
A The duality between the DINA and the DINO

model and some technical constructions

We establish the duality between the DINA and the DINO model.

Proposition 1 Consider a response vector R = (R1
, ..., R

J) following a DINA model with

latent attribute ↵ and R

0 = (R01
, ..., R

0J) following the DINO model with latent attribute

↵0. Their slipping and guessing parameters are denoted by sj, gj, s
0
j, and g

0
j, respectively.

If 1� sj = g

0
j, gj = 1� s

0
j, and ↵j = 1� ↵

0
j, then R and R

0 are identically distributed.

The above proposition is straightforward to verify through the ideal response indicators
in (2) and (5). Thus, we omit the detailed proof. The above proposition suggests that
the DINA and the DINO model are mathematically the same but with di↵erent parame-
terizations. Therefore, all the theoretical results we developed for the DINA model can be
directly translated to the DINO model based on the above proposition. Therefore, the rest
of the technical proofs are all for the DINA model. In the rest of this subsection, we present
some technical construction for the subsequent proof.

T -matrix for the DINA model. For notational convenience, we will write

c = 1� s

that is the correct response probability for capable students (“c” for correct). Then,

c = 1� s

is the corresponding parameter vector.
The T -matrix serves as a connection between the observed response distribution and the

model structure. We first specify each row vector of the T -matrix for a general conjunctive
diagnostic model.

For each item j, we have

P (Rj = 1|Q,p,✓) =
X

↵

p↵cj,↵ =
X

↵

p↵P (Rj = 1|Q,↵,✓), (16)

We create a row vector B✓,Q(j) of length 2K containing the probabilities cj,↵ for all ↵’s and
arrange those elements in an appropriate order, then we write (16) in the form of a matrix
product

X

↵

p↵cj,↵ = B✓,Q(j)p,

where p is the column vector containing the probabilities p↵. For each pair of items, we
may establish that the probability of responding positively to both items j1 and j2 is

P (Rj1 = 1, Rj2 = 1|Q,p,✓) =
X

↵

p↵cj1,↵cj2,↵ = B✓,Q,(j1, j2)p.

where B✓,Q(j1, j2) is defined as a row vector containing the probabilities cj1,↵cj2,↵ for each
↵. Note that each element of B✓,Q(j1, j2) is the product of the corresponding elements of
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B✓,Q(j1) and B✓,Q(j2). With a completely analogous construction, for items j1, · · · , jl, we
can write the probability of responding positively to all items as

P (Rj1 = 1, . . . , Rjl = 1|Q,p,✓) = B✓,Q(j1, . . . , jl)p,

Note that B✓,Q(j1, . . . , jl) is the element-by-element product of B✓,Q(j1),. . . ,B✓,Q(jl).
The T -matrix for the DINA model has 2K columns and 2J rows. Each of the first

2J � 1 row vectors of the T -matrix is one of the vectors B✓,Q(j1, ..., jl). The last row of the
T -matrix is taken as 1>. The T -matrix can be written as

Tc,g(Q) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

B✓,Q(1)
...

B✓,Q(J)

B✓,Q(1, 2)
...

B✓,Q(1, ..., J)

1

>

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

. (17)

Response �-vector. We further define � to be the vector containing the probabilities of
the empirical distribution corresponding to those in T✓(Q)p, e.g., the first element of � is
1
N

PN
i=1 I(R

1
i = 1) and the (J + 1)-th element is 1

N

PN
i=1 I(R

1
i = 1 and R

2
i = 1), i.e.,

� =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1
N

PN
i=1 I(R

1
i = 1)

...
1
N

PN
i=1 I(R

J
i = 1)

1
N

PN
i=1 I(R

1
i = 1 and R

2
i = 1)

...
1
N

PN
i=1 I(R

1
i = 1, R

2
i = 1, · · · , and R

J
i = 1)

1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

. (18)

An objective function. Under the true Q-matrix Q, let (✓,p) be the true model param-
eters. By the the law of large number, we have that

� =

0

B

B

B

B

B

B

B

B

@

1
N

PN
i=1 I(R

1
i = 1)

...
1
N

PN
i=1 I(R

J
i = 1)

1
N

PN
i=1 I(R

1
i = 1 and R

2
i = 1)

...

1

C

C

C

C

C

C

C

C

A

!

0

B

B

B

B

B

B

B

B

@

P (R1
i = 1|Q,✓,p)

...

P (RJ
i = 1|Q,✓,p)

P (R1
i = 1 and R

2
i = 1|Q,✓,p)

...

