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Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical factors in many biological pro-

cesses, but little is known about how their regulatory functions evolved. One of the best-

studied lncRNAs is TER, the essential RNA template for telomerase reverse transcriptase.

We previously showed that Arabidopsis thaliana harbors three TER isoforms: TER1, TER2

and TER2S. TER1 serves as a canonical telomere template, while TER2 is a novel negative

regulator of telomerase activity, induced in response to double-strand breaks (DSBs).

TER2 contains a 529 nt intervening sequence that is removed along with 36 nt at the RNA

3’ terminus to generate TER2S, an RNA of unknown function. Here we investigate how A.
thaliana TER2 acquired its regulatory function. Using data from the 1,001 Arabidopsis

genomes project, we report that the intervening sequence within TER2 is derived from a

transposable element termed DSB responsive element (DRE). DRE is found in the TER2

loci of most but not all A. thaliana accessions. By analyzing accessions with (TER2) and

without DRE (TER2Δ) we demonstrate that this element is responsible for many of the

unique properties of TER2, including its enhanced binding to TERT and telomerase inhibi-

tory function. We show that DRE destabilizes TER2, and further that TER2 induction by

DNA damage reflects increased RNA stability and not increased transcription. DRE-medi-

ated changes in TER2 stability thus provide a rapid and sensitive switch to fine-tune telome-

rase enzyme activity. Altogether, our data shows that invasion of the TER2 locus by a small

transposon converted this lncRNA into a DNA damage sensor that modulates telomerase

enzyme activity in response to genome assault.
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Author Summary

Telomerase is a highly regulated enzyme whose activity is essential for long-term cellular
proliferation. In the presence of DNA double-strand breaks (DSBs), telomerase activity
must be curtailed to promote faithful DNA repair. We previously showed that the flower-
ing plant Arabidopsis thaliana rapidly down-regulates telomerase in response to DSBs,
and further that this mode of regulation is dependent on TER2, a non-canonical telome-
rase RNA subunit. Here we demonstrate that the unique regulatory properties of TER2 are
conveyed by a transposable element (TE) embedded in the TER2 gene. A comparison of
A. thaliana accessions with and without the TE revealed that the element increases the
binding affinity of TER2 for the telomerase catalytic subunit TERT relative to the canoni-
cal telomerase RNA subunit. The TE also increases TER2 turnover. In response to DSBs,
TER2 is induced and accumulates in TERT containing complexes in vivo. Thus, invasion
of a TE endows TER2 with a DNA damage sensor to rapidly and reversibly modulate
enzyme activity in response to genotoxic stress. These findings provide an example of how
exaptation of a TE altered the function of a long noncoding RNA. In this case, a duplicated
gene (TER2) was used as the platform, and the TE as the tool to engineer a novel mode of
telomerase regulation.

Introduction
The discovery of long noncoding RNA (lncRNA) has challenged the prevailing paradigm of
protein-mediated regulation of gene expression and cell behavior. lncRNAs play essential roles
in epigenetic regulation, stem cell biology and signal transduction and are emerging as key tar-
gets in human disease [1–3]. Unlike small regulatory RNAs (e.g. miRNAs, siRNAs), lncRNAs
are not subjected to purifying selection, and as a consequence they are very poorly conserved,
tending to emerge quickly and evolve swiftly [4]. Although transcriptome analyses have uncov-
ered a vast array of lncRNAs, just a tiny fraction of these have an assigned biological function,
and fewer still an ascribed molecular mechanism. Little is known about the evolutionary path-
ways via which lncRNAs gain new functions.

The telomerase RNA subunit TER is a lncRNA and an integral component of the telomerase
enzyme. TER functions as template to direct the synthesis of telomeric DNA by the telomerase
reverse transcriptase TERT. Telomerase continually synthesizes telomeric DNA in stem and
germline cells to avert cellular senescence. Conversely, in cells with limited proliferation pro-
grams telomerase activity is repressed, an outcome in vertebrates that may have evolved to
avert tumorigenesis [5,6]. Mechanisms of telomerase regulation are varied and complex, and
include modulation of telomerase localization, recruitment to the telomere and enzymology at
the chromosome terminus [7]. Within the telomerase ribonucleoprotein itself, the major target
of enzyme regulation is TERT. However, TER is also implicated in telomerase control. In addi-
tion, different isoforms of core telomerase components influence telomerase behavior [8,9].

In conjunction with modulating telomerase action at natural chromosome ends, the enzyme
must also be restrained from acting at sites of DNA double-strand breaks (DSBs). Barbara
McClintock coined the term “chromosome healing” to describe the acquisition of telomeres on
broken chromosomes in maize [10]. Although de novo telomere formation (DNTF) protects
the terminus from subsequent repair activities, it leads to loss of the centromere distal chromo-
some fragment. Thus, DSBs must be sheltered from telomerase action to prevent gross chro-
mosomal rearrangements and loss of heterozygosity. Multiple pathways evolved to prevent the
establishment of telomeres at DSBs in yeast [11]. For example, phosphorylation of the Cdc13
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telomere binding protein decreases its affinity for DSBs [12]. In addition, the Pif1 helicase is
activated by DSBs, resulting in removal of telomerase from DNA [13]. Less is known about
how DNTF is repressed in multicellular eukaryotes. In mammals, DSBs trigger TERT phos-
phorylation leading to decreased telomerase activity [14]. In addition, ionizing radiation causes
transient sequestration of TERT in the nucleolus [15]. In Arabidopsis thaliana, a non-canonical
TER represses telomerase activity in response to DSBs [16].

TER ranges in size from 150 nt in Tetrahymena to>2 kb in certain fungi, and while the
nucleotide sequence is highly variable across species, core secondary and tertiary structures are
conserved and essential for TER interaction with TERT and for telomerase catalysis [17–21].
TER is transcriptionally regulated in mammals [22], but the transcript is highly stable with a
half-life of several days [23]. Recent data show that that 3’ terminus of Schizosaccharomyces
pombe TER is generated by an additional RNA processing step termed slicing, which involves
only the first step in mRNA splicing [24,25]. Conventional introns have not been associated
with TER.

