Electronic supplementary material for the paper "A Stefan problem on an evolving surface"

Amal Alphonse and Charles M. Elliott

(ESM1) Proof that L_X^p is a normed space (slight modification of the proof of Theorem 2.8 in [1]). It is easy to verify that the expressions in (2.2) define norms if the integrals on the right hand sides are well-defined, which we now check. So let $u \in L_X^p$. Then $\tilde{u} := \phi_{-(\cdot)}u(\cdot) \in L^p(0,T;X_0)$. Define $F: [0,T] \times X_0 \to \mathbb{R}$ by $F(t,x) = \|\phi_t x\|_{X(t)}$. By assumption, $t \mapsto F(t,x)$ is measurable for all $x \in X_0$, and if $x_n \to x$ in X_0 , then by the reverse triangle inequality,

$$|F(t, x_n) - F(t, x)| \le \|\phi_t(x_n - x)\|_{X(t)} \le C_X \|x_n - x\|_{X_0} \to 0,$$

so $x \mapsto F(t,x)$ is continuous. Thus F is a Carathéodory function. Due to the condition $|F(t,x)| \leq C_X ||x||_{X_0}$, by Remark 3.4.5 of [2], the Nemytskii operator N_F defined by $(N_F x)(t) := F(t, x(t))$ maps $L^p(0,T;X_0) \to L^p(0,T)$, so that

$$\|N_F \tilde{u}\|_{L^p(0,T)}^p = \int_0^T \|u(t)\|_{X(t)}^p < \infty.$$

(ESM2) Proof of Lemma 2.3. First we show that if $u \in L^p(0,T;X_0)$, then $\phi_{(\cdot)}u(\cdot) \in L^p_X$. Let $u \in L^p(0,T;X_0)$ be arbitrary. By density, there exists a sequence of simple functions $u_n \in L^p(0,T;X_0)$ with

$$||u_n - u||_{L^p(0,T;X_0)} \to 0$$

and thus for almost every t,

$$||u_n(t) - u(t)||_{X_0} \to 0$$

for a subsequence, which we relabelled. We have that $\phi_t u_n(t) \to \phi_t u(t)$ in X(t) by continuity; this implies

$$\|\phi_t u_n(t)\|_{X(t)} \to \|\phi_t u(t)\|_{X(t)} \qquad \text{pointwise a.e.}$$
(1)

Write $u_n(t) = \sum_{i=1}^{M_n} u_{n,i} \mathbf{1}_{B_i}(t)$ where the $u_{n,i} \in X_0$ and the B_i are measurable, disjoint and partition [0,T]. Then

$$\phi_t u_n(t) = \sum_{i=1}^{M_n} \phi_t(u_{n,i}) \mathbf{1}_{B_i}(t) \in X(t).$$

Taking norms and exponentiating, we get

$$\|\phi_t u_n(t)\|_{X(t)}^p = \sum_{i=1}^{M_n} \|\phi_t u_{n,i}\|_{X(t)}^p \mathbf{1}_{B_i}^p(t),$$

which is measurable (with respect to t) since, by assumption, the $\|\phi_t u_{n,i}\|_{X(t)}$ are measurable and a finite sum of measurable functions is measurable. Thus, by (1), $\|\phi_t u(t)\|_{X(t)}$, is measurable. Finally,

$$\int_0^T \|\phi_t u(t)\|_{X(t)}^p \le \int_0^T C_X^p \|u(t)\|_{X_0}^p = C_X^p \|u\|_{L^p(0,T;X_0)}^p,$$

so $\phi_{(\cdot)}u(\cdot) \in L^p_X$.

So there is a map from $L^p(0,T;X_0)$ to L^p_X and vice-versa from the definition of L^p_X . The isomorphism between the spaces is $T: L^p(0,T;X_0) \to L^p_X$ where

$$T u = \phi_{(\cdot)} u(\cdot), \text{ and } T^{-1} v = \phi_{-(\cdot)} v(\cdot).$$

It is easy to check that T is linear and bijective. The equivalence of norms follows by the bounds on $\phi_{-t}: X(t) \to X_0$

$$\frac{1}{C_X} \|u(t)\|_{X(t)} \le \|\phi_{-t}u(t)\|_{X_0} \le C_X \|u(t)\|_{X(t)}.$$