1

C

C

C

C

C

C

C

C

A

= T✓(Q)p

almost surely as N ! 1. For each Q, we define

S(Q) = inf
c,g,p

|Tc,g(Q)p� �|2, (19)
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where the minimization is subject to the natural constraints that cj , gj , p↵ 2 (0, 1) and
P

↵ p↵ = 1. Here | · | means the Euclidian norm. Thanks to the law of large numbers,
S(Q) ! 0 as N ! 1. The estimator

Q̃ = argminQS(Q)

is consistent meaning that
P (Q̃ ⇠ Q) ! 1

if and only if the vector Tc,g(Q)p 6= Tc0,g0(Q0)p0 for Q0 ⌧ Q and all possible c

0, g0 and p

0.

B Proof of Theorems

The following proposition provides a connection between the likelihood function and the
T -matrix, which makes it possible to the T -matrix to show the model identifiability.

Proposition 2 Under the DINA and DINO models, for two sets of parameters (ĉ, ĝ, p̂)
and (c̄, ḡ, p̄),

L(ĉ, ĝ, p̂, Q) = L(c̄, ḡ, p̄, Q)

for all R if and only if the following equation holds:

Tĉ,ĝ(Q)p̂ = Tc̄,ḡ(Q)p̄. (20)

The following proposition provides a relationship between T -matrices of di↵erent model
parameters.

Proposition 3 There exists an invertible matrix Dg⇤ depending only on g

⇤ = (g⇤1, ..., g⇤J),
such that

Dg⇤
Tc,g(Q) = Tc�g⇤,g�g⇤(Q).

Thus, (20) is equivalent to Tc̄�g⇤,ḡ�g⇤(Q)p̄ = Tĉ�g⇤,ĝ�g⇤(Q)p̂ for some g

⇤. This is a
very important technique that will be used repeatedly in the subsequent development. We
now cite a proposition.

Proposition 4 (Proposition 6.6 in Liu et al. (2013)) For the DINA model, under Con-

dition A1-3, Tc,g(Q)p is not in the column space of Tc0,g(Q0) for all c0, that is, Tc,g(Q)p 6=
Tc0,g(Q0)p0 for all c0 and p

0. In addition, Tc,g(Q) is of full column rank.

The following proposition provides the first step result.

Proposition 5 Under the DINA and DINO models, with Q, s, and g being known, the

population proportion parameter p is identifiable if and only if Q is complete.

Proof of Proposition 5. When Q is complete, the matrix Tc,g(Q) has full column rank
from Proposition 4. Thus, p is identifiable by Proposition 2.

Consider the case where the Q is incomplete. Without loss of generality, we assume
e1 = (1, 0, · · · , 0) is not in the set of row vectors of Q. Then in the T -matrix Tc,g(Q),
the columns corresponding to attribute profiles 0 and e1 are the same. Therefore, by
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Proposition 2, we can always find two di↵erent set of estimates of p0 and p

e1 such that
equation (20) holds and therefore p = (p↵,↵ 2 {0, 1}K) is nonidentifiable.

Proof of Theorem 2. The identifiability of the Q-matrix for the DINO model is an
application of Theorem 1 and Proposition 1. In what follows, we focus on the identifiability
of the model parameters c and p under the DINA model.

We only need to show that when g is known, for two sets of parameters (ĉ,g, p̂) and
(c̄,g, p̄), L(ĉ,g, p̂, Q) = L(c̄,g, p̄, Q) holds if and only if A4 satisfied. By Propositions 2
and 3, two sets of parameters (ĉ,g, p̂) and (c̄,g, p̄) yield identical likelihood if and only if

Tĉ�g,0(Q)p̂ = DgTĉ,g(Q)p̂ = DgTc̄,g(Q)p̄ = Tc̄�g,0(Q)p̄. (21)

Thus under the assumption that cj > gj , we only need to consider that g = 0.

Su�ciency of A4. For notational convenience, we write BQ(j1, ..., jl) = Bc,g,Q(j1, ..., jl)
when c = 1 and g = 0. For each item j 2 1, · · · , J , condition A4 implies that there exist
items j1, ..., jl (di↵erent from j) such that

BQ(j, j1, ..., jl) = BQ(j1, ..., jl),

that is, the attributes required by item j are a subset of the attributes required by items
j1, ..., jl.

Let a and a⇤ be the row vectors in Dg corresponding to item combinations j1, ..., jl and
j, j1, ..., jl; see (21) for the definition of Dg. If (ĉ, p̂) and (c̄, p̄) satisfy by (21), then

a⇤>Tĉ,g(Q)p̂

a

>
Tĉ,g(Q)p̂

=
a⇤>Tc̄,g(Q)p̄

a

>
Tc̄,g(Q)p̄

.

