MVDA: A multi-view genomic data integration methodology: Supplementary Materials

A. Serra, M. Fratello, V. Fortino, G. Raiconi, R. Tagliaferri and D. Greco

Prototype Extraction

In this section intermediate results of step one of the methodology is reported. As a preliminary step, for all dataset, feature with low variance are eliminated. Variance was evaluated for each feature and then the cumulative function of the variance was calculated. The the cumulative function was cut at different level as showed in an example in figure 1.

Then feature were clustered by correlation in order to remove feature redundancy and reduce their number.

Here are reported evaluation metrics for each algorithm in clustering feature as described in section material and method of the manuscript. For each dataset the best two algorithms that reach higher value of the metric were selected.

In figures 2 3 4 5 6 we can see the algorithms behavior by varying the value of K. More details are shown in table 1.

Figure 1 Feature ranking cut: here IS reported, as example, the feature ranking cut for the gene expression view of the OXF.BRC.1 dataset. Feature ranking was performed with the Cat-t score method on the prototypes obtained with the Pam algorithm. As we can see, in order to achieve the 60% of the cumulative ranking score 53 prototypes were needed, 71 for 70%, 93 for 80% and 126 on 90%. In this example there were 200 prototypes at all.

Table 1 Results after step 1: Here we show the results of the two best algorithms used in order to cluster elements in each view for each dataset. For each dataset the top 20% of features were selected. N is the number of patients in each dataset. Apart for Pvclust algorithm that automatically finds the number of clusters, the optimal value of K was calculated as described in section Material and Methods (the optimal values are those in the red lines). For each dataset the two best algorithms that maximize the index (bold value) were selected

