
Supporting information for ’Innate immunity
and the inter-exposure interval determine the

dynamics of secondary influenza virus
infection and explain observed viral

hierarchies’
Pengxing Cao1, Ada W. C. Yan1, Jane M. Heffernan1,2,3, Stephen Petrie1,

Robert G. Moss1, Louise A. Carolan4, Teagan A. Guarnaccia4, Anne Kelso4,
Ian G. Barr4, Jodie McVernon1,5, Karen L. Laurie4, and James M.

McCaw∗1,5,6

1Centre for Epidemiology and Biostatistics, Melbourne School of Population
and Global Health, The University of Melbourne, Melbourne, Australia.

2Modelling Infection and Immunity Lab, Centre for Disease Modelling, York
Institute for Health Research, York University, Toronto, Ontario, Canada
3Mathematics and Statistics, York University, Toronto, Ontario, Canada

4WHO Collaborating Centre for Reference and Research on Influenza at the
Peter Doherty Institute for Infection and Immunity, Parkville, Victoria,

Australia.
5Modelling and Simulation, Infection and Immunity Theme, Murdoch
Childrens Research Institute, The Royal Children’s Hospital, Parkville,

Victoria, Australia.
6School of Mathematics and Statistics, The University of Melbourne,

Melbourne, Australia

∗Correspondence: jamesm@unimelb.edu.au

1

Stochastic simulation of the re-exposure models
The conversion of the deterministic models to stochastic models starts from changing the unit
of V2 to number of particles. Here we present the stochastic model derived from Model R1, and
the other two models can be constructed in the same way. The steps we take are:

• The number of the second virions (V2num); we use V2num =V2β ′2/β2 to convert the unit of
V2 to the unit of T .

• Since antibodies specific to the second virus have almost not been produced in the early
stage of the second infection, we ignore the equations for B2 and A2.

• We introduce the numbers of the first virus (V1) and the cells (T , R and I1) remain very
large in the early stage of the second infection, so they are all treated as continuous
variables and solved using the Matlab ODE solver, ode15s.

• We also assume the immune variables (F , B1 and A1) are all continuous and thus are also
solved by ode15s.

Finally, the model derived from Model R1 for stochastic simulation takes the form:

dT
dt

= g(T +R)(1− T +R+ I1 + I2

Ct
)−β

′
1V1T −β2V2numT +ρR−φFT, (S1)

dR
dt

= φFT −ρR−ξ R, (S2)

dF
dt

= q1I1 +q2I2−dF, (S3)

dV1

dt
= p1I1− c1V1−µ1V1A1−β1V1T, (S4)

dI1

dt
= β

′
1V1T −δ1I1, (S5)

dB1

dt
= m11V1(1−B1)−m21B1, (S6)

dA1

dt
= m31B1− r1A1−µ

′
1V1A1, (S6)

dV2num

dt
=

p2I2β ′2
β2

− c2V2num−β2V2numT, (S7)

dI2

dt
= β2V2numT −δ2I2, (S8)

where the first seven equations form the deterministic portion of the model and the last two give
stochastic portion. To solve the model, we choose a time step size of dt = 0.01 day, which is
significantly smaller than the time constants of any state transitions (e.g. viral decay or binding
to target cells). We start the stochastic simulation from the time of the second inoculation, and
the initial conditions are the values of the first seven variables 3 days after the first inoculation,
I2 = 0 and a given value of V2num. For each iteration from t0 to t0 +dt, the first seven variables
are solved deterministically using ode15s and the last two are solved stochastically using the
Gillespie algorithm [1]. Updates are continued in a way that the values of V2num and I2 at time t0
will be used as parameters in the first equations to solve the first seven variables at time t0+dt,
and the value of T at time t0 is also used to calculate V2num and I2 at time t0 +dt. Matlab code

2

is provided at the end of this Supporting Information. Results are given and discussed in the
main text.

Notably, we assumed that viral production from infected cells was continuous, i.e. an in-
fected cell continuously produces virions at a rate of p2I2β ′2/β2 (called the continuous model).
However, a different mechanism, in which virions are only released once an infected cell dies
(called the burst model), has also been proposed [2]. Although it was found that the burst model
gave a shorter average extinction time than the continuous model [2], neither model violates
the rule that small numbers of virions are more likely to induce stochastic extinction. Thus, in
terms of our focus, we will not further elaborate on this issue in this paper but leave a detailed
quantitative study for future work.

References
[1] Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys

Chem 81(25): 2340–2361.

