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Supplementary A: Datasets 

This supplementary information contains the detailed description of the used 

datasets. It should be noted that the datasets has been previously used and 

described by Aerts et. al1. In order to enhance the redability of this manuscript, here 

we have reproduced the datasets description from the previous study of Aerts et. al1 

 

Lung 1. MAASTRO NSCLC dataset  

MAASTRO Clinic, (Maastricht, The Netherlands)  

Patient population  

Four hundred and twenty-two consecutive patients were included (132 women and 

290 men), with inoperable, histologic or cytologic confirmed NSCLC, UICC stages I-

IIIb, treated with radical radiotherapy alone (n = 196) or with chemo-radiation (n = 

226). Mean age was 67,5 years (range: 33–91 years). The institutional review board 

approved the study. All research was carried out in accordance with Dutch law.  

Treatment  

During the study period, induction chemotherapy was standard of care for patients 

with N2/N3 and T4 tumors and consisted of three courses of gemcitabine (1,250 

mg/m2 on days 1 and 8) in combination with cisplatin (75 mg/m2) or carboplatin 

(area under the concentration-time curve [AUC] 5) on day 1. Cycles were repeated 

every 21 days, and standard dose-reduction rules were applied. An interval between 

chemotherapy and start of radiotherapy of at minimum 14 days was mandatory.  

All patients received an FDG PET-CT scan for radiotherapy treatment planning, in 

radiotherapy position on a dedicated PET-CT simulator with both arms above the 

head. For the FDG PET-CT scans a Siemens Biograph (SOMATOM Sensation-16 

with an ECAT ACCEL PET scanner) was used. An intravenous injection of (weight * 

4 + 20) MBq FDG (Tyco Health Care, Amsterdam, The Netherlands) was followed by 

10 ml physiologic saline. After a 45-min uptake period, during which the patient was 

encouraged to rest, PET and CT images were acquired. A spiral CT (3 mm slice 



thickness) with or without intravenous contrast was performed covering the complete 

thoracic region.  

Radiotherapy planning was performed on a XiO (Computerized Medical Systems, St 

Louis, Missouri) treatment planning system, based on a convolution algorithm using 

inhomogeneity corrections.  

Delineation based on fused PET-CT images was performed by the radiation 

oncologist by using a standard clinical delineation protocol. The protocol included 

fixed window level settings of both CT (lung W1700; L–300, mediastinum W600; L40) 

and PET scan (W30000; L15000) to be used for delineation. For all patients, a gross 

tumor volume (GTV) was defined based on FDG PET-CT data.  

For patients treated with radical radiotherapy, the radiation dose was escalated to an 

individualized maximal total tumor dose, applying a mean lung dose of 19 Gy while 

respecting a maximum spinal cord dose of 54 Gy5. The maximal total tumor dose 

allowed was 79.2 Gy. There were no esophageal dose constraints. Radiotherapy 

was delivered twice a day in fractions of 1.8 Gy, 5 days per week, with a minimum of 

8 h 27 between the two fractions. This protocol was applied as well in patients that 

received sequential chemo-radiation (n = 104).  

Patients that received concurrent chemo-radiation (n = 100), were treated following 2 

cycles of carboplatin-gemcitabine, a radiation dose of 45 Gy, in fractions of 1.5 Gy 

delivered twice a day for the first course, directly followed by an individualized dose 

ranging from 6 – 24 Gy and delivered in 2.0 Gy fractions once a day. In all patients, 

individualized patient dosimetry using electronic portal imaging devices was 

performed.  

 

 

 

 

 



Lung 2. Radboud NSCLC Dataset  

Radboud University Nijmegen Medical Center.  

Patient population  

This dataset included 225 consecutive patients with confirmed NSCLC (mean age, 

65.5 years; range, 36–86 years), stages (I-IVa), treated at the Radboud University 

Nijmegen Medical Centre, The Netherlands, between February 2004 and October 

2011.  

