
  

Supplementary Box 1 | Emerging trend where patient response rate and PFS 
does not translate into significantly increased overall survival in phase III trials 

Patient response rate and progression-free survival (PFS) has not always translated 
into significantly increased overall survival in phase III trials (Tables 1 and 2). This 
has been observed in trials assessing bevacizumab (Tables 1 and 2) in patients with 
RCC patients treated in combination with interferon-α (AVOREN1 and CALGB 902062 
studies); in patients with MBC treated in combination with chemotherapy (E2100,3 
AVADO,4 Ribbon-1,5 and Ribbon-26); in patients with NSCLC treated in combination 
with gemcitabine and cisplatin (AVAiL7 study); and in patients with prostate or 
pancreatic cancer treated in combination with chemotherapy (CALGB80303,8 
CALGB90401,9 and AviTA10 (Table 1). 
 

1. Escudier, B. et al. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic 
renal cell carcinoma (AVOREN): final analysis of overall survival. J. Clin. Oncol. 28, 2144–2150 
(2010). 

2. Rini, B. I. et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy 
in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J. Clin. Oncol. 28, 
2137–2143 (2010). 

3. Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. 
Engl. J. Med. 357, 2666–2676 (2007). 

4. Miles, D. W. et al. Phase III study of bevacizumab plus docetaxel compared with placebo plus 
docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative 
metastatic breast cancer. J. Clin. Oncol. 28, 3239–3247 (2010). 

5. Robert, N. J. et al. RIBBON-1: Randomized, double-blind, placebo-controlled, phase III trial of 
chemotherapy with or without bevacizumab (B) for first-line treatment of HER2-negative locally 
recurrent or metastatic breast cancer (MBC). J. Clin. Oncol. 27 (Suppl.), abstr. 1005 (2009). 

6. Brufsky, A. et al. Progression-free survival (PFS) in patient subgroups in RIBBON-2, a phase III trial 
of chemotherapy (chemo) plus or minus bevacizumab (BV) for second-line treatment of HER2-
negative, locally recurrent or metastatic breast cancer (MBC). J. Clin. Oncol. 28 (Suppl.), abstr. 
1021 (2010). 

7. Reck, M. et al. Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line 
therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial 
(AVAiL). Ann. Oncol. 21, 1804–1809 (2010). 

8. Kindler, H. L. et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in 
patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B 
(CALGB 80303). J. Clin. Oncol. 28, 3617–3622 (2010). 

9. Kelly, W. K. et al. A randomized, double-blind, placebo-controlled phase III trial comparing 
docetaxol, prednisone, and placebo with docetaxel, prednisone, and bevacizumab in men with 
metastatic castration-resistant prostate cancer (mCRPC): Survival results of CALB 90401. J. Clin. 
Oncol. 28 (Suppl.), LBA4511 (2010). 

10. Van Cutsem, E. et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in 
patients with metastatic pancreatic cancer. J. Clin. Oncol. 27, 2231–2237 (2009). 

  
 