View	Feature	Variable Feature		SOM	Pam	K-means	Ward	Spectral	Pvclu	st
Breast cancer patie	nt sample	s from The Cancer	Genome Atla	s (TCG/	4), N =	151				
DNIAG			Prototype			Index			Prototype	Index
RNASeq	20510	4100	100	0,82	0,84	0,77	0,83	0,82	297	0,86
			200	0,85	0.95	0,82	0,85	0,85		
			300	0,75	0,05	0,70	0,04	0,03		
			500	0,75	0,82	0,00	0,02	0,82		
miRNASeq	1046	209	5	0.80	0.80	0.79	0,00	0.80	24	0.84
minuvoeq	10+0	205	10	0.80	0.82	0.78	0.82	0.80	24	0,04
			20	0,81	0,84	0,77	0,83	0.83		
			30	0,64	0,72	0,73	0,80	0,79		
			40	0,60	0,68	0,68	0,78	0,78		
OXF.BRC.1 and OX	KF.BRC.2	breast cancer patie	nt samples fro	om the (Gene Ex	pression On	nnibus (C	GEO), N =	201	
			Prototype			Index			Prototype	Index
Gene Expression	21439	4288	100	0,80	0,82	0,76	0,79	0,78	237	0,85
			200	0,83	0,86	0,81	0,83	0,83		
			300	0,74	0,84	0,78	0,82	0,82		
			400	0,74	0,78	0,76	0,82	0,81		
	724	1.47	500	0,71	0,74	0,75	0,82	0,82	20	0.04
mikina Expression	734	147	5	0,70	0,02	0,70	0,02	0,01	30	0,04
			20	0,70	0,83	0,75	0,82	0,82		
			30	0.64	0.74	0,00	0,03	0.76		
			40	0.62	0.68	0.69	0.76	0.75		
MSK.PRCA prostat	te cancer i	patient samples from	n Memorial S	loan-Ke	ttering	Cancer Cen	ter (MSł	$\overline{(CC)}$, N=8	8	
			Prototype			Index	(,	Prototype	Index
Gene Expression	26446	5200	100	0,86	0,89	0,87	0,88	0,89	532	0,85
			200	0,84	0,88	0,87	0,88	0,89		
			300	0,83	0,87	0,83	0,86	0,87		
			400	0,76	0,84	0,82	0,86	0,86		
			500	0,71	0,81	0,80	0,85	0,86		
miRNA Expression	368	75	5	0,83	0,84	0,83	0,85	0,84	2	0,81
			10	0,74	0,82	0,80	0,81	0,82		
			15	0,67	0,79	0,72	0,79	0,80		
	10000	2000	20	0,57	0,70	0,69	0,80	0,79	050	0.04
Copy Number	18000	3000	100	0,85	0,80	0,85	0,80	0,87	258	0,84
			200	0,00	0,00	0,65	0,00	0,65		
			400	0,04	0,00	0,00	0,04	0,04		
			500	0,05	0,79	0,76	0,02	0,03		
Clinical	9	-	-	-	0,10	0,10	0,02	0,00	-	-
TCGA.GBM gliobla	stoma mu	ltiform samples from	n The Cance	r Genom	e Atlas	(TCGA), N	= 167			
			Prototype			Index			Prototype	Index
Gene Expression	12042	2408	50	0,85	0,87	0,82	0,86	0,87	306	0,86
·			100	0,79	0,86	0,79	0,85	0,86		
			150	0,67	0,83	0,79	0,84	0,85		
			200	0,65	0,79	0,77	0,84	0,84		
			250	0,62	0,80	0,79	0,83	0,84		
miRNA Expression	534	107	5	0,84	0,84	0,85	0,85	0,84	2	0,79
			10	0,83	0,84	0,78	0,84	0,84		
			15	0,67	0,83	0,76	0,83	0,83		
TECHONIC			20	0,63	0,80	0,74	0,81	0,81		
ICGA.UVG ovarian	cancer pa	atient samples from	The Cancer	Genome	Atlas (TCGA), N=	=93		Ductot	La das s
Protoin Expression	166		г гоготуре Б	0.85	0 02	0.77	0.90	0.85	r rolotype	ndex
Frotein Expression	100	-	10	0,82	0,83	0,77	0,82	0,82	32	0,79
			15	0,02	0.83	0.76	0.83	0.72		
			25	0,15	0.82	0.77	0,82	0.81		
miRNA Expression	800	201	5	0.84	0.84	0.84	0.85	0.84	31	0.81
			10	0.85	0.84	0,77	0.85	0,85		-,
			15	0,77	0,84	0,81	0,85	0,85		
			20	0,68	0,84	0,79	0,84	0,85		
			25	0,64	0,83	0,77	0,83	0,83		
Gene Expression	12043	3011	50	0,84	0,85	0,81	0,85	0,84	423	0,81
			100	0,82	0,85	0,77	0,85	0,85		
			200	0,74	0,83	0,75	0,83	0,83		
			300	0,65	0,82	0,73	0,82	0,82		
	05		400	0,63	0,78	0,71	0,81	0,81		
Clinical	25	-	-	-					-	-

Single view patients clustering

In this section summary results of single view patient clustering for each dataset are showed. The clustering algorithm reach the minimum impurity error percentage is also reported. Table 2 reports which cut is used in order to reach this results and also the algorithm (used in the first step of the methodology) from witch the prototype come from.

Table 2 Single view clustering results after the feature selection step

Dataset	View	Single View algorithm	Ranking	Cut	Prototype from	N.Cluster	Error
Breast Cancer	patients from The Ca	ancer genome Atlas (TC	GA), $N = 151$				
TCGA.BRC	RNASeq	K-means	Cat-t Score	60%	Pamk	4	0.17
	miRNASeq	K-means	Cat-t Score	80%	Pamk	4	0.37
Breast Cancer	patients Samples from	m The Gene Expression	Omnibus (GEO), I	N = 201			
OXF.BRC.1	Gene Expression	K-means	Random Forest	70%	Pamk	4	0.17
	miRNA Expression	K-means	Random Forest	90%	Pvclust	4	0.32
Breast Cancer	patients Samples from	m The Gene Expression	Omnibus (GEO), I	N = 201			
OXF.BRC.2	Gene Expression	K-means	Cat-t score	70%	Pvclust	4	0.47
	miRNA Expression	K-means	Random Forest	90%	Pamk	4	0.54
Breast Cancer	patients from The Ca	ancer genome Atlas (TC	GA), N = 151				
MSKCC.PRA	Gene Expression	K-means	Cat-t score	80%	Pamk	2	0.31
	miRNA Expression	Pam	-	-	Pamk	2	0.39
	Copy Number	Ward	Random Forest	90%	Spectral	2	0.31
	Clinical	Pam	-	-	-	2	0.37
Glioblastoma N	Aultiforme patients fr	om The Cancer genome	Atlas (TCGA), N	= 167			
TCGA.GBM	Gene Expression	K-means	Cat-t score	90%	Spectral	4	0.17
	miRNA Expression	K-means	-	-	Ward	4	0.42
Glioblastoma N	Aultiforme patients fr	om The Cancer genome	Atlas (TCGA), N	= 398			
TCGA.OVG	Gene Expression	K-means	Random Forest	-	Pamk	3	0.21
	miRNA Expression	K-means	-	-	Pamk	3	0.20
	Protein Expression	K-means	-	-	-	3	0.22