Arabidopsis thaliana is unusual in that it harbors two TER genes, TER1 (784 nt) and TER2
(748 nt) [26]. Within TER1 and TER2, there are two regions of high similarity spanning ~219
nt termed conserved region 1 (CR1) and conserved region 2 (CR2). In TER2, CR1 and CR2 are
separated by a 529 nt intervening sequence. An additional unique 36 nts lie at the 3’ end of the
TER2 CR2 termed 3’R. The intervening sequence and 3’R are removed in vivo to create a trun-
cated isoform called TER2S [16]. Sequences flanking the intervening sequence do not adhere to
consensus splice donor and acceptor sites, suggesting that removal of this element may not
proceed via conventional mRNA splicing.

Although the function of TER2S is unclear, TER1 and TER2 play opposing roles in the con-
trol of telomerase enzyme activity. TER1 serves as the canonical telomere repeat template nec-
essary for telomere length maintenance in vivo [26]. Plants deficient in TER1 exhibit
progressive telomere shortening, and mutations in the TER1 template alter the telomere repeat
sequence in vivo. In contrast, TER2 does not direct telomere repeat incorporation in vivo.
Instead, this RNA negatively regulates TER1-mediated enzyme activity. Telomerase activity is
elevated in plants lacking TER2, while in plants over-expressing TER2, telomerase activity is
decreased and telomeres shorten [16].

TER2 is regulated by DNA damage. Under standard growth conditions, the steady state lev-
els of TER1 and TER2S are similar, and 10-20-fold higher than TER2 [16]. However, in
response to DSBs, TER2 is rapidly induced and becomes the predominant TER isoform. The
increase in TER2 is coincident with a reduction in telomerase activity. Indeed telomerase inhi-
bition is dependent on TER2: ter2mutants do not down-regulate telomerase in response to
DNA damage [16]. Telomerase repression is not elicited by replication stress or telomere dys-
function, indicating that TER2-mediated telomerase regulation is specific for DSBs and thus
may play a role in repressing DNTF. While the mechanism of TER2-mediated telomerase inhi-
bition is not known, TERT has a higher affinity for TER2 than for TER1 or TER2S, and prefer-
entially assembles into TER2 containing RNP complexes in vivo. Therefore, TER2 may serve as
a molecular sponge to sequester TERT in a non-functional RNP in response to DSBs [16].

TER is evolving rapidly in Arabidopsis and its relatives. Analysis of sixteen closely related
species within the Brassicaceae lineage revealed that these species contain a single locus that
bears similarity to the 3’ end of TER1 and the 5’ end of TER2 from A. thaliana [27]. Remark-
ably, several of these TER-like loci lack a template domain altogether, indicating that a func-
tional TER must be encoded elsewhere in the genome. The intervening sequence associated
with A. thaliana TER2 is missing from the TER-like genes of other Brassicaceae. Thus, the
appearance of TER2 and its intervening sequence represent recent events likely generated dur-
ing a massive genome rearrangement that occurred on the branch leading to A. thaliana [28].
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In this study we employ a comparative genomics approach to investigate the regulatory
function of TER2. Using data acquired from the 1,001 Arabidopsis genomes project, we show
that the intervening sequence in TER2 has the characteristics of a solo long terminal repeat
(LTR) from a Copia-like retrotransposon. The element is associated with most, but not all of
the TER2 loci. We report that the unique regulatory functions of TER2, including its respon-
siveness to DSBs, are derived from this transposable element. Consequently, invasion of the
TER2 locus by a transposon transformed this lncRNA into a highly sensitive DNA damage sen-
sor that modulates telomerase enzyme activity.

Results

The intervening sequence within TER2 is retained in most but not all A.
thaliana accessions
Since a clear TER2 ortholog could not be discerned in other members of the Brassicaceae, we
analyzed genomic sequence data for different A. thaliana accessions, natural strains of A. thali-
ana collected from the wild. A. thaliana diverged from its closest relative 10 million years ago
[29]. It is estimated that Col-0 and Ler-0, the two best studied A. thaliana accessions, are
approximately 200,000 years divergent from one another [30]. We retrieved TER1 and TER2
loci from 853 accessions compiled by the 1001 Arabidopsis genomes project (http://signal.salk.
edu/atg1001) and analyzed them for variation against Col-0, the A. thaliana reference genome
where a regulatory function for TER2 was first described [16]. The TER1 locus is highly con-
served, including the 5’ and 3’ regions flanking CR1 and CR2 (Fig 1A), which lie upstream of
the RAD52 coding region or within a predicted intron [27,31]. TER1 exhibits 92% identity
across the sequenced accessions, but a few polymorphisms are scattered across the RNA (Fig
1A and 1B, S1A Fig). The most notable variations lie within the TER1 template domain (S2A
Fig). A transition of A to C occurred three times while a T-A transversion appeared in 44/853
accessions. In neither instance are the two variations found within the same TER1 gene.
Because the A. thaliana TER template is 11 nt in length and encodes one and a half copies of
the telomere repeat, these TER1 RNAs retain the potential to direct synthesis of TTTAGGG
repeats. More intriguing is the C to T mutation in the middle of the template in Bela-1 (S2A
Fig). Whether this variation reflects a sequencing error or indicates that an alternative TER1
locus is present in this accession is unknown.

Like TER1 much of TER2 is strongly conserved. CR1 retains high percent identity among
the accessions (92%) (Fig 1C). CR2 and the 3’R are also very well conserved with complete con-
servation in>60% of the accessions analyzed (S3 Fig). Conservation of 3’R was unanticipated
since this segment of TER2 is eliminated in the production of TER2S (Fig 1A). Nevertheless,
the high degree of conservation in CR1, CR2 and 3’R argues that these regions are important
for TER2 function.

