Supporting Information

Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry

Xiao-Ming Zhou,^{†,⊥,‡} Ulyana Shimanovich,^{§,‡} Therese W. Herling,[§] Si Wu,[†] Christopher M. Dobson,[§] Tuomas P. J. Knowles,^{*,§} Sarah Perrett^{*,†}

[†]National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.

[§]Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.

[⊥]University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.

Corresponding Authors

* E-mail: sarah.perrett@cantab.net; tpjk2@cam.ac.uk

Author Contributions

[‡]These authors contributed equally.

Supplementary Video Files S1 and S2.

Encapsulation of Ure2-AP droplets in microfluidic droplet-making device. The video was resolved from light microscopy images using a high speed camera (Phantom camera v611, Vision research, 700k fps).

S1: Video of droplet formation at the T-junction of the microfluidic channel, corresponding to Figure 1b *upper panel*.

S2: Video of droplets inside the microfluidic channel, corresponding to Figure 1b *lower panel*.