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Proof that L% is a normed space (slight modification of the proof of Theorem 2.8 in [1]). It is easy to ver-
ify that the expressions in (2.2) define norms if the integrals on the right hand sides are well-defined,
which we now check. So let u € L%. Then @ := ¢_yu(-) € LP(0,T; X). Define F: [0,T] x Xo — R by
F(t,x) = ||| x(4)- By assumption, ¢ — F(t,z) is measurable for all z € Xo, and if 2, = x in Xy, then
by the reverse triangle inequality,

[F(t,zn) = F(t,2)] < [[1(zn — ) x (1) < Ox llon — 2l x, = 0,

so  — F(t,x) is continuous. Thus F' is a Carathéodory function. Due to the condition |F(t,z)| <
Cx ||lz][x,, by Remark 3.4.5 of [2], the Nemytskii operator N defined by (Nrz)(t) := F(t,z(t)) maps
L?(0,T; Xo) — LP(0,T), so that

T
INrllar = [ Ol <.
O

Proof of Lemma 2.3. First we show that if u € L?(0,T; Xy), then ¢ yu(-) € L.
Let u € LP(0,T; Xo) be arbitrary. By density, there exists a sequence of simple functions u,, € L?(0,T; X)
with

l|tn — uHLP(O,T;XO) —0
and thus for almost every t,

[[un () —u(t)] x, — 0
for a subsequence, which we relabelled. We have that ¢;u, (t) — ¢,u(t) in X (¢) by continuity; this implies

l6etn(®)llx ) = ot pointwise a.c. (1)
Write u,(t) = Zf\i*i Un,;1B,(t) where the u, ; € Xy and the B; are measurable, disjoint and partition
[0,T]. Then
qbtun Z¢t unle EX()

Taking norms and exponentiating, we get

H¢tun Hp t) - Z H(ﬁtun 7

o 15, (),

which is measurable (with respect to t) since, by assumption, the ||¢zun ;| (1) are measurable and a finite
sum of measurable functions is measurable. Thus, by (1), [[¢:u(t) y (), is measurable. Finally,

T
/O loeu®) / Y %, = C% [l o.oxy) -
so pyu(-) € L.

So there is a map from LP(0,T; Xo) to L% and vice-versa from the definition of L% . The isomorphism
between the spaces is T': LP(0,T; Xo) — L% where

Tu=¢eyu(-), and T 'v=¢_ ().

It is easy to check that T is linear and bijective. The equivalence of norms follows by the bounds on
¢—t: X(t) — XO )
o 1MOlx ) = llo—u®)llx, < Cx u®llx -



(ESM3) (Slight modification of the proof of Lemma 2.13 in [1]) By consideration of the Caratheodory map
F:[0,T] x X} x Xo — R defined by

F(t,z*,x) = (o2, 2", 1) x+ (1), x (1)

and using Remark 3.4.2 of [2], given g € L%, and f € L%, we have with g := ¢{9(-) and f= d_(yf(4)
that ¢ — (¢*,g(t), ¢ f (1)) x= 1), xx) = (9(t), f(t)) x+(t),x () is measurable, since ¢t — g(t) and t — f(t) are
measurable.

(ESM4) Such a choice is possible because by definition of supremum, for any & > 0, there exists an element
Z;1 € X (t) of norm 1 such that

sup (27 4, ) x- (0), x ()| = [T7 0 Tit) x = (0), x (1) | < O (2)
zeX(t)
HIHX(t):l

Then setting x;; = ;¢ sign((z} ;, i t) x+ (1), x (1)) and choosing ¢ = : implies (2.5).

€
2HhHL1(0,T

(ESM5) Proof of Lemma 2.8. For q < oo, it is easy to check that ¢;: L1(Qy) — L%((t)) is a linear homeo-
morphism satisfying the additional boundedness requirements. Therefore, let us discuss ¢ = oo. Let
u € L*(Q(t)). We have

[l oo (a(ay) = esssup |u(@)| = esssup [u(@(y))] = (|| o ()
) yeo

because ®Y is a diffeomorphism so null sets are mapped to null sets. Now an application of Lemma 2.3
yields the result. The above calculation also shows that the norm is preserved for ¢ = co. O