Final Results

In this section final results for all datasets are reported. All the results reported for the integration step refer to features obtained with the leave-one-out process. In particular table 3 shows cluster impurity errors and cluster stability computed for each dataset for the two integrative methods.

Relevant Prototype for each subclass

For each cluster of patients a set of features coming from different data types was available. Each cluster was analysed in order to find the features that characterize it better. Two kinds of analysis were performed: the former was the correlation between patients in the cluster, the latter was related to the distribution of each variable in one sample in a cluster compared to all the other samples. In the first case, the most relevant features for each cluster were identified by evaluating how the correlation between patients in one cluster decrease when a feature was removed. The feature relevance is directly related to the correlation decrease. One feature at a time was removed and the correlation was evaluated. At the end the features were ranked and the first features for each view were selected. Figure 8 shows the most relevant features for each dataset. In the second case, features were ranked for each cluster according to their distribution. The key concept was that the variance of a relevant feature is low in the cluster and high between clusters. So were considered significant those features for which the difference between the variance out of the cluster and the variance in the cluster were highest. The features were ordered according to this criterion and for each cluster was observed what are the top key features. An example of results on TCGA.BRCA dataset is reported in (Figure 7).

Class characterisation by visualisation

For inspection of the patient characteristics in each class, the distribution of each variable in a cluster was compared with its distribution in other clusters, using boxplots. A boxplot shows the median expression level (solid horizontal bar), the upper quartile and lower quartile range (shaded grey bar), the highest non-outlier and lowest non-outlier (smaller ticks joined by dashed lines), and any outlier (open circles). Because of the great amount of features the box-plot of all the variables cannot be visualized in a clear manner. So the features that gave more information on the difference between clusters were found. Analysis was started from cluster centroids. Feature were ranked by its variance between centroids. This means that the greater is the variance the greater is the difference between clusters for that feature. In (Figures 11), (Figure 12), (Figure 9) and (Figure 10) are reported the box-plot of each cluster calculated for these feature. Different behaviours in clusters related to different classes are clearly visible.

 $\label{eq:table 3} Table 3 \ \mbox{Final results: the table shows the results for all the datasets for all the four experiments executed both with the matrix factorization approach and the general linear integration method.$