On the other hand, we have that

a⇤>Tĉ,g(Q)p̂

a

>
Tĉ,g(Q)p̂

=
Bĉ�g,0;Q(j, j1, ..., jl)p̂

Bĉ�g,0;Q(j1, ..., jl)p̂
= ĉj � gj ,

a⇤>Tc̄,g(Q)p̄

a

>
Tc̄,g(Q)p̄

=
Bc̄�g,0;Q(j, j1, ..., jl)p̄

Bc̄�g,0;Q(j1, ..., jl)p̄
= c̄j � gj .

Therefore, ĉj = c̄j for all j = 1, · · · , J , which gives the identifiability of the slipping pa-
rameter. According to Proposition 5, the completeness of the Q-matrix ensures that the
identifiability of p, therefore we have the su�ciency of A4.

Necessity of A4. We reach the conclusion by contradiction. (21) suggests that it is
su�cient to show the necessity for g = 0. Without loss of generality, suppose that the first
attribute only appears once in the first column of the Q-matrix, i.e., the Q-matrix takes
the following form:

Q =

0

B

B

@

1 0

>

0 IK�1

0 Q1

1

C

C

A

. (22)
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We construct c̄ and p̄ di↵erent from ĉ and p̂ such that Tĉ,0(Q)p̂ = Tc̄,0(Q)p̄. We write
ĉ = (ĉ1, · · · , ĉJ) and p̂ = {p̂(b,a) : b 2 {0, 1}, a 2 {0, 1}K�1}. For some x close to 1, define

c̄ = (c̄1, c̄2, · · · , c̄J) = (xĉ1, ĉ2, · · · , ĉJ)

and

p̄ = {p̄(b,a) : p̄(1,a) = p̂(1,a)/x and p̄(0,a) = p̂(0,a) + p̂(1,a)(1� 1/x), for all a 2 {0, 1}K�1}.

Notice that the parameters related to the first item have been changed. Consider the rows
in the T -matrix related to the first item. Keeping in mind that g = 0, we have that

ĉ1

X

a2{0,1}K�1

p̂(1,a) + g1

X

a2{0,1}K�1

p̂(0,a) = c̄1

X

a2{0,1}K�1

p̄(1,a) + g1

X

a2{0,1}K�1

p̄(0,a). (23)

This corresponds to P (R1 = 1). Similar identities can be established for P (R1 = R

j1 = ... =
R

jl = 1). Therefore, we have constructed (c̄, p̄) 6= (ĉ, p̂) such that Tc̄,0(Q)p̄ = Tĉ,0(Q)p̂.
Thus, c and p are not identifiable if A4 does not hold.

Proof of Theorem 3. Consider the true Q and a candidate Q

0 ⌧ Q. According to the
discussion at the end of Section A, it is su�cient to show that it is impossible to have two
sets of parameters (ĉ, ĝ, p̂) and (c̄, ḡ, p̄) such that ĉj > ĝj , c̄j > ḡj , p̂↵ > 0, p̄↵ > 0, and

Tĉ,ĝ(Q)p̂ = Tc̄,ḡ(Q
0)p̄. (24)

We prove this first assuming that there exist two such sets of parameters and then reach
a contradiction. The true matrix Q is arranged as in (8) such that the first 2K rows form
two identity matrices. We try to reach a contradiction under the following two cases.

Case 1: either Q0
1:K or Q0

K+1:2K is incomplete. We only focus on the case when
Q

0
1:K is not IK . We borrow an intermediate result in the proof of Proposition 6.4 in Liu et al.

(2013): we can identify an item 1  h  K and an item set H ⇢ {1, · · · ,K} (h /2 H) such
that under Q

0, H requires all attributes required by item h, that is, if someone is capable
of solving all problems in H then he/she is able to solve problem h. We say someone “is
able to” or “can” solve a problem or a set of problems if his/her ideal responses to the set
of problems are all one.

For items K + 1, · · · , 2K, since QK+1:2K = IK , there exists an item set B ⇢ {K +
1, ..., 2K} such that under Q it requires the same attributes as H, that is, if a person is
capable of solving all items in B if and only if they can solving all problems in H. Since
Q1:K = IK , under Q, the attributes required by H and B are di↵erent from those of item
h. Define

g̃ = (ḡ1, · · · , ḡK , ĝK+1, · · · , ĝJ).
Assumption (24) and Proposition 3 suggests Tĉ�g̃,ĝ�g̃(Q)p̂ = Tc̄�g̃,ḡ�g̃(Q0)p̄.