1

(ESM3) (Slight modification of the proof of Lemma 2.13 in [1]) By consideration of the Caratheodory map $F: [0,T] \times X_0^* \times X_0 \to \mathbb{R}$ defined by

$$F(t, x^*, x) = \langle \phi_{-t}^* x^*, \phi_t x \rangle_{X^*(t), X(t)}$$

and using Remark 3.4.2 of [2], given $g \in L_{X^*}^p$ and $f \in L_X^q$, we have with $\tilde{g} := \phi_{(\cdot)}^* g(\cdot)$ and $\tilde{f} := \phi_{-(\cdot)} f(\cdot)$ that $t \mapsto \langle \phi_{-t}^* \tilde{g}(t), \phi_t \tilde{f}(t) \rangle_{X^*(t), X(t)} = \langle g(t), f(t) \rangle_{X^*(t), X(t)}$ is measurable, since $t \mapsto \tilde{g}(t)$ and $t \mapsto \tilde{f}(t)$ are measurable.

(ESM4) Such a choice is possible because by definition of supremum, for any $\delta > 0$, there exists an element $\tilde{x}_{i,t} \in X(t)$ of norm 1 such that

$$\sup_{\substack{x \in X(t) \\ \|x\|_{X(t)} = 1}} |\langle x_{i,t}^*, x \rangle_{X^*(t), X(t)}| - |\langle x_{i,t}^*, \tilde{x}_{i,t} \rangle_{X^*(t), X(t)}| < \delta.$$
(2)

Then setting $x_{i,t} = \tilde{x}_{i,t} \operatorname{sign}(\langle x_{i,t}^*, \tilde{x}_{i,t} \rangle_{X^*(t),X(t)})$ and choosing $\delta = \frac{\epsilon}{2\|h\|_{L^1(0,T)}}$ implies (2.5).

(ESM5) Proof of Lemma 2.8. For $q < \infty$, it is easy to check that $\phi_t \colon L^q(\Omega_0) \to L^q(\Omega(t))$ is a linear homeomorphism satisfying the additional boundedness requirements. Therefore, let us discuss $q = \infty$. Let $u \in L^{\infty}(\Omega(t))$. We have

$$\|u\|_{L^{\infty}(\Omega(t))} = \underset{x \in \Omega(t)}{\operatorname{ess \, sup}} |u(x)| = \underset{y \in \Omega_{0}}{\operatorname{ess \, sup}} |u(\Phi^{0}_{t}(y))| = \|\tilde{u}\|_{L^{\infty}(\Omega_{0})}$$

because Φ_t^0 is a diffeomorphism so null sets are mapped to null sets. Now an application of Lemma 2.3 yields the result. The above calculation also shows that the norm is preserved for $q = \infty$.

- (ESM6) Proof of Lemma 2.9. That the embedding is continuous is obvious. Let w_n be a bounded sequence in $W(H^1, H^{-1})$. Then $\phi_{-(\cdot)}w_n$ is a bounded sequence in $W(H^1, H^{-1})$, and by $W(H^1, H^{-1}) \stackrel{c}{\hookrightarrow} L^2(0, T; L^2(\Omega_0))$, there is a subsequence $\phi_{-(\cdot)}w_{n_k} \to \tilde{w}$ that converges in $L^2(0, T; L^2(\Omega_0))$. Hence $w_{n_k} \to \phi_{(\cdot)}w$ in $L^2_{L^2}$. \Box
- (ESM7) Proof of Theorem 2.10. First we prove the following.

1 Lemma. Let $\{w_n\}$ and w be functions such that $\{\tilde{w}_n\}$ and \tilde{w} are measurable (eg. membership of $L^1_{L^1}$ will suffice). If for almost all $t \in [0, T]$,

$w_n(t,x) \to w(t,x)$	for almost all $x \in \Omega(t)$
$ w_n(t,x) \le C$	for almost all $x \in \Omega(t)$ for all n ,

then for almost all $t \in [0, T]$, $|w(t, x)| \leq C$ a.e. in $\Omega(t)$.

Proof. The first statement implies that there exist null sets N and M_t such that for all $t \in [0, T] \setminus N$, $|w_n(t,x)| \to |w(t,x)|$ for all $x \in \Omega(t) \setminus M_t$. The second statement is that for all $t \in [0, T] \setminus S_n$, $|w_n(t,x)| \leq C$ for all $x \in \Omega(t) \setminus R_{n,t}$ where again S_n and $R_{n,t}$ are null sets. Combining these, we find that for all $t \in [0, T] \setminus (N \cup \bigcup S_n)$, $|w(t,x)| \leq C$ for all $x \in \Omega(t) \setminus (M_t \cup \bigcup R_{n,t})$. We conclude after recalling that the countable union of null sets is null.