Supplementary Box 2 

The first exception includes the aforementioned use of bevacizumab as a second-line 
monotherapy in patients with glioblastoma multiforme, where approval was based on 
improvements in quality of life and objective response rates in a phase II trial, which 
has yet to translate into improvements in overall survival. Whether this improvement 
arises as a result of tumor shrinkage or a noted (beneficial) consequence of VEGF 
blockade, namely, reduction in edema, remains unknown.1 The second example 
comes from a recent announcement of improved progression-free survival when 
vandetanib—which has additional activity against EGFR—was given in combination 
with docetaxol in non-small-cell lung cancer.2 
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Supplementary Box 3 
In general, two methods have been employed to disrupt VEGF pathway signaling, 
both of which have been reviewed recently.1,2 In one group are extracellular, large-
molecule based inhibitors such as antibodies to VEGF (bevacizumab), VEGFR2 
(ramucirumab), chimeric soluble receptors (aflibercept), or fusion proteins (angiocept) 
and others in clinical development that specifically disrupt ligand–receptor binding 
and prevent receptor dimerization. In the other group are small-molecule-based 
inhibitors that (much less specifically) block intracellular phosphorylation and 
downstream signaling pathways, including the aforementioned inhibitory effects 
against PDGFR and other receptors. 
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Supplementary Box 4 
Such results were observed with multiple forms of the aforementioned large-molecule 
inhibitors of VEGF or VEGFR binding, such as bevacizumab, VEGF-trap, RNA-based 
VEGF-targeted aptamers (pegaptanib), and the mouse VEGFR2 neutralizing 
antibody, DC101. More recently, Paez-Ribes et al.1 used DC101 or various VEGF 
receptor tyrosine kinase inhibitors as monotherapies (both short-term and long-term 
treatments) in transgenic mice with genetically engineered RIP1-Tag2 pancreatic islet 
cell tumors and in mice bearing orthotopically transplanted GBMs. In drug treated 
mice, or in mice with VEGF selectively knocked out, tumors acquired an adaptive or 
evasive phenotype capable of increased infiltrative or aggressive patterns with wide 
fronts of invasion, whereas the majority of control tumors were predominantly 
encapsulated or microinvasive. 
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Supplementary Box 5 
The tumor microenvironment consists of multiple interacting components, such as the 
extracellular matrix (ECM); several cell types including endothelial cells, fibroblasts, 
numerous bone-marrow-derived dendritic cells (BMDCs), and infiltrating inflammatory 
cells; a myriad of different growth factors, hormones, chemokines, cytokines, and 
proteases; and processes which drive (often via tumor hypoxia) invasion and distant 
metastasis, such as low pH, low glucose concentrations, altered adhesion, ECM 
alterations, among other factors.1 Disruption of the VEGF pathway could potentially 
affect all or some of these functions. For example, stromal cells (including tumor-
associated fibroblasts [TAFs]) can upregulate compensatory growth factors (such as 
PDGF-C) in response to VEGF inhibition.2 Also, pericytes could alter vascular 
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function3-5 and, thus, have an important role in observed rapid rebounds in 
revascularization after cessation of VEGFR tyrosine kinase inhibitor therapy by 
providing a scaffold for regrowth.6,7 Also, various proangiogenic BMDCs, such as 
Gr1+CD11b+ myeloid suppressor-type cells, TIE2 expressing monocytes, and tumor-
associated macrophages might home to the tumor microenvironment and mediate 
resistance to VEGF pathway blockade via the production of the aforementioned 
compensatory proangiogenic factors, including Bv8 (prokineticin), G-CSF, 
angiopoietin-2, among others.8–12 Of course, the tumor likely has a critical role in 
adaption as well, directly and indirectly, and likely includes mechanisms involving 
initial (intrinsic) or adaptive (acquired) changes in response to therapy. Intrinsic 
resistance likely depends on disease history, stage, genetic factors, and acquired 
resistance to antiangiogenic therapy can include vascular co-option13 and/or 
numerous complimentary/supplemental proangiogenic pathways, which could 
compensate for VEGF inhibition,14 among others.5,15 
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Supplementary Box 6 
Sometimes the term neoadjuvant therapy is used to describe any treatment of 
disease prior to surgery, which can include several different scenarios of patients with 
both primary and secondary metastatic lesions present (referred to as ‘synchronous’ 
or ‘concurrent’ therapy) at different stages of progression.1 End points of objective 
response in the primary tumor remain the focus—such as downstaging of tumors to 
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decrease surgical margins (for example nephron-sparing in RCC2)—but it is also 
used as a determinant of treatment efficacy, that is, primary tumor response used as 
surrogate determinant of whether a particular patient’s metastatic disease is likely to 
respond to the same therapy.3,4 
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Supplementary Box 7 
The dearth in neoadjuvant-model therapy testing could be owing to the extreme 
difficulty of such assays, as it is cumbersome to balance several variables, including 
establishing tumor cells that readily metastasize; determining how to assess a 
threshold for micrometastatic or macrometastatic disease; duration of therapy; 
monitoring of disease progression; among many other challenges. Theoretical 
limitations also include the purpose of such studies. For example, is it better to study 
anti-primary tumor effects (that is, tumor shrinkage) or antimetastatic effects (that is, 
increased survival), or both; which drugs and treatment regimens (including 
combinations) can be compared; can an antibody with a long half life be compared to 
a tyrosine kinase inhibitor that has a short-half life? These questions increase the 
complexity of undertaking such studies in mice, but such efforts are urgently needed, 
particularly given the potential that antiangiogenic effects observed in localized 
tumors may be quite different when treating micrometastatic and macrometastatic 
disease. At present, only a handful of preclinicial studies have attempted to use 
VEGF pathway inhibitors to test this and, thus, there is no compelling body of 
evidence to support clinical testing in this setting. 