Under Q0 if h requires strictly fewer attributes thanH, there are three types of attributes
profiles: unable to answer h (denoted by 0h0H), unable to answer H but able to answer h
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(denoted by 0H1h), and able to answer H (denoted by 1H). We have

0h0H 0H1h 1H
Bc̄�g̃,ḡ�g̃,Q0(H) = ( 0 0

Q

j2H(c̄j � ḡj) ),

Bc̄�g̃,ḡ�g̃,Q0(h) = ( 0 (c̄h � ḡh) (c̄h � ḡh) ),

Bc̄�g̃,ḡ�g̃,Q0(H, h) = ( 0 0 (c̄h � ḡh)
Q

j2H(c̄j � ḡj) ),

If h and H require the same attributes, 0H1h case does not exist and the above equations
do not have the 0H1h column. Under both situations, we have

c̄h � ḡh =
Bc̄�g̃,ḡ�g̃,Q0(H, h)p̄

Bc̄�g̃,ḡ�g̃,Q0(H)p̄
=

Bc̄�g̃,ḡ�g̃,Q0(H, h,K + 1, · · · , 2K)p̄

Bc̄�g̃,ḡ�g̃,Q0(H,K + 1, · · · , 2K)p̄
. (25)

Under Q, we have

↵ 6= 1 ↵ = 1

Bc̄�g̃,ḡ�g̃,Q(K + 1, · · · , 2K) = ( 0
Q2K

j=K+1(ĉj � ĝj) ),

Bc̄�g̃,ḡ�g̃,Q(H,K + 1, · · · , 2K) = ( 0
Q

j2H(ĉj � ḡj)
Q2K

j=K+1(ĉj � ĝj) ),

Bc̄�g̃,ḡ�g̃,Q(H, h,K + 1, · · · , 2K) = ( 0 (ĉh � ḡh)
Q

j2H(ĉj � ḡj)
Q2K

j=K+1(ĉj � ĝj) ).

This gives

ĉh � ḡh =
Bc̄�g̃,ḡ�g̃,Q(H, h,K + 1, · · · , 2K)p̂

Bc̄�g̃,ḡ�g̃,Q(H,K + 1, · · · , 2K)p̂
. (26)

Tĉ�g̃,ĝ�g̃(Q)p̂ = Tc̄�g̃,ḡ�g̃(Q0)p̄ allows to equate the right-hand sides of (25) and (26) which
yields

ĉh = c̄h. (27)

Now under Q0, with a similarly argument, we have

c̄h � ḡh =
Bc̄�g̃,ḡ�g̃,Q0(H, h,B)p̄
Bc̄�g̃,ḡ�g̃,Q0(H,B)p̄ . (28)

Under Q, consider three types of attributes profiles: unable to answer H (denoted by 0H),
able to answer H but unable to answer h (denoted by 0h1H), and able to answer both H
and h (denoted by 1H1h). We have

0H 0h1H 1H1h
Bc̄�g̃,ḡ�g̃,Q(H,B) = ( 0

Q

j2H(ĉj � ḡj)
Q

j2B(ĉj � ĝj)
Q

j2H(ĉj � ḡj)
Q

j2B(ĉj � ĝj)),

Bc̄�g̃,ḡ�g̃,Q(H, h,B) = ( 0 (ĝh � ḡh)
Q

j2H(ĉj � ḡj)
Q

j2B(ĉj � ĝj) (ĉh � ḡh)
Q

j2H(ĉj � ḡj)
Q

j2B(ĉj � ĝj)).

Since ĝh � ḡh < ĉh � ḡh and p↵ > 0 for all ↵, we have that

ĉh � ḡh 6= Bc̄�g̃,ḡ�g̃,Q(H, h,B)p̂
Bc̄�g̃,ḡ�g̃,Q(H,B)p̂ =

Bc̄�g̃,ḡ�g̃,Q0(H, h,B)p̄
Bc̄�g̃,ḡ�g̃,Q0(H,B)p̄ . (29)

Tĉ�g̃,ĝ�g̃(Q)p̂ = Tc̄�g̃,ḡ�g̃(Q0)p̄ allows use to equate the right-hand sides of (28) and (29),
which yields ĉh > c̄h. This contradicts (27).
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Thus, under this case, we have that Tĉ�g̃,ĝ�g̃(Q)p̂ 6= Tc̄�g̃,ḡ�g̃(Q0)p̄ if ĉj > ĝj , c̄j > ḡj ,
p̂↵ > 0, p̄↵ > 0. Furthermore, if the conditions in the theorem are satisfied and Q

0
1:K

or Q

0
(K+1):2K is incomplete, then we cannot find parameters c̄, ḡ, and p̄ that yields the

same response distribution as Q and thus Q can be di↵erentiated from Q

0 by the maximum
likelihood.

