miR-497 and miR-34a retard lung cancer growth by co-inhibiting cyclin E1 (CCNE1)

Supplementary Information

3'UTR	Oligo primers	Template	Sequence of primers	Sequence of amplified products
	wt-CCNE-F		5'CCG ctcgagCCACCCCATCCTTCTCCACCAAAG 3'	CCACCCCATCCTTCTCCACCAAAGACAGTGCCCCCCCCCC
wt-CCNE	wt-CCNE-R	cDNA from A549	5'ATAAGAAT geggeegetGtCtCAAAAACAGTATTATCTTTATTAAAAAATGGA 3'	Convertion 11 11 11 NT 10 MARCH LINNING 11 11 11 JANNANG 1000 COMPARIANS
				CACCCCATCCTTCTCCACCAAAGACAGTTGCGCGGCCTGCTCCACGTTCTCTTCTGTCGTGTGCAGCGGAGGGGTG
mt_CONER	mt-CCNEB-F	ut-CONE vector	SCACCAGTGCGTGCTCCCGAACGACGAATGGAAGGTGCTACTTGAC 3	CGTTTGCTTTACAGATAICTGAATGGAAGAGTGTTTCTTCCACAACAGAAGTATTCTGTGGATGGA
	mt-CCNEβ-R		5'GTCAAGTAGCACCTTCCATTCGTCGTCGGGAGCACGCACTGGTG 3'	GAGGECCACGETGECGETGECTETCECCAGETGETTETGEGETCCETTETACCAGETGEGAGCAGETGETTECGGGE CAGGECTIGTGCAGAGECGEGCAGECGGGCGEGGGCGGGCCGGACCAGTGTGCAGAGTGGTACAATGC CAGGECTIGTGCAGAGECCAGECGGGCGGGGGGGCGGGCCGGACCCCCCCAGATTATCAGTGGAGAGAGGC CTTTGATGAACTGTTTTGTAAGTGCTGCTGATATCTATCCATTTTTTAATAAGATAATACTGTTTTTGAGACAGGC
	mt-CCNEγ-F		5'GATGAACTGTTTTGTAAGACGACGAATATCTATCCATTTTTTAATA 3'	CAACCCCATCCTTCAACCAAAGAAGTTGCCCCCCCCCCACGTTCTCTTCTGCTGTTGCAGCGGAGGGG1G CGTTECTTTAACAGNTCTGAATGGAAGAGTGTTTCTTCCAACAGAGGTAHTTCTGTGGATGGACTGGAC
mt-CCΝΕγ	mt-CCNEy-R	wt-CCNE vector	5'TATTAAAAAATGGATAGATATTCGTCGTCTTACAAAACAGTTCATC 3'	CGTGCTCCCGA TGCTGCT ATTGGAAGGTGCTACTTGACCTAAGGGACTCCCACAACAACAAAAGCTTGAAGCGTGGA GGGCCAAGGTGGCGTGCCTTCCTCGCAGGTGTCTGGGCTCCGTGTACCAAGTGGACAAGTGGTGGACAGG AGGCTTGTGCAGAGCCCTAGGCCGGCGGGGGGGGGG
	mt-CCNEō-F		5'GATGAACTGTTTTGTAAGACGACGAATATCTATCCATTTTTTAATA 3'	CCACCCCATCCTTCTCCACCAAAGACAGTTGCCGCGCCTGCTCCACGTTCTCTGTGTGTG
mt-CCNEδ	mt-CCNEō-R	mt-CCNEβ vector	STATTAAAAAATGGATAGATATTCGTCGTCTTACAAAACAGTTCATC 3'	CGTCCTCCCGAACGACGAATGGAAGTGCTACTTGACCTAAGGAACTCCCAACAACAACGACTGACGACAACGACTGACGACGACGACGACGACGACGACGACGACGACGACGACG
Note: 1, F	Tand D in Oliza	primore colum		

Figure S1: Effect of miR-497 or miR-34a knockdown on cell proliferation. The relative miR-497 (a) or miR-34a (b) levels in A549, H460, and H1299 cells were assessed with the TaqMan® MicroRNA Assay and are expressed as fold change after normalization to the internal control, U6B-snRNA. Mean \pm SD, n = 3 (#P < 0.01, all

vs. NC inhibitor). (c) A549, H460, and H1299 cells were transfected as described in the Methods section, and cell growth was monitored for 48 h using the CCK-8 assay. There were no differences among the groups. Mean \pm SD, n = 3.