  

 
Supplementary Table 1 | Examples of therapy-induced metastasis in preclinical models 

Treatment Treatment period (in relation to tumor cell 
inoculation)* 

Pretreatment1–12‡ 

Chemotherapy (low-dose metronomic 
cyclophosphamide, maximum tolerated dose 
cyclophosphamide, bleomycin dacarbazine, actinomycin 
D, mithramycin, doxorubicin, methotrexate, cytosine 
arabinoside, 5-azacytidine and aphidicolin, bleomycin) Post-treatment13,14§ 

Pretreatment1,3,8–10,12,15–31‡ 

Post-treatment32–39§ 
Irradiation (whole body and/or localized [usually to 
thorax])¶ 

Human case reports40–43 

Acute and/or chronic hypoxic stress Post-treatment44–46 

Pretreatment47,48 Inflammation (LPS, calcium pyrophosphate microcrystal 
injection) Post-treatment49,50 

Antidepressants (desipramine and fluoxetine) Pretreatment51 

Surgery Pretreatment52–54 

Steroid hormone (cortisone) Pretreatment31 

Analgesic (morphine) Post-Treatment55,56§ 
Monoclonal antibody (targeting capillary endothelial 
cells) Pretreatment57 

Pretreatment58 

Hyperoxia 
Post-treatment59§ 

Hyperthermia Post-treatment60–63|| 

VEGF Receptor tyrosine kinase inhibitors (sunitinib, 
sorafenib, SU10944) Pretreatment64 

*Pretreatment studies involve experimental metastasis with treatment occurring only prior to tumor 
inoculation. Post-treatment studies involve treatment after tumor inoculation, including treatment of primary 
localized tumors or intravenous injection of tumor cells. ‡References 12 and 19 report enhanced 
experimental metastasis but no enhancement or reduction of spontaneous metastasis. §Spontaneous 
metastasis increased. ||These references include examples of primary tumor treatment examining later 
metastasis development (without tumor resection). ¶The irradiation pretreatment studies were largely 
conducted in mice, but some studies were carried out in rabbits, rats and dogs. Abbreviation: LPS, 
lipopolysaccharide.  
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Supplementary Table 2 | Preclinical testing of VEGF pathway targeted agents in mouse models of metastasis* 

Drug Cancer 
(species) 

Metastasis 
model 

Methodology Effect of therapy 

Studies include survival studies where metastatic disease mimics late-stage clinical metastasis and mice are given treatment until 
end point 
Sunitinib Breast, melanoma 

(human) 
Experimental Intravenous injection Biphasic survival effects: 

either unchanged, better, or 
worse1 

Axitinib and bevacizumab Melanoma 
(human) 

Spontaneous Resection of ectopic primary tumor Moderate survival benefit 
(non significant) 2 

Experimental Intravenous injection Survival Benefit3 Sorafenib Renal (mouse) 

Spontaneous Resection of orthotopic primary 
tumor 

No effect on survival3 

VEGF-trap Renal (mouse) Spontaneous Orthotopic implantation, treatment, 
monitor for survival. 