Case 2: both Q0
1:K and Q0

K+1:2K are complete, but Q ⌧ Q0. In this case, we can
always arrange the columns of Q0 such that either Q0

1:K = IK . Redefine

g̃ = (c̄1, · · · , c̄K , ĉK+1, · · · , ĉ2K , 0, · · · , 0)

and assumption (24) suggests that Tĉ�g̃,ĝ�g̃(Q)p̂ = Tc̄�g̃,ḡ�g̃(Q0)p̄.
The row vectors of T -matrices corresponding to items 1,..., 2K are

Bĉ�g̃,ĝ�g̃,Q(1, · · · , 2K) =

✓

YK

k=1
(ĝk � c̄k)

Y2K

k=K+1
(ĝk � ĉk),0

>
◆

and

Bĉ�g̃,ĝ�g̃,Q0(1, · · · , 2K) =

✓

YK

k=1
(ḡk � c̄k)

Y2K

k=K+1
(ḡk � ĉk),0

>
◆

where only the element corresponding to zero attribute is non-zero. Therefore, for any
j � 2K + 1, we have

ĝj =
Bĉ�g̃,ĝ�g̃,Q(1, · · · , 2K, j)p̂

Bĉ�g̃,ĝ�g̃,Q(1, · · · , 2K)p̂
=

Bc̄�g̃,ḡ�g̃,Q0(1, · · · , 2K, j)p̄

Bc̄�g̃,ḡ�g̃,Q0(1, · · · , 2K)p̄
= ḡj .

Once again, we redefine g̃ = (ḡ1, · · · , ḡK , 0, · · · , 0, ĝ2K+1, · · · , ĝJ). By Condition A5, we
have for K + 1  j  2K

ĉj =
Bĉ�g̃,ĝ�g̃,Q(1, · · · ,K, j, (2K + 1), · · · , J)p̂
Bĉ�g̃,ĝ�g̃,Q(1, · · · ,K, (2K + 1), · · · , J)p̂

=
Bc̄�g̃,ḡ�g̃,Q0(1, · · · ,K, j, (2K + 1), · · · , J)p̄
Bc̄�g̃,ḡ�g̃,Q0(1, · · · ,K, (2K + 1), · · · , J)p̄ = c̄j .

Similarly take g̃ = (0, · · · , 0, ḡK+1, · · · , ḡ2K , ĝ2K+1, · · · , ĝJ). We have ĉj = c̄j for 1  j  K.
Now take g̃ = (c̄1, · · · , c̄K , 0, · · · , 0), we have for K + 1  j  2K

ĝj =
Bĉ�g̃,ĝ�g̃,Q(1, · · · ,K, j)p̂

Bĉ�g̃,ĝ�g̃,Q(1, · · · ,K)p̂
=

Bc̄�g̃,ḡ�g̃,Q0(1, · · · ,K, j)p̄

Bc̄�g̃,ḡ�g̃,Q0(1, · · · ,K)p̄
= ḡj .

Similarly, for ĝj = ḡj for j = 1, ...,K. Thus, we have ĝj = ḡj for j = 1, ..., J . Therefore,
assumption (24) becomes

Tĉ,ĝ(Q)p̂ = Tc̄,ĝ(Q
0)p̄. (30)

This contradicts Proposition 4. Thus, we have reached the conclusion that

Tĉ,ĝ(Q)p̂ 6= Tc̄,ḡ(Q
0)p̄.
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for all ĉj > ĝj , c̄j > ḡj , p̂↵ > 0, p̄↵ > 0 and Q

0 ⌧ Q. Thus, by maximizing the profiled
likelihood, Q can be consistently estimated.

Proof of Theorem 4. Suppose there are two sets of parameters (ĉ, ĝ, p̂) and (c̄, ḡ, p̄) such
that L(ĉ, ĝ, p̂) = L(c̄, ḡ, p̄), equivalently, Tĉ,ĝ(Q)p̂ = Tc̄,ḡ(Q)p̄. We show that (ĉ, ĝ, p̂) =
(c̄, ḡ, p̄) if ĉj > ĝj , p̂↵ > 0, c̄j > ḡj , and p̄↵ > 0. Condition A5 allows us to consider the
following three cases.

Case 1. There exit at least three items with Q-matrix row vector e1. Without loss of
generality, we write the Q-matrix as (with reordering of the rows)

Q =

0

B

B

B

B

B

B

B

@

1 0

>

1 0

>

1 0

>

0 IK�1

0 Q

0

1

C

C

C

C

C

C

C

A

. (31)

In what follows, we show that ĉj = c̄j and ĝj = ḡj for j = 1, 2, 3. By Proposition 3,
Tĉ,ĝ(Q)p̂ = Tc̄,ḡ(Q)p̄ suggests that Tĉ�ĝ,0(Q)p̂ = Tc̄�ĝ,ḡ�ĝ(Q)p̄. Together with the fact
that