In this proof, N, \hat{N}, M_t and \hat{M}_t are null sets.

Define $v_n = w_n - w$. Then the first premise means that for all $t \in [0, T] \setminus N$, for all $\epsilon > 0$, there exists K such that if $n \ge K$, $|v_n(t, x)| \le \epsilon$ for all $x \in \Omega(t) \setminus M_t$; if we set $y = \Phi_0^t(x)$, this is $|\tilde{v}_n(t, y)| \le \epsilon$ for all $y \in \Omega_0 \setminus \Phi_0^t(M_t)$. In other words,

$$\tilde{v}_n(t,y) \to 0$$
 for all $y \in \Omega_0 \setminus \Phi_0^t(M_t)$. (3)

The second premise is for $t \in [0,T] \setminus \hat{N}$, $|v_n(t,x)| \leq |w(t,x)| + |g(t,x)| \leq 2|g(t,x)|$ for all $x \in \Omega(t) \setminus \hat{M}_t$ (where we used Lemma 1 and chose \hat{N} and \hat{M}_t to take into account the null sets of the lemma), i.e., $|\tilde{v}_n(t,y)| \leq 2|\tilde{g}(t,y)|$ for all $y \in \Omega_0 \setminus \hat{\Phi}_0^t(M_t)$, which implies

$$|\tilde{v}_n(t,y)|^q \le 2^q |\tilde{g}(t,y)|^q \quad \text{for all } y \in \Omega_0 \setminus \Phi_0^t(\hat{M}_t).$$

$$\tag{4}$$

Thus from (3) and (4), by the dominated convergence theorem, we have

$$\left(\int_{\Omega_0} |\tilde{v}_n(t)|^q\right)^{\frac{1}{q}} \to 0 \qquad \text{for } t \in [0,T] \setminus (N \cup \hat{N}).$$

This is precisely the statement that for all $t \in [0, T] \setminus (N \cup \hat{N})$, $\|\tilde{v}_n(t)\|_{L^q(\Omega_0)} \to 0$. We know $\|\tilde{v}_n(t)\|_{L^q(\Omega_0)} \leq 2 \|\tilde{g}(t)\|_{L^q(\Omega_0)}$ and the right hand side is in $L^p(0, T)$ by assumption. So again we use the dominated convergence theorem which tells us that

$$\int_0^T \|\tilde{v}_n(t)\|_{L^q(\Omega_0)}^p \to 0,$$

i.e., $\tilde{v}_n = \tilde{w}_n - \tilde{w} \to 0$ in $L^p(0,T; L^q(\Omega_0))$ or $\tilde{w}_n \to \tilde{w}$ in $L^p(0,T; L^q(\Omega_0)).$

(ESM8) We have

$$\begin{split} \int_{0}^{T} \langle \dot{u}_{n}(t), u_{n}^{+}(t) \rangle_{H^{-1}(\Omega(t)), H^{1}(\Omega(t))} &= \int_{0}^{T} \int_{\Omega(t)} \partial^{\bullet} u_{n}^{+}(t) u_{n}^{+}(t) \\ &= \int_{0}^{T} \frac{1}{2} \frac{d}{dt} \int_{\Omega(t)} u_{n}^{+}(t)^{2} - \frac{1}{2} \int_{0}^{T} \int_{\Omega(t)} u_{n}^{+}(t)^{2} \nabla_{\Omega} \cdot \mathbf{w} \\ &= \frac{1}{2} \int_{\Omega(T)} u_{n}^{+}(T)^{2} - \frac{1}{2} \int_{\Omega_{0}} u_{n}^{+}(0)^{2} - \frac{1}{2} \int_{0}^{T} \int_{\Omega(t)} u_{n}^{+}(t)^{2} \nabla_{\Omega} \cdot \mathbf{w}. \end{split}$$