Although the intervening sequence within TER2 is completely conserved in more than
60% of the accessions, striking sequence divergence was observed in many of the other acces-
sions. Two islands of conservation with� 50% identity were identified within the intervening
sequence, one corresponding to 63 nt and a second of 123 nt (S2B Fig). Hyper-variable
sequences flank these regions within the 65 accessions bearing an incomplete intervening
sequence. To verify the TER2 sequencing data, we performed PCR genotyping on a sampling
of accessions predicted to harbor an intact intervening sequence (Col-0, Ws-2), a partial
intervening sequence (Aa-0, Ang-0, Co-1 and Ei-2) or no intervening sequence (Ler-0). PCR
primers were positioned within CR1 and 3’R (S4A Fig). A 784 bp PCR product is expected for
accessions bearing an intact intervening sequence, a 255 nt product for accessions completely
lacking the intervening sequence, and an intermediate size product for accessions with a
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partial intervening sequence. Products of the expected sizes were obtained for loci predicted
to contain an intact or no intervening sequence, but for all TER2 loci predicted to contain a
partial intervening sequence, the genotyping results indicated that this element was
completely absent (S4B Fig). Genotyping repeated with siblings from accessions predicted to
contain a partial intervening sequence gave the same result (S4C Fig). Genotyping was per-
formed on several additional accessions reported to contain a partial intervening sequence
(S1 Table). In all cases, the intervening sequence was absent. Finally, PCR products were
sequenced from TER1 and TER2 reactions, with TER1 polymorphisms serving as a control to
ensure that seed stocks were as expected (S4B and S4D Fig). The sequencing results con-
firmed the PCR genotyping data. For all partial intervening sequence accessions tested, there
was complete loss of this element. The sequencing data also revealed a substantial deletion
(~20 bp) within CR2 in two accessions (S4D Fig).

The simplest explanation for these genotyping results is that the TER2 locus was mis-
annotated in some of the A. thaliana accessions. However, we cannot exclude the possibility
that the intervening sequence within TER2 is extremely labile and between the time the

Fig 1. Analysis of TER1 and TER2 loci across A. thaliana accessions. (A) Schematic diagram of TER1, TER2, and TER2S. TER1 and TER2 share a core
region of ~219 nt comprised of conserved regions 1 and 2 (CR1 and CR2). The telomere template is denoted by a vertical black bar in CR1. TER2S is formed
by splicing to remove the DSB responsive element (DRE) and elimination of the 3’ terminus (3’ R). (B) Analysis of TER1 among 853 A. thaliana accessions.
Identity shown in green denotes regions 100% nucleotide similarity whereas mustard yellow indicates variation. There is one colored line for each nucleotide.
The height of the bar indicates the degree of variation. Percent identity for each region is denoted in % above each RNA region or for the entire RNA to the
right. The telomere template region is indicated by the horizontal black bar. (C) Analysis of TER2 in 853 accessions. Color scheme is the same as in (B).
Asterisk indicates that for percent identity to be calculated in a given region, sequence data must be present in all accessions. Sequence was missing for
DRE and CR2 for some accessions, and hence these regions are listed as having 0% ID. However, >60% of the accessions were 100% conserved in DRE,
and 98% of accessions were 99% conserved in CR2. See S2 Fig for complete alignment of TER2 in 853 accessions.

doi:10.1371/journal.pgen.1005281.g001
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genome sequencing was performed and our acquisition of seeds, partially deleted elements
were completely eliminated.

The intervening sequence within TER2 is derived from a Copia-like solo
LTR
For reasons discussed below, we named the intervening sequence within TER2 DSB responsive
element (DRE). BLAST analyses against the A. thaliana genome using DRE as a query returned
two hits, one on the left arm of chromosome 3 (adjacent to At3G30120) bearing 94.6% identity
to DRETER2 termed DRE3L, and another on the right arm of chromosome 3 (adjacent to
At3G50120) showing 63.4% identity called DRE3R (Fig 2A). Both DRE3L and DRE3R are found
within intergenic regions and display a number of single-nucleotide polymorphisms among A.
thaliana accessions (S5A Fig).

BLAST was performed to determine if the DRE is present in other species within the Brassi-
caceae family. Arabidopsis lyrata, A. thaliana’s closest relative, contains 32 copies of DRE dis-
persed throughout the genome (Fig 2B). A significant fraction of these elements exhibit a high
degree of similarity within the 5’ 200nt of DRETER2, and are associated with open reading
frames encoding typical retrotransposon proteins (S6 Fig). Three DREs were also detected in
Capsella rubella, four in Brassica rapa, and ten in Eutrema salsugineum (Fig 2B). The presence
of multiple copies of DRE in A. thaliana and its relatives suggests that it is a transposable ele-
ment (TE). Consistent with this conclusion, sequences at the 5’ and 3’ borders of DRETER2 con-
tain a 5 nt tandem inverted repeat of TGTTG/ACAAC (Fig 2C, brown bar). The tandem
inverted repeat at the 5’ and 3’ boundaries of DRETER2 and DRE3L are highly conserved across
the A. thaliana accessions and are present at the boundaries of DREs detected in other species
(S6 Fig). In addition, a target site duplication of TCGTC is present at the 3’ end of CR1 and the
5’ end of CR2 of TER2 (Fig 2C, green bar). Tandem site duplications flank all three DREs in A.
thaliana, ranging in length from 5 nt for DRETER2 and DRE3L to 18nt for DRE3R (Fig 2C, green
bar). The tandem site duplication sequence varies, consistent with the hypothesis that these
insertions represent unique TE insertion events rather than gene duplications. The small size
of DRE and its association with tandem inverted repeats and target site duplications suggest
that DRE is derived from a solo LTR of the abundant Copia family. Based on synteny mapping
with Arabidopsis lyrata we confirmed that all three Copia-like solo LTRs in A. thaliana
(TER2DRE, DRE3L, and DRE3R) are unique insertion events and are of approximately the same
age (S7 and S8 Figs). Since the large majority of A. thaliana accessions apparently harbor an
intact DRE within the TER2 locus, it is likely that the element was inserted soon after the TER
duplication and was subsequently lost in a small subset of accessions.