(ESM6) Proof of Lemma 2.9. That the embedding is continuous is obvious. Let w, be a bounded sequence in
W(H', H~"). Then ¢_(.yw,, is a bounded sequence in W(H", H~'), and by W(H"', H~') <% L*(0,T; L*(Q)),
there is a subsequence ¢_(.yw,, — w that converges in L2(0,T; L*(Q0)). Hence w,, — ¢yw in L2,. O

(ESM7) Proof of Theorem 2.10. First we prove the following.
1 Lemma. Let {w,} and w be functions such that {w,} and @ are measurable (eg. membership of L},
will suffice). If for almost all t € [0,T],
wy(t, ) = w(t, ) for almost all x € Q(t)
|wy(t,z)| < C for almost all x € Q(t) for all n,

then for almost all t € [0,T], |w(t,x)| < C a.e. in Q(t).

Proof. The first statement implies that there exist null sets N and M; such that for all ¢t € [0, T]\N,
|wn (t, )| = |w(t,z)| for all x € Q(t)\M;. The second statement is that for all ¢ € [0, T\ Sy, |wn(t,z)| < C
for all x € Q(t)\R,,: where again S, and R, are null sets. Combining these, we find that for all
te [0, TI\(NUUSn), lw(t,z)] < C for all x € Q(¢)\ (M U|J Ryp,1). We conclude after recalling that the
countable union of null sets is null. O

In this proof, N, N, M, and M, are null sets.

Define v, = wy, — w. Then the first premise means that for all ¢ € [0, T]\N, for all € > 0, there exists K
such that if n > K, |v,(t,z)] < € for all x € Q(t)\My; if we set y = ®(x), this is |0,(¢,y)| < € for all
y € Qo\ P (M;). In other words,

On(t,y) = 0 for all y € Qo\®(M;). (3)

The second premise is for ¢ € [O,T]\]\ATA, lon(t, )| < |w(t,z)| + [g(t, )| < 2|g(t,z)| for all z € Q(t)\ M,
(where we used Lemma 1 and chose N and M; to take into account the null sets of the lemma), i.e.,
[on(t,y)] < 2|g(t,y)| for all y € Qp\P§(My), which implies

|5t y)|” < 293(ty)|7 for all y € Qo\OG(My). (4)

Thus from (3) and (4), by the dominated convergence theorem, we have

(/Q I@n(t)lq> "0 fortelo,T\(NURN).
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This is precisely the statement that for all t € [0, T]\(NUN), ||, (t) 24y = 0- We know [0, (2)[] 1.4 (q,) <
2019 e(q,) and the right hand side is in LP(0,T) by assumption. So again we use the dominated
convergence theorem which tells us that

T
/0 RG] -

Le., Ty = 1, — @ — 0 in LP(0,T; L9(Qp)) or @, — @ in LP(0,T; LI(Qp)). O

We have

/0T<un() o () H-1(Q)), B Q(t))—/ /Q(t o*ut (Hyut (1)
/ “t/ **/ /Q(t) PV w
:2_/9(T) I(T)Q—i/ _*/ / 2V - w.

To see this, let us show that if w,(x) — w(x) pointwise a.e. in Q, then g(w,(z)) — g(w(z)) pointwise
a.e. in Q. Fix z such that w(z) > 0. Then for every e, there exists an N, such that if n > N,, we have
|wp () — w(z)| < e. In other words, w(z) — e < wy(r) < w(x) + €. So if we pick € = € small enough, we
find wy(x) > w(x) — € > 0. Therefore it follows that g(w,) = 1 for n > N,.. This shows that when z
is s.t w(x) > 0, g(w,) — g(w) = 1 pointwise. When z is such that g(z) < 0, a similar argument shows
again that we get convergence. When z is such that w(xz) = 0, we cannot control the sign of w,(z) but
Vw = 0 on the set w = 0.

Proof of Lemma 8.5. Testing with & (u.) gives

(0% (Ec(uc(t))), Ecue()))v=(),v (1) +/Q(t) VQue(t)VQ(&(ue(t))H/ﬂ (Ec(ue(1)))*Va - w

which, since VqueVa(Ee(ue)) = (E) (ue)|[Vaue|* > [Vaue|? gives us

) dt ||<€' (uc(t ))Hi?(ﬂ(t)) + /Q(t) |Vgue(t)|2 + %/ (SE(UE(t)))QVQ W < F)Ec(uc(t)).

