
1. Modeling flow in the shear-free device 
 

 
 
Fig. 1 (a) By taking a longitudinal cross-section of the membrane device we obtained an idealized 
network of flow channels connecting the flow chamber and cell chamber. (b) An equivalent circuit 
representation of the flow channels. (c) A unit circuit loop used to generalize the flow distribution. The 
flow within each branch of the loop is denoted by q, the resistance by R, and the subscript n indexed 
each consecutive unit of circuit loop. The pressure drops along the two flow paths indicated by the 
arrows are equal and form the basis of the recurrence relation below:  
 

 
 
After expanding, grouping the flow rate terms with the same indices together, and rearranging terms, we 
obtain a 2nd order recurrence relation that describes the flow across the nth unit circuit loop of the flow 
chamber: 
 
 
 

 
          where            and 

 
 
 
The two dimensionless terms in (3) can be thought of as normalized resistances of the membrane and the 
cell chamber, respectively. 
 
Due to the last constant term, the 2nd order recurrence relation in (2) is inhomogeneous with constant 
coefficients (that are independent of n). The closed form solution to (2) will be a sum of a homogeneous 
and a particular solution.  
 
Before solving (2), we perform the following scaling transformation to simplify subsequent calculations: 
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Thus (2) transforms to: 
 
 
 
 
Since Rp, Rf, and Rc are all positive, α > 1. 
 
 
 
Particular Solution: 
The inhomogeneous term does not depend on n, so we seek out a particular solution that is constant.  
 
Substituting qn = q(p) into (5), we obtain: 
 
 
 
 
 
 
Homogeneous Solution: 
 
Any solution to the homogeneous equation satisfies 
 
 
 
We try solution of the form 
 
  
 
Substituting (8) into (7), we have: 
 
 
 
 
which has the solution  
 
 
 
We make one more transformation to simplify the calculations, let  
 
 
 
After substituting into (10), we have  
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The transformation in (11) is well-defined because for α > 1, there is always a unique positive value of β 
that satisfies (11).  
 
The homogeneous solution is thus:  
 
 
 
And the full solution to (2) is  
 
 
 
 
 
 
Applying the boundary conditions (B.C.): 
 
We know that the entrance flow rate at n = 1 and the exit flow rate at n = N are both equal to the input 
flow rate Q. We therefore have two equations for the two unknown constant c1 and c2 in (14), giving us 
the final solution:  
 
 
 
 
 
The cell chamber flow rate at the nth unit circuit, qc(n), is given by Q – qn: 
 
 
 
 
 
At last, we let  
 
 
 
 
 
 
 
which simplifies (16) to 
 
 
 
 
 
which is the solution described in the main text. 
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The term Rf (Rf  + Rc)-1 describes the reduction of flow in the cell chamber base on the ratio of flow 
chamber resistance to the total. The term 1 – ω(n) describes the flow reduction enabled by the 
membrane. 
 
 
 
2. Finding the flow rate maxima and minima in the cell compartment  
 
The flow rate maxima and minima in the cell chamber occur when ω is at its minimum and maximum.  
Although the variable n takes on only integer values, the function ω(n) is defined for all n, so we may 
use basic calculus techniques to find the minima and maxima.  We follow the usual procedure of 
checking the endpoint values and then looking for stationary points in the interior.  It is easy to see from 
the final form in equation (17) that ω is 1 for both n = 1 and n = N (a value required by the boundary 
conditions we imposed earlier).  To check the interior points we find the derivative of ω(n) with respect 
to n.  The result is 
 

 
                               

 
 
From equation (19) and the monotonicity of the sinh, it is easy to show that the derivative is negative for
n < 1

2 (N +1)  and positive for n > 1
2 (N +1) .  Hence there is a zero derivative and a minimum at 

nmin = 1
2 (N +1). If N is odd, this gives the number of the cell for which the minimum occurs.  If N is 

even, the minimum occurs on either side of the midpoint.  For N large, we don’t need to worry about the 
distinction.  The value of the minimum is obtained by substituting nmin into the formula (17) for ω .  The 
result, after we simplify using the double angle formula for the cosh, is  
 
 ωmin =ω(nmin ) = sech[(β / 2)(N −1)]        (20)         
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3. An asymptotic approximation for the maximum cell chamber flow rate 
 
For our situation, we are interested in very small values of β and very large values of Ν such that β⋅Ν is 
of order one.  We temporarily let z = β⋅Ν and we seek an expansion of ωmin in powers of β at fixed 
values of z.  Using (20) we write ωmin as  
 

 ωmin = sech[ 12 (z − β )] .                (21) 
 
 
We now use a Taylor series in	  β about β	  = 0.  The result is 
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For β very small we keep only the first term, which gives  
 

ωmin = sech( 12 z) .                         (23) 
 

 
For moderate values of z, we can carry the approximation further by expanding the hyperbolic secant.  
The first three terms are   
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For z = 0.5, for example, the third term is less than 0.1% of the first term.  For z-values in that range, we 
may approximate	  ωmin and the maximum qc as 
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which is the approximation given in the main text.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



ESI Fig. 1 

 
 
ESI Fig. 1 Comparison of flow reduction predicted by the analytical solutions and COMSOL 
simulations. The comparisons were made while varying different membrane parameters: (a) membrane 
length, (b) membrane thickness, (c) average pore radius in the membrane, and (d) membrane porosity. 
The cell chamber flow rate maxima qc,max were normalized by the input flow rate Q in the flow 
compartment to indicate flow reduction. The analytical solutions and COMSOL simulations both 
showed close agreement and predicted that flow reduction in the cell chamber is quadratically-
dependent on membrane length (a) and pore radius (c), inversely proportional to membrane thickness 
(b), and linearly proportional to porosity (d). 

  