Differential expression of TER2 and TER2Δ
The presence of two distinct TER2 alleles in A. thaliana provided us with an opportunity to
study the functional impact of DRE. We previously showed that two RNA transcripts are
derived from the Col-0 TER2 locus: the primary TER2 transcript and a processed isoform,
TER2S, in which DRETER2 is removed along with 3’R [16,26]. In the Ler-0 accession, the TER2
locus lacks DRE, and thus the primary transcript is predicted to be TER2Δ. To assay for
TER2Δ, RT-PCR was performed on RNA from Ler-0 seedlings using primers directed at CR1
and 3’R, which is unique to TER2 (Fig 3A and 3B). A product of the expected size was gener-
ated, indicating that a Ler-0 transcript containing CR1, CR2 and 3’R is present. Sequence anal-
ysis confirmed this conclusion. Notably, the CR1/CR2 junction in Ler-0 TER2Δ is distinct
from Col-0 TER2S [26] as it contains only a single 5’ TCGTC 3’motif instead of the two found
in Col-0 (Fig 3B bottom, underlined sequence). Although a faint signal for TER2 was observed
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Fig 2. The TER2 intervening sequence has the properties of a Copia-like solo LTR. (A) Schematic of the
five chromosomes in A. thaliana Col-0 illustrating the locations of TER1, TER2 and DRE on the left arm of
chromosome 3 (DRE3L) and the right arm of chromosome 3 (DRE3R) (schematic adapted from TAIR). (B)
Phylogenetic tree of select Brassicaceae members (including the Brassicales memberCarica papaya). The
number of solo and full-length DREs identified by BLAST are shown to the right. Approximate time of
divergence was adapted from [29]. Representative A. thaliana accessions re indicated by the triangle. (C)
Sequences at the 5’ and 3’ boundary elements of DRE in TER2 (top), DRE3L (middle), and DRE3R (bottom)
are shown. Nucleotides within the target site duplication are denoted by the green bar and tandem inverted
repeats of DRE are represented by the brown bar.

doi:10.1371/journal.pgen.1005281.g002
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Fig 3. Expression of TER2Δ and association with TERT. (A) RT-PCR results for TER2Δ in Ler-0 and
TER2 in Col-0. Primer positions are indicated by arrows in panel B. (B) Schematic showing sequencing
results for TER2 and TER2Δ PCR products from Col-0 and Ler-0 obtained from (A). The target site
duplication is indicated by the green underlined nucleotides. Tandem inverted repeats are indicated by brown
nucleotides. (C) qPCR results for TER1, TER2 and TER2Δ in Col-0 and Ler-0. For comparison, the Col-0
TER1 level was set to 1.

doi:10.1371/journal.pgen.1005281.g003
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in Col-0 using our PCR conditions, TER2Δ was not (Fig 3A), suggesting that TER2Δ is either a
transient processing intermediate, or is not generated during the conversion of TER2 to TER2S.

Col-0 TER2 is a poorly expressed transcript (Fig 3A) and is substantially less abundant than
TER1 or TER2S [16]. To assess the relative abundance of Ler-0 TER2Δ, we performed qPCR
(Fig 3C). The steady state level of TER1 was similar in Ler-0 and Col-0. However, Ler-0 TER2Δ
was approximately 6–8 fold more abundant than Ler-0 TER1. By comparison, Col-0 TER2 was
15–20 fold less abundant than Col-0 TER1 (Fig 3C). Thus, Col-0 TER2 and Ler-0 TER2Δ are
differentially regulated in vivo.

In Col-0, TER2 but not TER1 or TER2S is rapidly induced by DSBs [16]. Therefore, we
asked if regulation is confined to TER2 by examining TER2 and TER2Δ in other A. thaliana
accessions (Fig 4A). Seven day-old Ler-0 and Col-0 seedlings were treated with 20μM zeocin
and qPCR was performed. In control reactions, BRCA1 mRNA was induced in both accessions
after 2 hours and peaked at 4 hours, confirming that a DNA damage response was elicited (Fig
4B). As expected, the level of TER1 was unchanged in Ler-0 and Col-0 following zeocin treat-
ment (S9 Fig). In addition, Col-0 TER2 increased 2.5 fold after 2 hours in zeocin relative to
untreated seedlings (Fig 4C). In marked contrast, there was no significant change in TER2Δ
over the 4 hour zeocin treatment (Fig 4C).

To test if DSB-mediated regulation of TER2 is a peculiarity of the Col-0 accession, we exam-
ined TER2/TER2Δ transcripts in two additional accessions: Ws-2, which contains DRETER2 and
Co-1, which lacks it (Fig 4D). Consistent with the findings in Ler-0 and Col-0, there was no
change in Co-1 TER2Δ, while Ws-2 TER2 was induced (Fig 4D). We conclude that the effect of
DSBs on TER2 varies across A. thaliana accessions, and correlates with the presence of DRETER2.

Fig 4. DSB-mediated RNA induction and telomerase inhibition are associated with DRE. (A) Table indicating the TER2 transcript status for four A.
thaliana accessions. (B) and (C) show qPCR results for Col-0 and Ler-0 seedlings treated with zeocin for the time points indicated. Data for the BRCA1
control (B) and TER2 (Col-0) or TER2Δ (Ler-0) transcripts (C) are shown. (D) qPCR results for accessions with TER2 (Ws-2) and TER2Δ (Co-1) submitted to
the zeocin regimen for 2 h. (E) qPCR results following TERT immunoprecipitation in Col-0 and Ler-0 seedlings treated with or without zeocin (time point). The
TER2:TER1 ratio in Col-0 and the TER2Δ:TER1 ratio in Ler-0 are shown. Values were normalized to Col-0 TER2:TER1 ratio in the absence of zeocin (set to
1). (F) qTRAP results for Col-0 and Ler-0 seedlings with or without zeocin treatment. (G) qTRAP results for the samples in (D) and the 2 h time point from (C).
Telomerase activity was normalized to the corresponding untreated controls and set to 1. Red dashed bar indicates no change between treated and
untreated samples. The changes in telomerase activity in Col-0 andWs-2 were statistically significant (p-value< 0.05). Significance was calculated relative to
untreated samples using a Student’s t-test. For all experiments, n > 3.