Treatment  

All primary tumors and the mediastinal N2 disease were cytologically or histologically 

proven. All patients underwent diagnostic work-up, including contrast enhanced CT 

of the thorax and upper abdomen, whole body 18F-FDG-PET/CT, MRI of the brain, 

bronchoscopy with transbronchial needle aspiration (TBNA), and/or oesophageal 

ultrasound fine needle aspiration (EUS-FNA) and/or endobronchial ultrasound with 

TBNA (EBUS-TBNA) and mediastinoscopy in case of PET-positive, cytologically 

negative mediastinal lymph nodes. After work up, all patients were discussed in a 

thoracic oncology multidisciplinary board. Prior to radiotherapy a CT of the thorax 

was performed in radiotherapy position for radiotherapy planning.  

Patients in good general condition were treated with concurrent chemo radiotherapy, 

those with a contraindication for chemotherapy were treated by radiation alone, and 

all remaining patients were treated with a sequential chemotherapy and radiotherapy. 

The planned radiation dose to the primary tumor and metastatic mediastinal lymph 

nodes using CRT until March 2008 and IMRT afterwards, was 66Gy in 33 fractions 

delivered five times per week. Chemotherapeutic agents in the sequential regimen 

typically consisted of three courses of gemcitabine (1250mg/m2; on day 1 and 8) and 

cisplatinum (80mg/m2; on day 1). The concurrent schedules varied between referring 

hospitals; in Radboud University Nijmegen Medical Centre it consisted of two 

courses of etoposide (100mg/m2; on day 1–3) and cisplatinum (50mg/m2; on day 1 

and 8), in Canisius-Wilhelmina Hospital one course of gemcitabine/cisplatinum was 



administered prior to irradiation and two courses of etoposide/cisplatinum 

concurrently with radiation therapy. All research was carried out in compliance with 

the Helsinki Declaration and in accordance with Dutch law. The Institutional Review 

Board of the Radboud University Medical Center (RUMC) waved review due to the 

retrospective nature of this study. Follow-up was performed according to national 

guidelines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary B: Feature Selection Methods 

In literature, feature selection methods are mainly divided into three categories: filter 

methods, wrapper methods and embedded methods. Wrapper and embedded 

methods are classifier dependent approaches, whereas filter methods are classifier 

independent. Wrapper methods are basically the search methods, which search 

through the whole feature space and identify a relevant and non-redundant feature 

subset. Training/validation accuracy of a particular classifier (or model) is used as a 

measure of utility for the candidate feature subset. These computationally expensive 

methods may produce feature subsets that are overly specific to the classifiers and 

hence has low generalizability. Embedded methods incorporate feature selection as 

a part of training process and are computationally efficient as compared to the 

wrappers. However, they still use a quite strict model (classifier) structure 

assumption and hence lacks in the generalizability. On contrary, classifier-

independent filter methods are the simple feature ranking methods based on some 

heuristic scoring criterion. Filters are computationally efficient and they have high 

generalizability and scalability. Therefore, here in this study we only used some 

popular filter based approaches for feature selection. 

The defining component of filter based feature selection methods is the 

scoring/selection criterion, which is often known as ‘relevance index’. All filter based 

feature selection methods can be divided into two categories: univariate methods 

and multivariate methods. In case of univariate methods, the scoring criterion only 

considers the relevancy of features ignoring the feature redundancy, whereas 

multivariate methods investigate the multivariate interaction within features and the 

scoring criterion is a weighted sum of feature relevancy and redundancy. We 

formulated the feature selection problem as defined by brown et al2. 

Let J be the scoring criterion (relevance index), Y be the class labels, X be 

the set of all features, Xk be the feature to be evaluated and S be the set of already 

selected features. 



Univariate Feature Selection methods  

Fisher score (FSCR) 

Fisher score3 based feature selection method selects features such that the between 

class distance is maximized and the within class distance is minimized. The scoring 

criterion is defined as 

𝐽!"#!!" 𝑋! =   
𝑛! 𝜇!,! − 𝜇!

!!
!!!