TCGA.E	BRC breast can	cer patients from	The Cancer Gen	ome Atlas, N = 151
	Matrix	Factorization	Gener	ral Linear Integration
		Error		Error
	All Feature	Selected Feature	All Feature	Selected Feature
Semi supervised	12%	5.27%	13%	23%
Unsupervised	34%	26.64%	29%	27%
onsupervised	S 1/0	tability	2070	Stability
		Soloctod Ecoturo	All Eastura	Solocted Easture
с · · ,				
Semi supervised	78%	77%	72%	73%
Unsupervised	76%	76%	63%	61%
OXF.BRC	.1 breast cance	er patients from th	e Gene Expression	on Omnibus, N = 201
	Matrix	Factorization	Gener	ral Linear Integration
		Error		Error
	All Feature	Selected Feature	All Feature	Selected Feature
Semi supervised	9%	8%	23%	7%
Uncuponvisod	20%	26%	230%	20%
Olisupervised	2970 C	2070	2370	2070 Stability
	АН Е .			Stability
.	All Feature	Selected Feature	All Feature	Selected Feature
Semi supervised	84%	70%	78%	69%
Unsupervised	84%	63%	75%	77%
OXF.BRC	.2 breast cance	er patients from th	e Gene Expression	on Omnibus, $N = 201$
	Matrix	Factorization	Gener	ral Linear Integration
		Frror		Frror
	All Fosturo	Soloctod Epsturo	All Ecoturo	Soloctod Fosturo
	All Teature			
Semi supervised	2070	10,2570	1070	30%
Unsupervised	47%	33%	42%	34%
	S	tability		Stability
	All Feature	Selected Feature	All Feature	Selected Feature
Semi supervised	82%	77%	67%	71%
Unsupervised	63%	63%	75%	74%
MSKCC.PRCA	rostate cancer	patients from Mer	norial Sloan-Ket	tering Cancer Center, N=88
	Matrix	Eactorization	Gener	ral Linear Integration
	Watna	Error	Gener	
<u> </u>	All Feature	Selected Feature	All Feature	Selected Feature
Semi supervised	11%	1%	10%	5%
Unsupervised	36%	34%	33,20%	35%
	S	tability		Stability
	All Feature	Selected Feature	All Feature	Selected Feature
Semi supervised	85%	74%	73%	88%
Unsupervised	88%	72%	70%	73%
	NG overien ce	ncer nationt from .	The Cancer Cen	ome Atlas N - 308
TCGA.C	Matuix			val Lincor Internation
	watrix		Gener	
		Error		Error
	All Feature	Selected Feature	All Feature	Selected Feature
Semi supervised	13%	1,5%	9%	2%
Unsupervised	20%	20%	21%	21%
I	S	tability		Stability
	All Feature	Selected Feature	All Feature	Selected Feature
Somi suponiesd		Science reacure	200%	750%
	00/0	0707	0070 9607	10/0 9607
Unsupervised	98%	97%	80%	80%
I CGA.GBM	glioblastoma n	nultiform patients f	rom The Cancer	Genome Atlas, $N = 167$
	Matrix	Factorization	Gener	ral Linear Integration
		Error		Error
	All Feature	Selected Feature	All Feature	Selected Feature
Semi supervised	15%	7 78%	20%	12%
	2607	060Z	40%	1470 9907
onsupervised	30%	20%	4070	20% C. L'I''
	5	tability		Stability
	All Feature	Selected Feature	All Feature	Selected Feature
Semi supervised	88%	87%	77%	77%

Figure 8 Feature relevance: for each multi-view clustering the most relevant features was identified in each cluster by evaluating the correlation reduction when a feature was removed. More relevant features are related to a greater decrease of the correlation reduction. Here are reported results only for the semi-supervised experiments Figure 9 Box-plots of the TCGA.OVG: The box-plots of TCGA.OVG dataset were calculated on the multi-view clustering results obtained with the matrix factorization approach in semi-supervised mode. For space and clarity reasons, the box-plots of patients were drawn only on the features with the highest variance between the centroids of different clusters.

Figure 10 Box-plots of the MSKCC.PRCA: The box-plots of MSKCC.PRCA dataset were calculated on the multi-view clustering results obtained with the matrix factorization approach in semi-supervised mode. For space and clarity reasons, the box-plots of patients were drawn only on the features with the highest variance between the centroids of different clusters.

Figure 11 Box-plots of the OXF.BRCA.1 and OXF.BRCA.2: The box-plots of OXF.BRCA.1 and OXF.BRCA.2 datasets were calculated on the multi-view clustering results obtained with the matrix factorization approach in semi-supervised mode. For space and clarity reasons, the box-plots of patients were drawn only on the features with the highest variance between the centroids of different clusters.

Validation Results

The method as been compared with classical single view clustering algorithms, early and intermediate integration approach.

We calculated classification error and normalized mutual information (NMI) for each method, between each clustering results and real patient classification.