- (ESM9) To see this, let us show that if $w_n(x) \to w(x)$ pointwise a.e. in Ω , then $g(w_n(x)) \to g(w(x))$ pointwise a.e. in Ω . Fix x such that w(x) > 0. Then for every ϵ , there exists an N_{ϵ} such that if $n \ge N_{\epsilon}$, we have $|w_n(x) - w(x)| \le \epsilon$. In other words, $w(x) - \epsilon \le w_n(x) \le w(x) + \epsilon$. So if we pick $\epsilon = \epsilon'$ small enough, we find $w_n(x) \ge w(x) - \epsilon' \ge 0$. Therefore it follows that $g(w_n) = 1$ for $n \ge N_{\epsilon'}$. This shows that when x is s.t w(x) > 0, $g(w_n) \to g(w) = 1$ pointwise. When x is such that g(x) < 0, a similar argument shows again that we get convergence. When x is such that w(x) = 0, we cannot control the sign of $w_n(x)$ but $\nabla w = 0$ on the set w = 0.
- (ESM10) Proof of Lemma 3.5. Testing with $\mathcal{E}_{\epsilon}(u_{\epsilon})$ gives

$$\begin{split} \langle \partial^{\bullet}(\mathcal{E}_{\epsilon}(u_{\epsilon}(t))), \mathcal{E}_{\epsilon}(u_{\epsilon}(t)) \rangle_{V^{*}(t), V(t)} + \int_{\Omega(t)} \nabla_{\Omega} u_{\epsilon}(t) \nabla_{\Omega}(\mathcal{E}_{\epsilon}(u_{\epsilon}(t))) + \int_{\Omega(t)} (\mathcal{E}_{\epsilon}(u_{\epsilon}(t)))^{2} \nabla_{\Omega} \cdot \mathbf{w} \\ &= \int_{\Omega(t)} f(t) \mathcal{E}_{\epsilon}(u_{\epsilon}(t)) \end{split}$$

which, since $\nabla_{\Omega} u_{\epsilon} \nabla_{\Omega} (\mathcal{E}_{\epsilon}(u_{\epsilon})) = (\mathcal{E}_{\epsilon})'(u_{\epsilon}) |\nabla_{\Omega} u_{\epsilon}|^2 \ge |\nabla_{\Omega} u_{\epsilon}|^2$ gives us

$$\frac{1}{2}\frac{d}{dt}\left\|\mathcal{E}_{\epsilon}(u_{\epsilon}(t))\right\|_{L^{2}(\Omega(t))}^{2}+\int_{\Omega(t)}\left|\nabla_{\Omega}u_{\epsilon}(t)\right|^{2}+\frac{1}{2}\int_{\Omega(t)}\left(\mathcal{E}_{\epsilon}(u_{\epsilon}(t))\right)^{2}\nabla_{\Omega}\cdot\mathbf{w}\leq\int_{\Omega(t)}f(t)\mathcal{E}_{\epsilon}(u_{\epsilon}(t)).$$

Integrating over time and using the previous estimate, we find

$$\frac{1}{2} \left\| \mathcal{E}_{\epsilon}(u_{\epsilon}(T)) \right\|_{L^{2}(\Omega(T))}^{2} + \int_{0}^{T} \int_{\Omega(t)} |\nabla_{\Omega} u_{\epsilon}(t)|^{2} \leq \frac{1}{2} (1+M)^{2} |\Omega_{0}| + C_{1}(T, M, \mathbf{w}, f).$$

For the time derivative:

$$\begin{aligned} \|\partial^{\bullet}(\mathcal{E}_{\epsilon}u_{\epsilon})\|_{L^{2}_{H^{-1}}} &\leq \sup_{\substack{v \in L^{2}_{H^{1}}, \\ \|v\|=1}} \int_{0}^{T} \int_{\Omega(t)} |\nabla_{\Omega}u_{\epsilon}(t)\nabla_{\Omega}v(t) + \mathcal{E}_{\epsilon}(u_{\epsilon}(t))v(t)\nabla_{\Omega} \cdot \mathbf{w}| + \int_{0}^{T} \int_{\Omega(t)} |f(t)v(t)| \\ &\leq C_{2}(T,\Omega,M,\mathbf{w},f). \end{aligned}$$

(ESM11) First, we need the following lemma.

2 Lemma. The map

$$\lambda \to \int_0^T \int_{\Omega(t)} x(t) \mathcal{U}(u(t) + \lambda v(t)) \quad \forall u, v, x \in L^2_L$$

is continuous on [0,1].