𝑛!𝜎!,!!!
!!!

 

Where   𝜇! is the overall mean of feature 𝑋!, 𝑛! is the number of samples in m’th 

class, and 𝜇!,! and 𝜎!,!!  is the mean and variance of feature 𝑋! on m’th class. 

 

Relief (RELF) 

Relief4 assumes p randomly sampled data instances and defines the scoring criterion 

as 

𝐽!"#$"% 𝑋! =   
1
2

𝑑(𝑋!,!

!

!!!

− 𝑋!" !! ,!) − 𝑑(𝑋!,! − 𝑋!" !! ,!) 

Where 𝑋!,! is the value of instance 𝑥! on feature 𝑋!, 𝑋!" !! ,! and 𝑋!" !! ,! are the 

values on the k’th feature of the nearest point to 𝑥!  with the same and different class 

label respectively, and  d(.) denotes the distance. Here, we used p=50. 

 

T-test (t-score) (TSCR) 

T-test based feature selection evaluates a feature using a t-score, which is defined 

as 

𝐽!!"#!(𝑋!) =
𝜇! − 𝜇!
𝜎!!
𝑛!

+ 𝜎!
!

𝑛!

 

where 𝜇!,  𝜇! and 𝜎!!, 𝜎!! are the means and variances of the two classes on feature 

𝑋!, whereas 𝑛!and  𝑛! correspond to the cardinality of the two classes. 

 



Chi-square (CHSQ) 

Chi-square score for a feature with r different values is defined as 

𝐽!!!!!"#$%& 𝑋! =   
(𝑛!" − 𝜇!")!

𝜇!"

!

!!!

!

!!!

 

Where 𝑛!" is the number of samples with I’th feature value in m’th class and  

𝜇!" =
𝑛∗!𝑛!∗
𝑁

 

here, 𝑛!∗  is the number of samples with i’th feature value, 𝑛∗!  is the number of 

samples in class m and 𝑁 is the number of samples. 

 

Wilcoxon (WLCX) 

Willcoxon is a non-parametric method based on ranks for the comparison of the 

population medians of the two classes. The scoring function is defined as 

𝐽!"#$%&%'   𝑋! = (𝑁 − 1)
𝑛!(𝜇𝑟! − 𝜇𝑟)!!

!!!

(𝑟!" − 𝜇𝑟)!
!!
!!!

!
!!!

  

Where N is the total number of samples, 𝑛! is the number of samples in class m, 

𝑟!" is the rank of sample i in class m, 𝜇𝑟! is the average rank of samples belonging 

to class m, and 𝜇𝑟 is the average rank of all samples. 

 

Gini index (GINI) 

For gini index, the scoring criterion is defined as  

𝐽!"#"(𝑋!) = 1 − ( 𝑝 𝑚 𝑋! !
!

!!!

) 

Where 𝑝 𝑚 𝑋! is the conditional probability of a class m given the feature 𝑋! . 

Smaller the values of gini index correspond to higher feature relevance. 

 

 

 



Mutual information maximization (MIM) 

Mutual information maximization5 uses an information theory to measure the 

relevance of a feature. The scoring criterion is defined as a mutual information 

between a feature and class labels. It is given as 

𝐽!"! 𝑋! = 𝐼(𝑋!;𝑌) 

 

Multivariate Feature Selection methods 

Mutual information feature selection (MIFS) 

Battiti et. al6 proposed this multivariate feature selection method, which tries evaluate 

features based on their relevance with the class labels and penalizes the feature 

redundancy. The scoring criterion is a weighted sum of feature relevancy and 

redundancy and is given by 

𝐽!"#$ 𝑋! =   𝐼 𝑋!;𝑌 − 𝛽 𝐼(𝑋!;𝑋!)
!!  !  !

 

Here the first term 𝐼 𝑋!;𝑌  is the mutual information between the feature 𝑋!   and 

class labels, which indicates the feature relevancy.  