Primary tumor and visual 
lung metastasis reduced4 

pcDNA3.1-FLK1ECD (oral 
DNA vaccine 
immunotargeting VEGFR2) 

Melanoma 
(mouse) 

Experimental Intravenous injection Survival benefit5 

AAV (adeno-associated 
virus for human VEGF) 

Prostate (human) Experimental Intravenous injection Survival benefit6 Watanabe et 
al., 2010) 

Cediranib Prostate (human) Experimental Intracardiac injection Survival benefit7 

PTK/787 Breast (human) Experimental Internal carotid injection No survival benefit8 

Studies include those where metastasis is monitored as a secondary measure, such as in primary tumors injected orthotopically or 
ectopically, as xenograft or synegenic, or in spontaneous tumors generated in genetically engineered mouse models where the end 
point is either arbitrarily assigned or based on institutional or ethical limitations for localized disease 

Sunitinib Lung (mouse) Spontaneous Transgenic (lung) Survival benefit9 

PTK787 Pancreatic 
(mouse) 

Spontaneous Transgenic (Rip-Tag) Primary tumor reduced, no 
effect on metastasis10 

PTK787 PTK787: Primary tumor and 
metastasis reduced10,11 

DC101 

Melanoma 
(mouse) 

Spontaneous Orthotopic primary tumor growth; 
metastasis monitored at defined end 
point DC101: Primary tumor 

reduced, no effect on 
metastasis10,11 

Sunitinib, DC101, SU10944 Pancreatic 
(mouse) 

Spontaneous Transgenic (Rip-Tag) Primary tumor reduced, 
survival benefit, but 
metastasis increased12 

Cediranib Cediranib: reduced 
metastasis in neoadjuvant 
setting, no effect in 
adjuvant13 

Vandetanib 

Fibrosarcoma 
(mouse) 

Spontaneous Resection of ectopic (ear) tumors; 
treatments given in both 
neoadjuvant and adjuvant setting  

Vandetanib: no effect in 
either setting13 

SU5416, SU6668 Colorectal 
(human) 

Spontaneous Ectopic (intra-splenic) tumor 
growth; metastasis monitored at 
primary end point 

Liver metastasis reduced14 

NVP-AAL881 Pancreatic 
(human) 

Spontaneous Orthotopic primary tumor growth; 
metastasis monitored at defined end 
point 

Lymph metastasis reduced, 
liver metastasis not 
reduced15 

Orthotopic primary tumor growth; 
metastasis monitored with primary 
tumors present during treatment 

Reduced metastasis16 E7080 Breast (human) Spontaneous 

Orthotopic primary tumor growth; 
primary tumor resected, treatment 
initiated and metastasis monitored 

No change in metastasis16 

ZD6474 NSCLC (human), 
ADC (human), SSC 
(human) 

Experimental Intravenous injection Reduced size of metastases 
(but not number) in lung17 

Bevacizumab Colon (human) Spontaneous Orthotopic primary tumor (intra-
cecal) resected (along with meso-
appendix lymph node); metastasis 

Lung metastases reduced18 
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monitored at defined end point 
(includes adjuvant treatment) 

Bevacizumab NSCLC (human), 
melanoma 
(human) 

Experimental Intra-carotid injection; metastasis 
monitored at defined end point 

Micrometastatic disease 
progression slowed (but not 
halted) in two out of three 
cell lines19 

Bevacizumab Uveal melanoma 
(mouse and 
human) 

Spontaneous Orthotopic (intra-ocular) primary 
tumor; metastasis monitored at 
defined end point 

Decreased liver 
micrometastasis20 

A4.6.1 (anti-human 
monoclonal antibody against 
VEGF) 

Prostate (human) Spontaneous Ectopic (subcutaneous) primary 
tumor; metastasis monitored at 
defined end point (luminescence) 