doi:10.1371/journal.pgen.1005281.g004
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We next asked if transcripts were derived from the other two DRE-like sequences in Col-0,
and if so whether they responded to DSBs. Semi-quantitative RT-PCR was performed with
primers specific for DRE3L and DRE3R on seedlings in the presence or absence of zeocin (S5B
Fig). DRE3L transcripts could not be detected under either condition. However, transcripts
from DRE3R were observed in the presence of zeocin (S5B Fig), indicating that a DNA damage-
sensing element resides within DRETER2 as well as DRE3R

TERT preferentially associates with TER2 over TER2Δ in vivo
We previously showed that Col-0 TERT displays a hierarchy of binding favoring TER2> TER1
>> TER2S both in vitro and in vivo [16]. The molecular basis for the enhanced affinity of TERT
for TER2 is known. Since DRETER2 and the 3’R are unique to TER2, it seems likely that one of
these elements influences TERT binding. To investigate this possibility, we examined the relative
affinity of TERT for TER2Δ. Col-0 and Ler-0 seedlings were subjected to immunoprecipitation
with TERT antibody followed by qPCR (Fig 4E). We set the ratio of TER2 to TER1 in the Col-0
TERT IP to 1, and then assessed the change in TERT-bound TER2 following zeocin treatment.
The relative abundance of TER2 containing TERT complexes increased ~ 7-fold in response to
DSBs (Fig 4E). Since the input level of TER2 increased by only 2.5-fold under these conditions
(Fig 4C), the data raise the interesting possibility that other DNA damage-induced factors pro-
mote TER2 assembly with TERT. In marked contrast to TER2, we found that TER2Δ is not a
preferred binding partner for TERT in vivo, and further zeocin treatment did not change the rel-
ative abundance of TER2Δ containing TERT complexes (Fig 4E). These results argue that the
increased affinity of TERT for TER2 in Col-0 reflects the presence of DRETER2 and not 3’R.

Accessions lacking DRETER2 do not exhibit DSB-induced telomerase
inhibition
Since Col-0 plants lacking TER2 do not down-regulate telomerase activity in response to DSBs
[16], we asked if DSB-induced telomerase regulation is dependent on DRETER2 by comparing
the level of telomerase activity in Ler-0 and Col-0 in the presence of zeocin. As expected appli-
cation of quantitative telomere repeat amplification protocol (qTRAP) to Col-0 seedlings
treated with zeocin for 2 or 3 hours showed reduced telomerase activity (70% decrease) com-
pared to untreated seedlings (Fig 4F and S10 Fig). Although there was an alleviation of the
inhibitory effect after 3–4 hours of treatment, enzyme activity was maintained at 50% of
untreated level. In contrast, under the same treatment regime, telomerase activity was unal-
tered in Ler-0 (Fig 4F). Similar results were obtained with Ws-2 (plus DRETER2) and Co-1
(minus DRETER2) accessions, respectively (Fig 4G). These findings imply that DRE is necessary
for DSB-induced telomerase repression.

To further assess the role of DRE in telomerase regulation, we generated two transgenic A.
thaliana lines. First we asked if the presence of TER2 was sufficient to alter the level of telomerase
activity in Ler-0 by expressing TER2 from its native promoter in this accession. In one of the
transformants, the steady state level of transgenic TER2 was higher (2.5 fold) than the basal level
of endogenous TER2 in wild type Col-0 (Fig 5A). qTRAP revealed a small, but statistically signif-
icant decrease in telomerase activity in the transformant (Fig 5B), indicating that Ler-0 telome-
rase can be down-regulated by Col-0 TER2. Next we asked if over-expression of TER2Δ altered
telomerase activity in Col-0. TER2Δ expression was driven by the powerful CaMV promoter in
wild type Col-0. As expected, there were no change in TER1 or TER2, but the steady state level of
transgenic TER2Δ was ~8-fold higher than endogenous TER2Δ in wild type Ler-0. However,
qTRAP showed no change in telomerase activity relative to untransformed Col-0 controls (Fig
5A and 5B). We conclude that the regulation of telomerase by TER2 is dependent on DRETER2.
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TER2 is an unstable RNA stabilized in response to DSBs
The rapid induction of Col-0 TER2 in response to DSBs could occur through increased TER2
transcription or increased RNA stability. Because the sequences upstream of all TER2 genes are
highly conserved, we considered the former possibility less likely. Indeed, when TER2

Fig 5. TER2 not TER2Δ represses telomerase activity. (A) qPCR results are shown for transgenic
seedlings expressing TER2 in Ler-0 or TER2Δ in Col-0. TER1 and TER2 levels were normalized to the
values in wild type Col-0 (set to 1). TER2Δwas normalized to the value in wild type Ler-0 (set to 1). GAPDH
served as a reference gene. (B) qTRAP results are shown for the seedlings analyzed in (A). Relative
telomerase activity was normalized to wild type Col-0. The change in telomerase activity in Ler-0
transformants expressing TER2 relative to wild type Ler-0 is statistically significant (p-value<0.005).
Significance was calculated relative to untreated samples using a Student’s t-test. For all experiments, n > 3.

doi:10.1371/journal.pgen.1005281.g005
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transcription was monitored in seedlings expressing a fused GUS reporter to a TER2 or TER2Δ
promoter in Col-0 and Ler-0, respectively, approximately the same level of GUS staining was
observed in the presence or absence of zeocin (S11 Fig). Hence, TER2 induction in response to
DNA damage is not caused by increased transcription.

We assessed TER2 stability using six day-old seedlings treated with the transcription elonga-
tion inhibitor cordycepin. TER1 and TER2 RNA levels assessed by qPCR showed that Col-0
and Ler-0 TER1 have similar half-lives, t1/2 = 75 and 84 min, respectively (Fig 6A). The stability
of TER2Δ was even greater with t1/2 = 244 min (Fig 6B). TER2, on the other hand, had a much
shorter half-life than either TER2Δ or TER1: TER2 t1/2 = 13 min (Fig 6B). Thus, TER2 is an
intrinsically unstable transcript.