Second term 𝐼(𝑋!;𝑋!)!!  !  !   corresponds to the feature redundancy. So a feature is 

only going to get the high score if it is highly relevant to the class labels and also 

non-redundant to the set of already selected features 𝑆 . 𝛽  is the configurable 

parameter, which must be set experimentally. Battiti et. al. 6 experimentally found that 

𝛽 = 1 is often optimal. 

 

Minimum redundancy maximum relevance (MRMR) 

As similar to MIFS, minimum redundancy maximum relevance (MRMR)7 also tries to 

evaluate feature using relevancy-redundancy tradeoff. Here the configurable 

parameter 𝛽 is set as the cardinality of the set of selected features. Hence, the 

scoring criterion is defined as  



𝐽!"!" 𝑋! =   𝐼 𝑋!;𝑌 −
1
|𝑆|

𝐼(𝑋!;𝑋!)
!!  !  !

 

 

Conditional infomax feature extraction (CIFE) 

Conditional infomax feature extraction (CIFE)8 also tries to optimize relevancy-

redundancy trade off. In the case of cife, the penalty term is added by one more term 

that is called as conditional redundancy. This term has an opposite sing to the 

penalty (redundancy) term, which indicates that correlated features will be given high 

score if they have strong class conditional dependence in a combined manner. 

𝐽!"#$ 𝑋! =   𝐼 𝑋!;𝑌 − 𝐼 𝑋!;𝑋!
!!  !  !

+ 𝐼 𝑋!;𝑋!|𝑌
!!  !  !

   

 

Joint mutual information (JMI) 

In the case of joint mutual information (JMI)9, the scoring criterion is the mutual 

information between the class labels and the joint random variable 𝑋!𝑋! and it given 

by 

𝐽!"# 𝑋! = 𝐼 𝑋!𝑋!;𝑌
!!  !  !

 

Conditional mutual information maximization (CMIM) 

Fleuret10 proposed the conditional mutual information maximization (CMIM) criterion. 

Here, basically the scoring criterion is the mutual information between the candidate 

feature 𝑋! and class labels 𝑌 conditioned on the set of already selected features 𝑆. 

𝐽!"#" 𝑋! = 𝑚𝑖𝑛    !!!" 𝐼(𝑋!;𝑌|𝑋!)  

 

Interaction capping (ICAP) 

As similar to CMIM, interaction capping (ICAP)11 also has a non-linear scoring 

criterion that is defined as  



𝐽!"#$ 𝑋! = 𝐼 𝑋!;𝑌   − max 0, 𝐼 𝑋!;𝑋! − 𝐼(𝑋!;𝑋!|𝑌)
!!!  !

 

It can be observed from the equation that the penalty will be lower if the candidate 

feature 𝑋! has strong pairwise class conditional dependence with the set of already 

selected features. 

 

Double input symmetric relevance (DISR) 

Double input symmetric relevance (DISR)12 is the modification of the joint mutual 

information criterion. Here the joint mutual information is normalized with a joint 

entropy term. The criterion is defined as 

𝐽!"# 𝑋! =
𝐼 𝑋!𝑋!;𝑌
𝐻(𝑋!𝑋!𝑌)!!  !  !

 

 

Publicly available Matlab implementations2,13 were used for the implementations of 

feature selection methods. For further understanding of the theoretical assumptions 

and relations between these feature selection methods, we encourage reader to 

refer2,13. 

 

 

 

 

 

 

 

 

 

 



Supplementary C: Classification Methods 

We used 12 classifiers belonging to different classifier families (Decision trees (DT), 

Boosting (BST), Discriminant analysis (DA), Bagging (BAG), Random forests (RF), 

Neural networks (Nnet), Generalized linear models (GLM), Nearest neighbors (NN), 

Partial least square and principle component regression (PLSR), Multiple adaptive 

regression splines (MARS), Bayesian (BY), Support vector machines(SVM)) in our 

analysis. In a recently published large comparative study, Fernandez-Delgado et. al14 

have evaluated 179 different classifiers arising from the 12 different families on 121 

different data sets. This study has reported that most of the best performing 

classifiers of their study were implemented using R and tuned using the “caret” 

package15. We therefore chose R and caret as an implementation framework for our 

classifiers. A brief overview about implementation details of the classifiers and the 

corresponding parameters is given below. For the detailed theoretical description, we 

encourage reader to refer the individual method. 

