O6-Methyguanosine leads to position-dependent effects on ribosome speed and fidelity

Benjamin H. Hudson and Hani S. Zaher

Supplemental Figure Legends

Figure S1. aa-tRNA reactivity profile for GUG and m⁶GUG Val

- A Schematic of initiation complexes containing [³⁵S]-fMet, 70S ribosomes, and intact or m⁶G mRNAs. Experimental m⁶G residue is highlighted in red.
- B Schematic of cognate and predicted near-cognate aa-tRNAs with respective anticodon stem loops.
- C Phosphorimage of resolved reactants and products. The cognate aa-tRNA reaction is shown in green, while the predicted m⁶G:U near-cognate is orange.
- D Quantification of the end-point dipeptide production for the most abundant cognate and nearcognate reactions.

Figure S2. aa-tRNA reactivity profile for GAA and m⁶GAA Glu

- A Schematic of initiation complexes containing [³⁵S]-fMet, 70S ribosomes, and intact or m⁶G mRNAs. Experimental m⁶G residue is highlighted in red.
- B Schematic of cognate and predicted near-cognate aa-tRNAs with respective anticodon stem loops.
- C Phosphorimage of resolved reactants and products. The cognate aa-tRNA reaction is shown in green, while the predicted m⁶G:U near-cognate is orange.
- D Quantification of the end-point dipeptide production for the most abundant cognate and nearcognate reactions.

Figure S3. aa-tRNA reactivity profile for GGC and m⁶GGC Gly

- A Schematic of initiation complexes containing [³⁵S]-fMet, 70S ribosomes, and intact or m⁶G mRNAs. Experimental m⁶G residue is highlighted in red.
- B Schematic of cognate and predicted near-cognate aa-tRNAs with respective anticodon stem loops.
- C Phosphorimage of resolved reactants and products. The cognate aa-tRNA reaction is shown in green, while the predicted m⁶G:U near-cognate is orange.
- D Quantification of the end-point dipeptide production for the most abundant cognate and nearcognate reactions.

Figure S4. aa-tRNA reactivity profile for CGC and Cm⁶GC Arg

- A Schematic of initiation complexes containing [³⁵S]-fMet, 70S ribosomes, and intact or m⁶G mRNAs. Experimental m⁶G residue is highlighted in red.
- B Schematic of cognate and predicted near-cognate aa-tRNAs with respective anticodon stem loops.
- C Phosphorimage of resolved reactants and products. The cognate aa-tRNA reaction is shown in green, while the predicted m⁶G:U near-cognate is orange.
- D Quantification of the end-point dipeptide production for the most abundant cognate and nearcognate reactions.

Figure S5. aa-tRNA reactivity profile for AGC and Am⁶GC Ser

- A Schematic of initiation complexes containing [³⁵S]-fMet, 70S ribosomes, and intact or m⁶G mRNAs. Experimental m⁶G residue is highlighted in red.
- B Schematic of cognate and predicted near-cognate aa-tRNAs with respective anticodon stem loops.
- C Phosphorimage of resolved reactants and products. The cognate aa-tRNA reaction is shown in green, while the predicted m⁶G:U near-cognate is orange.

D Quantification of the end-point dipeptide production for the most abundant cognate and nearcognate reactions.

Figure S6. aa-tRNA reactivity profile for AUG and AUm⁶G Met

- A Schematic of initiation complexes containing [³⁵S]-fMet, 70S ribosomes, and intact or m⁶G mRNAs. Experimental m⁶G residue is highlighted in red.
- B Schematic of cognate and predicted near-cognate aa-tRNAs with respective anticodon stem loops.
- C Phosphorimage of resolved reactants and products. The cognate aa-tRNA reaction is shown in green, while the predicted m⁶G:U near-cognate is orange.
- D Quantification of the end-point dipeptide production for the most abundant cognate and nearcognate reactions.

Figure S7. aa-tRNA and release factor reactivity profile for UGG and UGm⁶G Trp

- A Schematic of initiation complexes containing [³⁵S]-fMet, 70S ribosomes, and intact or m⁶G mRNAs. Experimental m⁶G residue is highlighted in red.
- B Schematic of cognate and predicted near-cognate aa-tRNAs with respective anticodon stem loops.
- C Phosphorimage of resolved reactants and products. The cognate aa-tRNA reaction is shown in green, while the predicted m⁶G:U near-cognate is orange.
- D Quantification of the end-point dipeptide production for the most abundant cognate and nearcognate reactions.

Figure S8. m6G alters proofreading during tRNA selection

A, B and C End-point dipeptide formation efficiencies for initiation complexes with m⁶G at the first, second, or third codon position, respectively. Codons and predicted anticodons are shown

below the graph with the experimental residue highlighted in red. Error bars represent the standard error of curve fitting from a single representative time course. 23 of the 28 time courses were performed in at least duplicates with less than 10% variability between samples.

Figure S9. Formaldehyde agarose electrophoresis of the different mRNA reporters used to follow the construction of the reporters and the addition of the polyA.

Figure S10. aa-tRNA and release factor reactivity profile for UGA and Um⁶GA Stop

- A Schematic of initiation complexes containing [³⁵S]-fMet, 70S ribosomes, and intact or m⁶G mRNAs. Experimental m⁶G residue is highlighted in red.
- B Schematic of cognate and predicted near-cognate release factor and aa-tRNA with respective anticodon stem loops.
- C Phosphorimage of resolved reactants and products. The cognate aa-tRNA reaction is shown in green, while the predicted m⁶G:U near-cognate is orange.
- D Quantification of the end-point dipeptide production for the most abundant cognate and nearcognate reactions.

Figure S11. aa-tRNA reactivity profile for GAC and Gm⁶AC Asp

- A Schematic of initiation complexes containing [³⁵S]-fMet, 70S ribosomes, and intact or m⁶G mRNAs. Experimental m⁶G residue is highlighted in red.
- B Schematic of cognate aa-tRNA with respective anticodon stem loop.
- C Phosphorimage of resolved reactants and products. The cognate aa-tRNA reaction is shown in green.
- D Quantification of the end-point dipeptide production for the most abundant cognate and nearcognate reactions.

С

D

В

	Phe		Tyr		Asn		Pro		Ser		Met		Arg		Val		Cys	
+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+
				-	•	•	•	•		•								-
									•	78								

