) = ‖ãε − ã‖L2((0,T )×Ω0) ≤ CHε,

where aε := ãε.
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(ESM14) By changing variables s = t− τ , we rewrite (3.9) as

∂•τηε(t− s) + (aε(x, t− s) + ε)∆Ωηε(t− s) = 0

ηε(t) = ξ.

Noticing ∂•τηε(t− s) = −∂•sηε(t− s) and substituting ϕε(s) = ηε(t− s), this can be written as

ϕ̇ε(s)− (aε(x, t− s) + ε)∆Ωϕε(s) = 0

ϕε(0) = ξ

which holds for s ∈ (0, t). This is precisely in the form of the PDE in Lemma 2.13.

(ESM15) We can write∫
Ω(t)

(e1(t)− e2(t))η(t)

−
∫ t

0

∫
Ω(τ)

(e1(τ)− e2(τ))(η̇(τ) + (aε(x, τ) + ε)∆Ωη(τ)− (aε(x, τ)− a(x, τ) + ε)∆Ωη(τ))

=

∫ t

0

∫
Ω(τ)

(f1(τ)− f2(τ))η(τ)〉+

∫
Ω0

(e1
0 − e2

0)η(0).

(ESM16) We can estimate as follows:

∫ t

0

∫
Ω(τ)

|a(x, τ)− aε(x, τ)||∆Ωηε(τ)| ≤

(∫ t

0

∫
Ω(τ)

|a(x, τ)− aε(x, τ)|2

ε

) 1
2
(∫ t

0

∫
Ω(τ)

ε|∆Ωηε(τ)|2
) 1

2

≤
√
ε ‖a− aε‖L2

L2

√
(2 + ε)(1 + e2Cw(2+ε)t)

(∫
Ω0

|∇Ωξ|2
) 1

2

→ 0

and ∫ t

0

∫
Ω(τ)

|ε∆Ωηε| ≤

(∫ t

0

∫
Ω(τ)

ε

) 1
2
(∫ t

0

∫
Ω(τ)

ε(∆Ωηε)
2

) 1
2

≤
√
t|Ω|ε(2 + ε)(1 + e2Cw(2+ε)t)

(∫
Ω0

|∇Ωξ|2
) 1

2

→ 0.
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