 

Decision tree (DT) 

A C5.0 decision tree based classification method was used in the analysis. C5.0 

function of the “C50” package was used for creating classification trees with default 

parameter tuning under caret interface. 

 

Boosting (BST) 

A Boosting ensemble of C5.0 decision tree was created using the R package “C50”. 

Parameter tuning was carried out using caret interface. Number of boosting trials 

was varied in {1, 10, 20} with and without winnow. 

 

Bayesian (BY) 

R package “klaR” with default caret parameter tuning was used for the 

implementation of Naïve Bayes classifier. 



 

Discriminant analysis (DA) 

Flexible discriminant analysis is a non-linear extension of linear discriminant analysis. 

R package “mda” was used for the implementation. Parameter tuning was done 

using caret with the parameter nprune varing from 2:3:15 (2 to 15 with an increment 

of 3). 

 

Bagging (BAG) 

Bagging falls into the category of ensemble algorithms in machine learning. R 

package “ipred” was used for the implementation and default parameter tuning was 

done using caret interface. 

 

Random forest (RF) 

Random forest provides an improvement to bagging with a modification step of 

random sampling of predictors. R package “randomForest” with caret interface was 

used for the implementation. Parameter ntree was set to 500 and mtry was varied 

with values 2:3:29 (2 to 29 with an increment step of 3) 

 

Neural network (Nnet) 

Neural network, also known as multi layer perceptron is a non-linear classification 

model. It was implemented by a caret interface and R package “nnet” by tuning the 

size and weight decay parameter with values 1:2:9 and {0, 0.1, 0.01, 0.001, 0.0001} 

respectively. 

 

Support vector machine (SVM) 

SVM, with Gaussian kernel function was implemented using a caret interface and R 

package kernlab. Cost parameter C was varied with values {2-2, 2-1,1, 21, 22} and the 

parameter kernel spread was varied with values in {10-2, 10-1, 1, 101,102}. 



 

Nearest neighbor (NN) 

K-nearest neighbor was implemented using the “knn” R package and caret interface. 

10 different values of number of neighbors 5:2:23 (5 to 23 with an increment step of 

2) were used. 

 

Partial least squares and principal component regression (PLSR) 

We used mvr function in “pls” package to fit PLSR model. Parameter tuning was 

done using caret. 10 different values of the number of components 1:1:10 were used. 

 

Generalized linear models (GLM) 

A generalized linear model via penalized maximum likelihood was fitted using the 

glmnet function of the R package “glment” and the default parameter tuning with 

caret interface. 

 

Multivariate adaptive regression splines (MARS) 

An additive MARS model was built using the gcvEarth function of the R package 

“earth” with default parameter tuning using caret interface. 

 

 

 

 

 

 

 

 

 

 



Supplementary Figures  

 

Figure S1 | Predictive performance (AUC) of feature selection (in rows) and 

classification methods (in columns) with top 10 selected features. 
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Figure S2 | Predictive performance (AUC) of feature selection and classification 

methods with top 20 selected features. 
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Figure S3 | Predictive performance (AUC) of feature selection and classification 

methods with top 40 selected features. 
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Figure S4 | Predictive performance (AUC) of feature selection and classification 

methods with top 50 selected features. 
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Figure S5 | Predictive performance (median over all feature selection methods) 

corresponding to classification methods (in columns) and the number of selected 

features (in rows). 
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Figure S6 | Predictive performance (median over all classification methods) 

corresponding to feature selection methods (in rows) and the number of selected 

features (in columns). 
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Figure S7 | Predictive performance (median over the number of selected features) 

corresponding to classification methods (in columns) and feature selection methods 

(in rows). 
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