Bĉ�ĝ,0;Q(1, 2, 3)p̂

Bĉ�ĝ,0;Q(1, 2)p̂
=

Bĉ�ĝ,0;Q(1, 3)p̂

Bĉ�ĝ,0;Q(1)p̂
= ĉ3 � ĝ3, (32)

we have that

Bc̄�ĝ,ḡ�ĝ;Q(1, 3)p̄

Bc̄�ĝ,ḡ�ĝ;Q(1)p̄
=

Bc̄�ĝ,ḡ�ĝ;Q(1, 2, 3)p̄

Bc̄�ĝ,ḡ�ĝ;Q(1, 2)p̄
. (33)

Expanding the above identity, we have

(ḡ1 � ĝ1)(ḡ3 � ĝ3)
P

a2{0,1}K�1 p̄(0,a) + (c̄1 � ĝ1)(c̄3 � ĝ3)
P

a2{0,1}K�1 p̄(1,a)

(ḡ1 � ĝ1)
P

a2{0,1}K�1 p̄(0,a) + (c̄1 � ĝ1)
P

a2{0,1}K�1 p̄(1,a)

=

Q3
j=1(ḡj � ĝj)

P

a2{0,1}K�1 p̄(0,a) +
Q3

j=1(c̄j � ĝj)
P

a2{0,1}K�1 p̄(1,a)

(ḡ1 � ĝ1)(ḡ2 � ĝ2)
P

a2{0,1}K�1 p̄(0,a) + (c̄1 � ĝ1)(c̄2 � ĝ2)
P

a2{0,1}K�1 p̄(1,a)
, (34)

which can be simplified to (ḡ1� ĝ1)(c̄1� ĝ1)(c̄2� ḡ2)(c̄3� ḡ3) = 0. Then under the constraint
that c̄j > ḡj , we have ḡ1 = ĝ1 or c̄1 = ĝ1. A similar argument yields

(

ḡ2 = ĝ2 or c̄2 = ĝ2

ḡ3 = ĝ3 or c̄3 = ĝ3

and

8

>

>

<

>

>

:

ĝ1 = ḡ1 or ĉ1 = ḡ1

ĝ2 = ḡ2 or ĉ2 = ḡ2

ĝ3 = ḡ3 or ĉ3 = ḡ3

.

For j = 1, 2, or 3, if ĝj 6= ḡj we have ĉj = ḡj and c̄j = ĝj . This contradict the condition that
ĉj > ĝj and c̄j > ḡj . Thus we have ĝj = ḡj for j = 1, 2, 3. Repeating the proof of Theorem
2, we have ĉj = c̄j for i = 1, 2, 3.
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Case 2. There exit two items with row vector e1. Without loss of generality, we write
the Q-matrix as

Q =

0

B

B

B

B

B

B

B

@

1 0

>

1 0

>

1 v

>

0 IK�1

0 Q

0

1

C

C

C

C

C

C

C

A

, Q1:4 =

0

B

B

B

B

@

1 0 0

>

1 0 0

>

1 1 v⇤>

0 1 0

>

1

C

C

C

C

A

, (35)

where v is a non-zero vector. Without loss of generality we assume v> = (1,v⇤>). Consider
the sub-matrix containing the first four items. i.e., Q1:4 in (35). Similar to the proof of
Case 1, for (ĉ, ĝ, p̂) and (c̄, ḡ, p̄) such that Tĉ,ĝ(Q)p̂ = Tc̄,ḡ(Q)p̄, we will show

(

ĉj = c̄j j = 1, 2, 4

ĝj = ḡj j = 1, 2, 3
. (36)

A similar argument as in Case 1 yields

Bĉ�ĝ,0;Q(1, 3)p̂

Bĉ�ĝ,0;Q(3)p̂
= ĉ1 � ĝ1 =

Bĉ�ĝ,0;Q(1, 4, 3)p̂

Bĉ�ĝ,0;Q(4, 3)p̂
.

Together with the fact that Tc̄�ĝ,ḡ�ĝ(Q)p̄ = Tĉ�ĝ,0(Q)p̂, we have

Bc̄�ĝ,ḡ�ĝ;Q(1, 3)p̄

Bc̄�ĝ,ḡ�ĝ;Q(3)p̄
=

Bc̄�ĝ,ḡ�ĝ;Q(1, 4, 3)p̄

Bc̄�ĝ,ḡ�ĝ;Q(4, 3)p̄
.