Proof. Consider for a.a t

$$F_t(\lambda) = \int_{\Omega(t)} x(t, y) \mathcal{U}(u(t, y) + \lambda v(t, y)) \, \mathrm{d}y.$$

The integrand is evidently continuous with respect to λ , and $|x(t,y)\mathcal{U}(u(t,y) + \lambda v(t,y))| \leq (|u(t,y)| + |v(t,y)|)|w(t,y)|$ (because $\lambda \leq 1$) and the right hand side is integrable over $\Omega(t)$. Thus F_t is continuous. Now consider

$$\lambda \mapsto \int_0^T F_t(\lambda) \, \mathrm{d}t.$$

We just showed that the integrand $\lambda \mapsto F_t(\lambda)$ is continuous, and $|F_t(\lambda)| \leq ||u(t)||_{L^2(\Omega(t))} ||w(t)||_{L^2(\Omega(t))} + ||v(t)||_{L^2(\Omega(t))} ||w(t)||_{L^2(\Omega(t))}$, and the right is integrable. Therefore $\int_0^T F_t(\lambda)$ is continuous in λ .

Let us pick $w = \chi - \lambda x$, where $\lambda \in [0, 1]$ and $x \in L^2_{L^2}$. Then this becomes

$$\int_0^T \int_{\Omega(t)} \lambda x (u - \mathcal{U}(\chi - \lambda x)) \ge 0.$$

Since λ is positive, we can divide through this expression by λ , and then we can send $\lambda \to 0$ to receive by continuity (see Lemma 2)

$$\int_0^T \int_{\Omega(t)} x(u - \mathcal{U}(\chi)) \ge 0.$$

This then implies that $u = \mathcal{U}(\chi)$.

(ESM12) Proof of Lemma 3.7. To see this, for $s \in (0,T]$, consider the function $\chi_{\epsilon,s}(t) = \min(1, \epsilon^{-1}(s-t)^+)$ which has a weak derivative

$$\chi_{\epsilon,s}'(t) = \begin{cases} 0 & : t \in (0, s - \epsilon) \\ -\frac{1}{\epsilon} & : t \in (s - \epsilon, s) \\ 0 & : t \in (s, T) \end{cases}$$

Take the test function in (1.3) to be $\chi_{\epsilon,T}\eta$ where $\eta \in W(H^1, L^2)$,

$$-\int_{0}^{T}\int_{\Omega(t)}(\dot{\chi}_{\epsilon,T}(t)\eta(t) + \chi_{\epsilon,T}(t)\dot{\eta}(t))e(t) + \int_{0}^{T}\int_{\Omega(t)}\chi_{\epsilon,T}(t)\nabla_{\Omega}u\nabla_{\Omega}\eta(t) = \int_{0}^{T}\int_{\Omega(t)}\chi_{\epsilon,T}(t)f(t)\eta(t) + \int_{\Omega_{0}}\chi_{\epsilon,T}(0)e_{0}\eta(0)$$

and this becomes

$$\begin{aligned} \frac{1}{\epsilon} \int_{T-\epsilon}^{T} \int_{\Omega(t)} \eta(t) e(t) &- \int_{0}^{T} \int_{\Omega(t)} \chi_{\epsilon,T}(t) \dot{\eta}(t) e(t) = \int_{0}^{T} \int_{\Omega(t)} \chi_{\epsilon,T}(t) \left(f(t) \eta(t) - \nabla_{\Omega} u(t) \nabla_{\Omega} \eta(t) \right) \\ &+ \int_{\Omega_{0}} \chi_{\epsilon,T}(0) e_{0} \eta(0). \end{aligned}$$

Send $\epsilon \to 0$ and use the Lebesgue differentiation theorem on the left hand side to yield

$$\int_{\Omega(T)} \eta(T) e(T) - \int_0^T \int_{\Omega(t)} \dot{\eta}(t) e(t) = \int_0^T \int_{\Omega(t)} \left(-\nabla_\Omega u(t) \nabla_\Omega \eta(t) + \int_{\Omega(t)} f(t) \eta(t) \right) + \int_{\Omega_0} e_0 \eta(0).$$

(ESM13) The regularisations a_{ϵ} exist for the following reason. Define $\tilde{a} = a \circ \Phi_t^0$, and note that $0 \leq \tilde{a} \leq 1$ and $\tilde{a} \in L^2((0,T) \times \Omega_0)$ (it is measurable since it is piecewise measurable). By density of $C^2([0,T] \times \Omega_0) \subset L^2((0,T) \times \Omega_0)$, there exist $\tilde{a}_{\epsilon} \in C^2([0,T] \times \Omega_0)$ that satisfy $0 \leq \tilde{a}_{\epsilon} \leq 1$ a.e. and $\|\tilde{a}_{\epsilon} - \tilde{a}\|_{L^2((0,T) \times \Omega_0)} \leq C_H \epsilon$. But

$$C_H \|a_{\epsilon} - a\|_{L^2_{L^2}} \le \|\tilde{a}_{\epsilon} - \tilde{a}\|_{L^2(0,T;L^2(\Omega_0))} = \|\tilde{a}_{\epsilon} - \tilde{a}\|_{L^2((0,T) \times \Omega_0)} \le C_H \epsilon,$$

where $a_{\epsilon} := \tilde{a}_{\epsilon}$.