To test if DSBs reduce TER2 turnover, Col-0 seedlings were treated with cordycepin to
pause transcription and then zeocin was added after 90 min to produce DSBs. Although there
was a slight change in the abundance of TER1 and BRCA1 mRNA in the presence of zeocin,
this change was not statistically significant (Fig 6C and 6D). In contrast, TER2 abundance
declined sharply over the 3.5 hour time course, but immediately after the introduction of zeocin,
TER2 was stabilized (Fig 6E). These data implicate DRETER2 as the causal factor in destabilizing
TER2 and in turn negatively regulating telomerase activity during bouts of DNA damage.

Discussion
When the insertion of a TE within or adjacent to a gene leads to a change in gene function the
process is termed “exaptation” [32]. Exaptation can alter gene regulation through myriad dif-
ferent mechanisms. A prominent example in plants is the insertion of multiple TEs adjacent to
teosinte branched1 (tb1), which gave rise to domesticated maize [33]. One of the TEs disrupts a

Fig 6. TER2 is a labile RNA transcript stabilized by DNA damage. qPCR results are shown for TER1 and TER2/TER2Δ from Col-0 and Ler-0 in the
presence of cordycepin. Col-0 and Ler-0 seedlings were treated with cordycepin (100μg/μl) for the times indicated followed by qPCR to monitor TER1 (A) and
TER2/ TER2Δ (B). The values obtained for untreated RNA samples were set to 0 and the fold decrease is shown. eIF-4a was used as reference gene for
normalization. (C-E) qPCR results from a time course experiment of Col-0 seedlings treated with cordycepin followed by zeocin. Seedlings were incubated
with cordycepin for 1.5 h to shut down transcription, and zeocin was added (red arrows). The incubation continued for a total of 3.5 h. Results for BRCA1 (C),
TER1 (D), TER2 (E) are shown.

doi:10.1371/journal.pgen.1005281.g006
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regulatory region of tb1, leading to increased expression and enhanced apical dominance. In
vertebrates, exaptation of TEs is more prevalent at lncRNA loci than in protein-coding genes
[34]. Approximately 41% of vertebrate lncRNA sequence is derived from TEs [35,36], leading
Johnson and Guigo to propose that TEs can behave as pre-formed functional RNA domains,
and further that exaptation of TEs is a major driving force in lncRNA evolution [36]. A recent
systematic survey in vertebrates catalogued multiple instances of TEs altering lncRNA promot-
ers, splice sites, and polyadenylation sites [37]. LncRNAs can also acquire novel interaction
partners as a direct result of TE exaptation [32]. For instance, TEs within XIST facilitate inter-
action with a host of protein complexes including PRC2 and splicing factor ASF2 [38].

Here we show that invasion of a small TE (DRE) into the A. thaliana TER2 locus pro-
foundly altered the function of this lncRNA (Fig 7). This exaptation event is not fixed, as the

Fig 7. Model for exaptation of a TE into TER2 and the emergence of a telomerase regulatory lncRNA.Duplication of the single copy ancestral TER
gene was followed soon thereafter by exaptation of DRE into the A. thaliana TER2 locus. The majority of A. thaliana accessions retain DRE (e.g. Col-0), but a
small subset lost it (e.g. Ler-0). TER2Δ is produced by accessions lacking DRE. DRE acts as a post-transcriptional sensor that modulates TER2 abundance
in response to DNA damage. Under normal physiological conditions, TER2 is an unstable RNA. However, in the presence of DSBs, TER2 is rapidly induced.
Whether this is due to direct RNA stabilization or inhibition of TER2 processing (to yield TER2s) is unknown. TER2 has a higher affinity for TERT than TER1
or TER2Δ and following induction by DNA damage accumulates in TERT containing complexes in vivo. TER2-mediated telomerase inhibition may reflect
competitive inhibition of TER1 for TERT. The transient decrease in telomerase activity may promote DSB repair rather than de novo telomere formation,
thereby stabilizing the genome.

doi:10.1371/journal.pgen.1005281.g007
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TER2 genes in 9% of the 853 accessions examined lack DRE. Insertion and subsequent loss of
TEs is not uncommon in Arabidopsis. Some 80% of the annotated TEs in A. thaliana were lost
in one or more accessions [39]. In the 200,000 years since Col-0 and Ler-0 diverged, at least
200 TEs have been active, and the unique insertions/deletions between the two accessions have
biological implications [30]. One illustrative example of TE exaptation occurred at the Flower-
ing Locus C (FLC) in Ler-0. Insertion of a Mutator-like transposon in this accession decreased
FLC transcription, causing early flowering [40]. In this study we exploited the natural genetic
heterogeneity within the TER2 locus, and discovered that many of the unique functions
ascribed to this lncRNA derive from DRE.

First, DRE destabilizes TER2. A survey of ~800 lncRNAs in mouse revealed that only a
small fraction are unstable, defined as RNAs with a half-life of less than 60 minutes [41]. By
this criterion, TER2 is a highly unstable transcript with a half-life of only 13 minutes (Fig 7).
TER1 (t1/2 = 80 min) and TER2Δ (t1/2 = 240 min), on the other hand, are categorized as stable
RNAs. Unstable lncRNAs, like their unstable mRNA counterparts, are typically associated with
regulatory functions, while stable RNAs are thought to serve housekeeping roles [42]. With
Col-0 A. thaliana TER1 and TER2, this paradigm also holds.

A second key observation is that the instability of TER2 arising from DRE is reversed in
response to DNA damage (Fig 7). The abundance of TER2, but not TER1 or TER2Δ is elevated
in response to DSBs, and this change is largely, if not entirely, dependent on RNA stabilization
rather than new transcription. Exaptation of a TE is known to endow host genes with the
capacity to respond to environmental cues. For example, a cold-sensitive TE was inserted into
the promoter of Ruby, a transcription factor that regulates flesh color in Citrus sinensis (blood
orange). Cold activates the transposon, which in turn activates Ruby and downstream anthocy-
anin production [43]. In the case of TER2, DRE imparts DNA damage sensitivity, which
increases TER2 abundance. How TER2 is regulated in response to DSBs is unknown. One pos-
sibility is that DRE carries binding sites for one or more interaction partners responsive to
DNA damage, which then stabilize TER2. RNA binding proteins can play a significant role in
the DNA damage response by regulating specific target genes post-transcriptionally [44]. TER2
turnover might be controlled through the small RNA regulatory pathway. A 24 nt RNA is asso-
ciated with DRETER2 [45]. This finding is particularly intriguing given the recent discovery that
small RNAs modulate the response to DSBs in both vertebrates and Arabidopsis [46]. Finally,
it is possible that DNA damage blocks the RNA processing steps (e.g. splicing) that lead to pro-
duction of TER2S (Fig 7). Splicing machinery has emerged as a target of the DDR [47].