Given two clustering solutions CI1 and CI2 NMI compute the mutual information between the two clustering normalized by the cluster entropies.

Because we know how patients are categorized we compute NMI between clustering results and real patient classifications.

	TCGA.BRCA	Algorithm	Error	NMI
		Ward	26,49%	41%
	All Feature	Kmeans	29,14%	40%
Single View		Pamk	23,18%	43%
Single view		Ward	30,49%	41%
	Selected Prototype	Kmeans	31,79%	34%
		Pamk	23,18%	43%
	Early Integration	Tw-kmeans	44,37%	43%
	Our method (unsupervised)	MF	26,64%	37%
Multi-View	Our method (semi-supervised)	MF	5,27%	70%
	Intermediate Integration (all feat)	SNF	26,00%	38%
	Intermediate Integration (our feat)	SNF	32,00%	27%

	TCGA.GBM	Algorithm	Error	NMI
		Ward	17,96%	58%
Single View	All Feature	Kmeans Pamk	22,16% 29,34%	56% 46%
	Selected Prototype	Ward	18,96%	58%
		Pamk	29,34%	46%
	Early Integration	Tw-kmeans	57,49%	46%
	Our method (unsupervised)	MF	26,00%	41%
Multi-View	Our method (semi-supervised)	MF	7,78%	70%
	Intermediate Integration (all feat)	SNF	24,00%	45%
	Intermediate Integration (our feat)	SNF	21,01%	43%

	TCGA.OV	Algorithm	Error	NMI
		Ward	23,51%	3%
	All Feature	Kmeans	22,04%	3%
Single View		Pamk	20,89%	4%
Single view		Ward	22,80%	3%
	Selected Prototype	Kmeans	25,76%	3%
		Pamk	21,02%	4%
Multi-View	Early Integration	Tw-kmeans	18,84%	4%
	Our method (unsupervised)	MF	20,00%	8%
	Our method (semi-supervised)	MF	1,50%	44%
	Intermediate Integration (all feat)	SNF	20,00%	4%
	Intermediate Integration (our feat)	SNF	20,50%	3%

	MSKCC.PRCA	Algorithm	Error	NMI
		Ward	37,90%	3%
	All Feature	Kmeans	38,64%	2%
Single View		Pamk	37,50%	3%
Single view		Ward	37,50%	3%
	Selected Prototype	Kmeans	35,23%	4%
		Pamk	37,50%	3%
	Early Integration	Tw-kmeans	27,27%	3%
Multi-View	Our method (unsupervised)	GLI	33,20%	10%
	Our method (semi-supervised)	MF	1,00%	72%
	Intermediate Integration (all feat)	SNF	40,00%	0%
	Intermediate Integration (our feat)	SNF	36,98%	2%

	OXF.BRCA.1	Algorithm	Error	NMI
		Ward	24,83%	32%
	All Feature	Kmeans	22,39%	31%
Single View		Pamk	22,86%	32%
Jiligie view		Ward	23,38%	32%
	Selected Prototype	Kmeans	20,87%	34%
		Pamk	22,89%	32%
Multi-View	Early Integration	Tw-kmeans	25,87%	32%
	Our method (unsupervised)	MF	26,00%	41%
	Our method (semi-supervised)	GLI	7,00%	62%
	Intermediate Integration (all feat)	SNF	24,00%	29%
	Intermediate Integration (our feat)	SNF	28,00%	23%

	OXF.BRCA.2	Algorithm	Error	NMI
		Ward	49,76%	16%
	All Feature	Kmeans	51,24%	16%
Single View		Pamk	50,75%	16%
Single view		Ward	48,76%	16%
	Selected Prototype	Kmeans	50,75%	17%
		Pamk	50,75%	16%
	Early Integration	Tw-kmeans	48,76%	16%
	Our method (unsupervised)	MF	33,00%	33%
Multi-View	Our method (semi-supervised)	MF	15,23%	59%
	Intermediate Integration (all feat)	SNF	51,00%	13%
	Intermediate Integration (our feat)	SNF	49,34%	13%