(ESM14) By changing variables $s = t - \tau$, we rewrite (3.9) as

$$\partial_{\tau}^{\bullet}\eta_{\epsilon}(t-s) + (a_{\epsilon}(x,t-s)+\epsilon)\Delta_{\Omega}\eta_{\epsilon}(t-s) = 0$$

$$\eta_{\epsilon}(t) = \xi.$$

Noticing $\partial_{\tau}^{\bullet}\eta_{\epsilon}(t-s) = -\partial_{s}^{\bullet}\eta_{\epsilon}(t-s)$ and substituting $\varphi_{\epsilon}(s) = \eta_{\epsilon}(t-s)$, this can be written as

$$\dot{\varphi}_{\epsilon}(s) - (a_{\epsilon}(x,t-s)+\epsilon)\Delta_{\Omega}\varphi_{\epsilon}(s) = 0$$

 $\varphi_{\epsilon}(0) = \xi$

which holds for $s \in (0, t)$. This is precisely in the form of the PDE in Lemma 2.13.

(ESM15) We can write

$$\begin{split} \int_{\Omega(t)} (e_1(t) - e_2(t))\eta(t) \\ &- \int_0^t \int_{\Omega(\tau)} (e_1(\tau) - e_2(\tau))(\dot{\eta}(\tau) + (a_\epsilon(x,\tau) + \epsilon)\Delta_\Omega \eta(\tau) - (a_\epsilon(x,\tau) - a(x,\tau) + \epsilon)\Delta_\Omega \eta(\tau)) \\ &= \int_0^t \int_{\Omega(\tau)} (f_1(\tau) - f_2(\tau))\eta(\tau) \rangle + \int_{\Omega_0} (e_0^1 - e_0^2)\eta(0). \end{split}$$

(ESM16) We can estimate as follows:

$$\begin{split} \int_0^t \int_{\Omega(\tau)} |a(x,\tau) - a_\epsilon(x,\tau)| |\Delta_\Omega \eta_\epsilon(\tau)| &\leq \left(\int_0^t \int_{\Omega(\tau)} \frac{|a(x,\tau) - a_\epsilon(x,\tau)|^2}{\epsilon} \right)^{\frac{1}{2}} \left(\int_0^t \int_{\Omega(\tau)} \epsilon |\Delta_\Omega \eta_\epsilon(\tau)|^2 \right)^{\frac{1}{2}} \\ &\leq \sqrt{\epsilon} \left\| a - a_\epsilon \right\|_{L^2_{L^2}} \sqrt{(2+\epsilon)(1+e^{2C_{\mathbf{w}}(2+\epsilon)t})} \left(\int_{\Omega_0} |\nabla_\Omega \xi|^2 \right)^{\frac{1}{2}} \to 0 \end{split}$$

and

$$\begin{split} \int_0^t \int_{\Omega(\tau)} |\epsilon \Delta_\Omega \eta_\epsilon| &\leq \left(\int_0^t \int_{\Omega(\tau)} \epsilon \right)^{\frac{1}{2}} \left(\int_0^t \int_{\Omega(\tau)} \epsilon (\Delta_\Omega \eta_\epsilon)^2 \right)^{\frac{1}{2}} \\ &\leq \sqrt{t |\Omega| \epsilon (2+\epsilon) (1+e^{2C_{\mathbf{w}}(2+\epsilon)t})} \left(\int_{\Omega_0} |\nabla_\Omega \xi|^2 \right)^{\frac{1}{2}} \to 0. \end{split}$$

References

- Alphonse A, Elliott CM, Stinner B. 2014. An abstract framework for parabolic PDEs on evolving spaces. *Port. Math.* 2015.
- [2] L. Gasinski and N.S. Papageorgiou, Nonlinear analysis. Series in Mathematical Analysis and Applications, 9. Chapman & Hall/CRC, Boca Raton, FL, 2006.