Lung metastasis reduced21 

A4.6.1 Wilhms (human) Spontaneous Orthotopic (renal) primary tumor; 
metastasis monitored at defined end 
point (IHC) 

Primary tumor and lung 
metastases reduced22 

A4.6.1 Neuroblastoma 
(human) 

Spontaneous Orthotopic (renal) primary tumor; 
metastasis monitored at defined end 
point (IHC) 

Primary tumor reduced, no 
effect on lung or liver 
metastasis, slight increase in 
lung metastasis23 

A4.6.1 Colon (human) Experimental Intrasplenic portal-vein injection 
followed immediately by 
splenectomy; metastasis monitored 
at defined end point (visually or by 
weight in liver) 

Liver metastasis reduced24 

R&D (anti-human 
monoclonal antibody against 
VEGF) 

Melanoma 
(human) 

Spontaneous Orthotopic primary tumor; tumor 
VEGF expression and metastasis 
driven by acute hypoxia; metastasis 
monitored at defined end point 
(visual in lung) 

Reduced visible lung 
nodules25 

R&D Melanoma 
(human) 

Spontaneous Orthotopic primary tumor; tumor 
VEGF expression and metastasis 
driven by acute hypoxia; metastasis 
monitored at defined end point 
(visual in lung, IHC) 

Reduced visible lung 
nodules26 

2C3 (anti-human monoclonal 
antibody against VEGF) 

Breast (human) Spontaneous Orthotopic primary tumor; 
metastasis monitored at defined end 
point (luciferase) 

Reduced lung and lymph 
node metastasis27 

VEGF-trap Renal (human) Spontaneous Orthotopic (renal) primary tumor; 
metastasis monitored at defined end 
point (IHC) 

Reduced lung metastasis28 

VEGF-trap VEGF-trap; reduced primary 
tumor and lung metastasis; 
no change in lymph 
metastasis29 

VEGFR31-Ig (VEGF A and C 
trap) 

HCC (human) Spontaneous Ectopic (subcutaneous) primary 
tumor; metastasis monitored at 
defined end point (IHC) 

VEGFR31-Ig;Reduced 
primary, lung, and lymph 
metastasis29 

DC101 Prostate (human) Spontaneous Orthotopic (prostate) primary 
tumor; metastasis monitored at 
defined end point (IHC) 

Lymph metastasis reduced in 
short-term/early setting, no 
effect for longer/later 
treatments30 

B20.4.1 (mouse monoclonal 
anti-VEGF antibody) 

Melanoma 
(mouse) 

Experimental Intravenous injection. Reduced visible lung 
nodules31 

Sorafenib HCC (human) Spontaneous Orthotopic (hepatic) tumor; 
metastasis monitored at defined end 
point (IHC) 

Reduced lung metastasis32 

CT322 Breast (human) Spontaneous Resection of orthotopic (mammary 
fat pad) tumor; metastasis 
monitored at defined end point 
(visual) 

Reduced visible lung 
nodules33 

DC101 Breast (genetically 
engineered mouse 
model) 

Spontaneous Mouse mammary tumor virus 
(MMTV)-driven Polyoma Middle T 
Antigen (PyMT) model 

No reduction in visible 
metastasis34 

DC101 Renal, colon Experimental Intravenous injection, intrasplenic Reduced size of lung 
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(mouse) nodules, no reduction in 
number35 

*All studies must include a measure of metastasis after anti-VEGF pathway therapy and a single drug treatment arm. Studies were 
excluded if they included any orthotopic or ectopic localized tumor implantation models, including glioma, ovarian, HCC and 
prostate that exclude tumor resection, caused death because of primary tumor, and/or did not measure distant metastasis. Please 
note, there is large variability in assessment and quantification in preclinical studies, often with large variations in the quality of 
metastatic assessment. Abbreviations: ADC, adenocarcinoma; IHC, immunohistochemistry; NSCLC, non-small-cell lung cancer; 
SCC, squamous cell carcinoma. 
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