This implies

g̃1g̃4g̃3p̄0,0 + c̃1g̃4g̃3p̄1,0 + g̃1c̃4g̃3p̄0,1 + c̃1c̃4c̃3p̄1,1

g̃4g̃3p̄0,0 + g̃4g̃3p̄1,0 + c̃4g̃3p̄0,1 + c̃4c̃3p̄1,1

=
g̃1g̃3p̄0,0 + c̃1g̃3p̄1,0 + g̃1g̃3p̄0,1 + c̃1c̃3p̄1,1

g̃3p̄0,0 + g̃3p̄1,0 + g̃3p̄0,1 + c̃3p̄1,1
, (37)

where g̃j = ḡj � ĝj for j = 1, 3, 4, c̃j = c̄j � ĝj for j = 1, 4,

c̃3 =
(c̄3 � ĝ3)

P

v⇤�a2{0,1}K�2 p̄(1,1,a) + (ḡ3 � ĝ3)
P

v⇤�a2{0,1}K�2 p̄(1,1,a)
P

a2{0,1}K�2 p̄(1,1,a)
,

and p̄i,j =
P

a2{0,1}K�2 p̄(i,j,a) for i, j 2 {0, 1}. Here v⇤ � a means that each element of v⇤
is less than or equals to the corresponding element of a, and v⇤ � a means that v⇤ � a

does not hold.
Simplifying (37), we obtain p̄0,0p̄1,1g̃3c̃3(g̃1�c̃1) = p̄1,0p̄0,1g̃3g̃3(g̃1�c̃1). Since g̃1�c̃1 6= 0,

we have
g̃3 = 0 or p̄0,0p̄1,1c̃3 = p̄1,0p̄0,1g̃3. (38)

We show that g̃3 has to be zero. Otherwise, we have

p̄0,0p̄1,1(c̄
⇤
3 � ĝ3) = p̄1,0p̄0,1(ḡ3 � ĝ3), (39)
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where

c̄

⇤
3 = c̃3 + ĝ3 =

c̄3
P

v⇤�a2{0,1}K�2 p̄(1,1,a) + ḡ3
P

v⇤�a2{0,1}K�2 p̄(1,1,a)
P

a2{0,1}K�2 p̄(1,1,a)
.

A similar argument gives that

p̂0,0p̂1,1(ĉ
⇤
3 � ḡ3) = p̂1,0p̂0,1(ĝ3 � ḡ3), (40)

where

ĉ

⇤
3 =

ĉ3
P

v⇤�a2{0,1}K�2 p̂(1,1,a) + ĝ3
P

v⇤�a2{0,1}K�2 p̂(1,1,a)
P

a2{0,1}K�2 p̂(1,1,a)
.

Equations (39) and (40) imply that ĉ⇤3 > ĝ3 > c̄

⇤
3 > ḡ3 or c̄⇤3 > ḡ3 > ĉ

⇤
3 > ĝ3, which conflicts

with the equation that Bĉ,ĝ;Q(3)p̂ = Bc̄,ḡ;Q(3)p̄, i.e.,

ĝ3(p̂0,0 + p̂1,0 + p̂0,1) + ĉ

⇤
3p̂1,1 = ḡ3(p̄0,0 + p̄1,0 + p̄0,1) + c̄

⇤
3p̄1,1.

To see this, notice that p̂0,0 + p̂1,0 + p̂0,1 = 1 � p̂1,1, p̄0,0 + p̄1,0 + p̄0,1 = 1 � p̄1,1, and
p̂1,1, p̄1,1 2 (0, 1). By simple algebra, the above identity cannot be achieved if either ĉ

⇤
3 >

ĝ3 > c̄

⇤
3 > ḡ3 or c̄

⇤
3 > ḡ3 > ĉ

⇤
3 > ĝ3 is true. Therefore, we have g̃3 = ḡ3 � ĝ3 = 0. Let

g = (0, 0, ĝ3, 0, · · · , 0). Tc̄�g,ḡ�g(Q)p̄ = Tĉ�g,ĝ�g(Q)p̂ yields

c̄1 =
Bc̄�g,ḡ�g;Q(1, 4, 3)p̄

Bc̄�g,ḡ�g;Q(4, 3)p̄
=

Bĉ�g,ĝ�g;Q(1, 4, 3)p̂

Bĉ�g,ĝ�g;Q(4, 3)p̂
= ĉ1,

c̄2 =
Bc̄�g,ḡ�g;Q(2, 4, 3)p̄

Bc̄�g,ḡ�g;Q(4, 3)p̄
=

Bĉ�g,ĝ�g;Q(2, 4, 3)p̂

Bĉ�g,ĝ�g;Q(4, 3)p̂
= ĉ2,

c̄4 =
Bc̄�g,ḡ�g;Q(1, 4, 3)p̄

Bc̄�g,ḡ�g;Q(1, 3)p̄
=

Bĉ�g,ĝ�g;Q(1, 4, 3)p̂

Bĉ�g,ĝ�g;Q(1, 3)p̂
= ĉ4.