Q(t) Q(t)
Integrating over time and using the previous estimate, we find

1 r 1
3 V) By + [ [ [Vau@P < 501+ MPIS] + Cu(T, Mow, ).
o Jaw

For the time derivative:

T T
0" Eulis , < sup I | [FanFavlt) + a0V Wl + I NGO
[lv]l=1

S CQ(T797M7W7f)'

First, we need the following lemma.

2 Lemma. The map
)\—>/ / t)+ \(t)) Vu,v,x € L2,

is continuous on [0, 1].
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Proof. Consider for a.a t
RO = [ ) + 2ot ) dy
t

The integrand is evidently continuous with respect to X, and |z(t, y)U(u(t, y) + M(t,v))| < (Ju(t,y)| +
[v(t, y)|)|w(t, y)| (because A < 1) and the right hand side is integrable over Q(t). Thus F} is continuous.

Now consider -
A= / Fiy(\) dt
0

We just showed that the integrand A — F;(\) is continuous, and |Fy(A)] < [Ju(¢ )||L2(Q lw®lp2oy) +

[Vl 220y lwEl L2(qq)), and the right hand side is integrable. Therefore fo Fi()\) is continuous in
O

Let us pick w = x — Az, where X € [0,1] and = € L2,. Then this becomes

// Ax(u —U(x — Az)) >0

Since A is positive, we can divide through this expression by A, and then we can send A — 0 to receive by

continuity (see Lemma 2)
T
| st zo
o Jaw

Proof of Lemma 8.7. To see this, for s € (0,7, consider the function x. s(¢) = min (1, e s — t)+) which
has a weak derivative

This then implies that v = U(x).

0 :t€(0,s—¢)
X;S(t) = —% ite(s—es).
0 (te(s,T)

Take the test function in (1.3) to be x. 71 where n € W(H?!, L?),

_/OT/Q(t)(Xe,T(t)n( + Xer(t // Xer(t)VauVan(t) // Xer () f(E)n(t)

/ Xer(0)eor(0)
Qo

and this becomes

/ T [, o= [ | e / L, X O~ Fau) V()
/QO Xe,7(0)eon(0).

Send € — 0 and use the Lebesgue differentiation theorem on the left hand side to yield
T T
[oamen - [ [ iwen =[] (—vgua)vﬂn(t) + f(t)n(t)> + [ eono)
QT) 0 Ja) 0 Ja) Q(t) Qo

The regularisations a. exist for the following reason. Define @ = a o ®?, and note that 0 < a < 1 and
a € L*((0,T) x Qo) (it is measurable since it is piecewise measurable). By density of C?([0,7T] x Qo)
L2((0,T) x ), there exist a. € C?([0,T] x Qo) that satisfy 0 < . < 1 a.e. and ||G. — all p2¢0,m)x00)
CHE. But /

O

AN

Cu llac — a||L2L2 < llae — &”L?(O,T;L?(QO)) = [lac — &”L?((O T)x Q) = < CHe,

where a, 1= Q.



(ESM14) By changing variables s =t — 7, we rewrite (3.9) as

One(t — s) + (ac(z,t —s) + €)Aqn(t —s) =0
ne(t) =¢.

Noticing 02n(t — s) = —03n.(t — s) and substituting ¢.(s) = n.(t — s), this can be written as

Pe(s) = (ac(z,t —s) + €)Aqpe(s) =0
<)0€(0) :f

which holds for s € (0,¢). This is precisely in the form of the PDE in Lemma 2.13.

(ESM15) We can write
[ (- et
Q(t)
_ /0 /Q( )(61(7') —e2(7))((7) + (ac(z, 7) + €)Aan(T) — (ac(z,7) — a(z, T) + €)Aqn(7))

- / / (F1(7) — Fa(r)m(r)) + / (e} — e)n(0).
0 JQ(r)

0

(ESM16) We can estimate as follows:

/ot /52(7) la(z,7) — ac(x, 7)||Aan(T)| < (/Ot /Q(T) la(z,T) —eae(a:,r)|2>

1

2

( / t . €Am7€(7)|2>%

1
2
< Vella - a2 \/(2+6)(1+620w(2+e)t)( |v9g|2) o
L2 Qo
and
1 1
t t 2 t 2
[ et ([ ) ([ ], cemr)
0 JQ(r) 0 JQ(r) 0 JQ(r)
%
S\/t|Q|e(2+e)(1+@2Cw(2+e)t)( |ng|2> 0.
Qo
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