The third key observation from this work is that DRE increases the affinity of TER2 for
TERT (Fig 7), and correlates with the down-regulation of telomerase activity. DRE could mod-
ify TER2 structure in a manner that enhances its inherit affinity for TERT. Alternatively, DRE
may make independent contacts with TERT to increase TER2 affinity. Intriguingly, zeocin
treatment causes an even greater enrichment of TER2 containing TERT complexes than
expected based on the fold induction of TER2, suggesting that a TER2 associated factor that is
also responsive to DNA damage might drive the assembly of TER2-TERT RNPs.

Altogether, our data are consistent with a model in which exaptation of a TE into the A.
thaliana TER2 locus gave rise to a new mode of telomerase regulation. Specifically, we propose
that the DRE converted TER2 into a DNA damage sensor that controls telomerase enzyme
activity through sequestration of TERT. Furthermore, because this regulatory pathway is regu-
lated by changes in RNA stability, it is both rapidly responsive and reversible, allowing the A.
thaliana accessions that carry DRE to fine-tune telomerase activity when the plant is under
genome assault. These discoveries provide a fresh perspective on the role of TE exaptation in
shaping lncRNA function and evolution.
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Materials and Methods

Plant material, growth conditions and transformation
For experiments with seedlings, seeds from different accessions (Col-0, Ler-0, Ws-2, etc) were
sterilized in 50% bleach with 0.1% Triton X-100 and then stored in 4°C for 2–4 days. Liquid
Murashige and Skoog (MS) medium were used for germination and growing [16]. After trans-
ferring cold-treated seeds to MS, plants were grown at 22°C under long day light condition for
~7 days. The Col-0 TER2 gene including 3kb upstream sequence and 300bp downstream
sequence was cloned in the pMDC99 vector for transformation in the Ler-0 background.
Hygromycin MS plates were used for selection. For Col-0 transformation, TER2Δ together
with 300 bp downstream flanking region was cloned into the pBA002 vector with 35S pro-
moter. BASTAMS plates were used for the selection.

Sequence acquisition and analysis
Sequences corresponding to TER2 (Genbank accession number: HQ401285.1) were obtained
using the genome browser at http://signal.salk.edu/atg1001. The search query AT5G24660 was
used to pinpoint the region of interest, and all available tracks (accessions) were selected. Two
sequences were removed from our analysis. Hov 3–2 was removed because it was the only
accession with two deletions in the 5’ end, corresponding to 20 nt from the 5’ start of TER2,
and a 100 nt deletion starting at nucleotide #101. The template region was not disturbed in this
accession, possibly indicating a functional TER2 is generated. The Tottarp-2 accession was
removed because the sequence corresponding to our search region did not contain sequences
corresponding to TER2, most importantly, a template region.

Sequences were trimmed in MEGA5, and then analyzed using Geneious v6.0 (Biomatters).
Sequence conservation and alignments were performed using Geneious. DRE-like sequences
were obtained by BLAST searches of the A. thaliana (www.arabidopsis.org), A. lyrata, Capsella
rubella, Brassica rapa, and Thellungiella halophila genomes accessed via www.phytozome.net
v9.1 [48,49].

DNA damage treatment and assays
A. thaliana seedlings (5–7 day old) were transferred to fresh MS liquid medium with 20 μM
zeocin (Invitrogen) as described [16]. Seedlings were kept in the dark with gentle agitation for
1, 2 or 4 h. Multiple seedlings were combined and flash frozen in liquid nitrogen for RNA
extraction or protein extraction for TRAP. The combined sample was treated as a single biolog-
ical replicate.

Nucleic acid extraction, genotyping and PCR
DNA samples were prepared from the leaves of different accessions. Both TER1 and TER2 loci
were used for genotyping. PCR samples were resolved in 1% agrose and gel purified and
sequenced. RNA was extracted from seedlings using the Direct-zol RNAMiniPrep kit (Zymo
Research, Epigenetics) according to the manufacturer’s instructions. 1 μg total RNA was used
for preparing cDNA. For RT-PCR, cDNA was synthesized by SuperscriptIII Reverse Tran-
scriptase (Invitrogen) using random primers. For qRT-PCR, reverse transcription was per-
formed using the Superscript cDNA master mix (Quanta), according to the manufacturer’s
instructions. 1:5 diluted cDNA was used for qPCR. qPCR was performed on a Bio-Rad CFX-
1000 using the following primers: qTER2Δ F: 5’-AGAACGTTGACGGCTAAAGG-3’; qTER2Δ
R: 5’- TGTGGCATAAGGCAAACTGA-3’; TER2, BRCA1, TER1 and GAPDH primers are
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used as described before [16]. Data were analyzed using Bio-Rad’s CFX manager software.
ΔΔCT values were obtained by comparing against GAPDH levels.

qTRAP and immunoprecipitation (IP) qRT-PCR
qTRAP assays were performed as described [50]. Data were normalized against untreated Col-
0. For immunoprecipitation, TERT antibody [50] was conjugated with Dynabeads Protein A
(Invitrogen) then incubated with protein extracts in 4°C. RNA was recovered from the IP sam-
ple using phenol/chloroform followed by ethanol precipitation [16]. qPCR was performed on
TER1 and TER2/TER2Δ. The ΔCT value was used to determine the relative level of TER2 or
TER2Δ against TER1.