Consider items 1 and 2. Let c = (ĉ1, ĉ2, 0, · · · , 0). Tĉ,ĝ(Q)p̂ = Tc̄,ḡ(Q)p̄ yields

ḡ1 =
Bc̄�c,ḡ�c;Q(1, 2)p̄

Bc̄�c,ḡ�c;Q(2)p̄
=

Bĉ�c,ĝ�c;Q(1, 2)p̂

Bĉ�c,ĝ�c;Q(2)p̂
= ĝ1,

ḡ2 =
Bc̄�c,ḡ�c;Q(1, 2)p̄

Bc̄�c,ḡ�c;Q(1)p̄
=

Bĉ�c,ĝ�c;Q(1, 2)p̂

Bĉ�c,ĝ�c;Q(1)p̂
= ĝ2.

Therefore, (36) is true.

Now combining the results in Cases 1 and 2, we have that for the Q-matrix taking the
form of (8), the following holds:

(

ĉj = c̄j j = 1, · · · , 2K
ĝj = ḡj j = 1, · · · , J . (41)

Let g

⇤ = (ĉ1, · · · , ĉK , ĝK+1, · · · , ĝJ). For each j 2 {(2K + 1), · · · , J}, let Aj be the set of
items {(K + 1), · · · , J}\{j}, i.e., the set of all items from K + 1 to J except the jth one.
For the sub-matrix QK+1:J , condition A5 implies that each attribute appears at least twice.
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Therefore, we have

ĉj � ĝj =
Bĉ�g⇤,ĝ�g⇤;Q(Aj , j)p̂

Bĉ�g⇤,ĝ�g⇤;Q(Aj)p̂
=

Bc̄�g⇤,ḡ�g⇤;Q(Aj , j)p̄

Bc̄�g⇤,ḡ�g⇤;Q(Aj)p̄
= c̄j � ĝj .

This gives ĉj = c̄j for j = 2K + 1, · · · , J . Together with (41), ĉj = c̄j for all j = 1, · · · , J .
This further yields p̂ = p̄ due to the full column rank of the matrix Tĉ,ĝ(Q).

Therefore, for two sets of parameters (ĉ, ĝ, p̂) and (c̄, ḡ, p̄) such that Tĉ,ĝ(Q)p̂ =
Tc̄,ḡ(Q)p̄, we have (ĉ, ĝ, p̂) = (c̄, ḡ, p̄). This finishes the proof of Theorem 4.

C Proof of Propositions

Proof of Proposition 2. Notice that the column vector Tc,g(Q)p contains the probabil-
ities P (Rj1 = 1, ..., Rjl = 1) for all possible distinct combinations j1,...,jl. Thus, Tc,g(Q)p
completely characterizes the distribution ofR. Two sets of parameters Tĉ,ĝ(Q)p̂ = Tc̄,ḡ(Q)p̄
if and only if they correspond to the same distribution of R. This concludes the proof.

Proof of the Proposition 3. In what follows, we construct a D matrix satisfying the
condition in the proposition. We show that there exists a matrix D only depending on g

⇤

so that DTc,g(Q) = Tc�g⇤,g�g⇤(Q). Note that each row of DTc,g(Q) is just a row linear
transform of Tc,g(Q). Then, it is su�cient to show that each row vector of Tc�g⇤,g�g⇤(Q)
is a linear transform of rows of Tc,g(Q) with coe�cients only depending on g

⇤. We prove
this by induction.

First, note that
Bc�g⇤,g�g⇤;Q(j) = Bc,g;Q(j)� g

⇤
j1

>

where 1> is a row vector with all elements being 1. Then all row vectors of Tc�g⇤,g�g⇤(Q) of
the form Bc�g⇤,g�g⇤,Q(j) are inside the row space of Tc,g(Q) with coe�cients only depending
on g

⇤. Suppose that all the vectors of the form

Bc�g⇤,g�g⇤;Q(j1, ..., jl)

for all 1  l  ◆ can be written linear combinations of the row vectors of Tc,g(Q) with
coe�cients only depending on g

⇤. Then, we consider

Bc,g;Q(j1, ..., j◆+1) = ⌥◆+1
h=1

⇣

Bc�g⇤,g�g⇤;Q(jh) + g

⇤
jh1

>
⌘

,

where “⌥” refers to element by element multiplication. The left hand side is just a row
vector of Tc,g(Q). We expand the right hand side of the above display. Note that the last
term is precisely

Bc�g⇤,g�g⇤;Q(j1, ..., j◆+1) = ⌥◆+1
h=1Bc�g⇤,g�g⇤;Q(jh).

The rest terms are all of the form Bc�g⇤,g�g⇤;Q(j1, ..., jl) for 1  l  ◆ multiplied by
coe�cients only depending on g

⇤. Therefore, according to the induction assumption, we
have that Bc�g⇤,g�g⇤;Q(j1, ..., j◆+1) can be written as linear combinations of rows of Tc,g(Q)
with coe�cients only depending on g

⇤.
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