Figure S2: Bioinformatics analysis of miR-497 and miR-34a target sequences in

the CCNE1 3'-UTR. (a) The locations of the two putative miR-497 target sites are shown. (b) Two putative binding sites and miR-497:CCNE1 RNA hybrids, as predicted from their minimum free energy (ΔG), are illustrated. (c) Comparison of the miR-497 seed sequence and its target sequences in nine species. (d) The location of the putative miR-34a target site is shown. (e) The putative binding site and miR-34a:CCNE1 RNAhybrid, as predicted from the ΔG , are illustrated. (f) Comparison of the miR-34a seed sequence and its target sequences in nine species.

а	Oligo prim	rs Sequences
	MIR497F	TGCTGcagcagcacacTgTggTTTgTGTTTTGGCCACTGACTGACAcAAAccAgtgtgctgctg
	MIR497R	CCTGcagcagcacacTggTTTgTGTCAGTCAGTGGCCAAAACAcAAAccAcAgtgtgctgctgC
	MIR34AF	TGCTGTggcagTgTcTTagcTggTTgTGTTTTGGCCACTGACTGACAcAAccAgAAgAcActgccA
b		C
		ΗΙ-ΜΙΚ497 Α τ τ ε αλα τέξ α σε ελα με εξ α ο σε ελα τη εξ τ ε ελατικά το το τολο το στολο ο σε ε το δολο το στο δολο ε ε το Πλαμ
		MIRAST
	Tinomy	
_		STATE OF AN AND AN
artB1	EmGFP 5' miR f	Hi-miR34a
	region	Acta region A d to c o cc ca d at c t o o o cc at t t o t t c t a d t act ac t a d t act a d c c t t o t t c t a d t act ac t a d t act a d t act a t act ac
	MIR497	R34A MIR497+MIR34A acar and a car and a car and a car and a car a
		97 97 67 67 67 67 67 67 67 67 67 67 67 67 67
_		
e	_	
		# MIR34A
	-4 3	
	ide of 2-	
	old char	
	Mock mit	51.°
	Hrv	Harris Harrison
d	100	Mock Hi-m iR497/a Hi-m iR497/34a-a Hi-m iR497/34a-a
	24	

Figure S4: miRNA expression plasmid construction. (a) Oligonucleotide primers for the synthesis of miR-497 and miR-34a precursors (MIR497 and MIR34A, respectively). (b) Diagram of the pcDNA6.2-GW/EmGFP-miR vector used to

construct the expression plasmids. The red region indicates the transcription start site. The magnified panel shows the locations of MIR497, MIR34A, or both precursors, which were subcloned into the pcDNA6.2-GW/EmGFP-miR vector. The isocaudomers BamHI and BgIII were used to ligate MIR497 and MIR34A into the vector. (c) The partial sequences of the Hi-miR497 (top, in dark blue), Hi-miR34a (middle, in red), and Hi-miR497/34a (bottom row) vectors, which were confirmed by DNA sequencing, are shown. (d) A549 cells were transfected with the expression plasmid Hi-miR497, Hi-miR34a, or Hi-miR497/34a, generating HimiR497-a, Hi-miR34a-a, or Hi-miR497/34a-a cells, respectively. The empty pcDNA6.2-GW/EmGFP-miR vector was used as the negative control (mock), (original magnification, ×40). (e) The relative miR-497 and miR-34a levels were determined with the TaqMan® MicroRNA Assay and are expressed as fold change after normalization to the internal control, U6B-snRNA. Mean \pm SD, n = 3 (#P < 0.01, all vs. mock).

Figure S5: To construct cells stably expressing CCNE1, A549 cells were transfected with plasmid DNA and the positive clones stably expressing CCNE1 (Hi-CCNE1a) were selected with neomycin. (a) A clone of the GFP-tagged cDNA (including the UTR) encoding human CCNE1, which was purchased as transfection-ready plasmid DNA from Origene, is illustrated. (b) Representative images of the Hi-CCNE1a cells were captured with an Olympus BX51 microscope with an attached CCD camera (original magnification, ×40). Validation of the stable expression of CCNE1 in Hi-CCNE1a cells. (c) The relative CCNE1 mRNA levels were measured by real-time qPCR and are expressed as fold change after normalization to the internal control, 18S rRNA (top row). Mean \pm SEM, n = 3 (#P < 0.01 vs. control siRNA). GAPDH was used as the loading control for immunoblotting to determine cyclin E1 protein levels. (d) A result representative of three independent experiments is shown.