RNA stability assays
5–7 day old seedlings were treated with cordycepin (100 ng/μl as a working concentration) for
2 h before RNA extraction. RNA was analyzed by qPCR normalized to eIF-4a [51]. RNA abun-
dance was converted to the decreased level relative to untreated. RNA half-life was determined
by the absolute value of inverse of the slope of the equation plotted by untreated and treated
data. For the combined cordycepin/zeocin experiment, seedlings were pre-incubated with cor-
dycepin for 1.5 h followed by zeocin and the incubation was continued for 2 h. RNA extraction
and qPCR were used to determine RNA abundance. RNA half-life was determined by plotting
RNA abundance versus time as described in [51].

GUS staining
3 kb of sequence upstream of the TER2 5’ terminus was cloned in a GUS reporter vector
pMDC163. The construct was transformed into A. thaliana Col-0 and Ler-0 as described [52].
After selection in hygromycin, transformants seedlings were treated with zeocin for 2 h and
then subjected to GUS histochemical staining as described [53].

Supporting Information
S1 Table. Summary of the status of DRE at the TER2 locus in all accessions tested.
(PDF)

S1 Fig. Complete alignment of TER1 from the 853 Arabidopsis accessions. Complete
FASTA alignment of TER1 from 508 Arabidopsis accessions. All accessions with sequence data
for this locus were included in this alignment. Lack of sequence data for a particular regions is
indicated by a (?).
(FASTA)

S2 Fig. Polymorphisms within the TER1 template and the TER2 intervening sequences
across accessions. (A) Screenshot of a Geneious alignment of TER1 template regions amongst
853 A. thaliana accessions (grey box). Three types of polymorphisms are observed. The arrows
point to the nucleotide changes and their observed frequency. (B) Alignment of only the acces-
sions showing partial intron loss within TER2. The green bar indicates complete nucleotide
identity among accessions. Height of the yellow bars is indicative of nucleotide variation or loss
of nucleotide sequence at that position. Two conserved regions in the intron (DRE) are
highlighted by horizontal blue bars. The dashed line denotes two hypervariable regions.
(PDF)

S3 Fig. Complete alignment of TER2 from the 853 Arabidopsis accessions. Complete
FASTA alignment of TER2 from 510 Arabidopsis accessions. All accessions with sequence data
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for this locus were included in this alignment. Lack of sequence data for a particular regions is
indicated by a (?).
(FASTA)

S4 Fig. Genotyping analysis of A. thaliana TER2 loci. (A) Schematic map of the status of the
TER2 intervening sequence in different accessions. The positions of PCR primers are indicated
by black arrows. (B) Genotyping results for TER1 and TER2 loci in different accessions. TER2
PCR products with the full-length DRE are expected to be ~750 bp, and PCR products lacking
DRE are ~200 bp. Col-0 was used as a full-length DRE control, and Ler-0 used as complete
DRE loss control. Sequence analysis of all of the TER1 PCR products confirmed accession iden-
tity. (C) TER2 DRE genotyping results in four siblings of each accession. (D) Sequencing data
for TER2 genotyping PCR products in (B). The gaps in DRE and CR2 demonstrate sequence
loss for these accessions.
(PDF)

S5 Fig. Sequence conservation of DRE3L and DRE3R among different A. thaliana accessions
and their expression in response to DNA damage. (A) DRE3L and DRE3R conservation across
A. thaliana ecotypes. (B) RT-PCR results for DRE3L and DRE3R with or without zeocin treat-
ment. The expected sizes of the PCR products are highlighted by arrows.
(PDF)

S6 Fig. Full length DREs are found throughout Brassicaceae with species-specific family
expansions. Schematic representation of Brassicaceae DRE organization. Name and length (in
base pairs) are on the right. LTRs (black arrows in blue background) as well as intact Gag, Inte-
grase and RT (Reverse Transcriptase) ORFs are indicated. BrDRE-1 and BrDRE-3 encode for
all intact Pol components (Integrase and RT) except for RNase. ThDRE-2 does not contain a
second LTR, but shows high sequence similarity to ThDRE-1 throughout. AlDRE-2 does not
contain an ORF, and shows low sequence similarity between LTRs.
(PDF)

S7 Fig. Syntenic analysis of DRE3R. CoGe (https://genomevolution.org/CoGe/) screenshot
depicting synteny at the locus harboring DRE3R in A. thaliana and the closest relative, A. lyrata.
Purple box indicates where the transposable element is located in A. thaliana (bottom
genome). The pink rectangles denote regions of synteny between A. thaliana and A. lyrata (top
genome). The gap in synteny between the two species where the transposable element resides
in A. thaliana is indicative of a recent insertion.
(PDF)

S8 Fig. Syntenic analysis of DRE3L. CoGe screenshot of the DRE3L locus. Purple box indicates
where the transposable element is located in A. thaliana (bottom genome). The pink rectangles
denote regions of synteny between A. thaliana and A. lyrata (top genome). A large section of
DNA has been inserted in A. thaliana that is not present in A. lyrata. In A. thaliana, the
inserted DNA includes a pseudogene (grey bars) and the DRE3L (purple box). Sequence similar
to the region surrounding DRE3L is not found anywhere else in the A. lyrata or A. thaliana
genomes.
(PDF)

S9 Fig. The steady state level of TER1 is unchanged in Col-0 or Ler-0 in response to DSBs.
qPCR results for TER1. The reaction was performed in parallel with the experiments shown in
Fig 4B and 4C.
(PDF)
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S10 Fig. TER2 induction is an early response to DNA damage in Col-0. The experimental
design was the same as in Fig 4, with the addition of a 3 hour time point. BRCA1 (A), TER2 (B)
and TER1 (C) RNA transcripts were determined by qRT-PCR. Telomerase activity was deter-
mined by qTRAP (D). The X-axis indicates time of zeocin treatment
(PDF)

S11 Fig. TER2 promoter activity in Col-0 and Ler-0. Sequences 3kb upstream of TER2 were
cloned into a vector containing the GUS gene as a reporter. The construct was transformed
into both Col-0 and Ler-0. Seven day-old seedlings were treated with zeocin for 2 hours and
then tested for GUS activity.
(PDF)
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