[2] Pearson JE, Krapivsky P, Perelson AS (2011) Stochastic theory of early viral infec-
tion: continuous versus burst production of virions. PLoS Comput Biol 7(2): e1001058.
doi:10.1371/journal.pcbi.1001058

3

Matlab	 code	 for	 stochastic	 simulations	 	
	
% For stochastic simulations using Model R1 (see the SI for details)
clear all;clc

% initial conditions
V1_init=2.18e+5; % initial value of V1
V2_init=700; % initial value of V2
T_init=7.78e+6; % initial value of T
R_init=2.68e+7; % initial value of R
I1_init=1.55e+7; % initial value of I1
I2_init=0; % initial value of I2
F_init=22.29; % initial value of F
B1_init=0.998; % initial value of B1
A1_init=1.37; % initial value of A1

% initial conditions for the control case in Fig.12
% V1_init=0;
% V2_init=40;
% T_init=7e+7;
% R_init=0;
% I1_init=0;
% I2_init=0;
% F_init=0;
% B1_init=0;
% A1_init=0;

% the following variables record the values of corresponding
% variables at previous time point for the next iteration.
V1=V1_init;
T=T_init;
R=R_init;
I1=I1_init;
F=F_init;
B1=B1_init;
A1=A1_init;

dt=0.01; % time step size for each iteration

% parameter values (see Table 1 in the main text)
% note that s1=s2=0 and kappa1=kappa2=0
phi=0.14;rho=0.05;d=2;Ct=7e+7;g=0.8;xi=0.1;

q1=5e-6;p1=0.35;beta11=5e-7;beta21=2e-5; % beta11 is beta1 and beta21 is beta’1
s1=0;kappa1=0;c1=20.0;delta1=3;
mu11=0.2;mu21=0.04; % mu11 is mu1 and mu21 is mu’1
r1=0.2;m11=1e-4;m21=0.01;m31=12000;

q2=5e-6;p2=0.35;beta12=5e-7;beta22=2e-5; % beta12 is beta2 and beta22 is beta’2
s2=0;kappa2=0;c2=20.0;delta2=3;

V2_state=2*ones(1,V2_init); % 2 indicates live, 1 means binding to target cells, 0 is
natrual death
gv=zeros(1,V2_init); % tracking variable for V2
rv1=rand(1,V2_init); % random variable for V2 to determine the transition probability

V2num=V2_init; % V2num records the time series of free V2 numbers

I2_state=ones(1,I2_init); % state of I2; 1 indicates live, 0 is natural death
gi=zeros(1,I2_init); % tracking variable for I2
ri1=rand(1,I2_init); % random variable for I2 to determine the transition probability

I2num=I2_init; % I2num records the time series of I2 numbers

time=0;

max=1000;

wb=waitbar(0,'please wait');

for iter=1:max
 % when V2 reaches 10000, we assume it is a success event and stop it

 if V2num(end)>10000
 break
 end
 if ~isempty(V2_state)
 for i=1:length(V2_state)
 tran_sum=c2+beta12*T;
 gv(i)=gv(i)+tran_sum*dt;
 if gv(i)>=log(1/rv1(i)) % transition occurs for V2
 rv2=rand;
 if c2/tran_sum<rv2
 V2_state(i)=1; % binding to target cells
 else
 V2_state(i)=0; % natural death
 end
 end
 end
 end

 NewV2=round(I2num(end)*p2/(1+s2*F)*beta22/beta12*dt); % number of newly produced
V2
 NewI2=length(V2_state(V2_state == 1)); % number of newly infected cells

 gv=[gv(V2_state>1.5),zeros(1,NewV2)]; % update tracking variable for V2
 rv1=[rv1(V2_state>1.5),rand(1,NewV2)]; % update random variable for V2
 V2_state=[V2_state(V2_state > 1.5),2*ones(1,NewV2)]; % update states of all the
virions for V2

 V2num=[V2num,length(V2_state)]; % update the number of V2

 if ~isempty(I2_state)
 for i=1:length(I2_state)
 tran_sum=delta2+kappa2*F;
 gi(i)=gi(i)+tran_sum*dt;
 if gi(i)>=log(1/ri1(i)) % transition occurs for I2
 I2_state(i)=0; % death
 end
 end
 end

 gi=[gi(I2_state>0.5),zeros(1,NewI2)]; % update tracking variable for I2
 ri1=[ri1(I2_state>0.5),rand(1,NewI2)]; % update random variable for I2
 I2_state=[I2_state(I2_state > 0.5),ones(1,NewI2)]; % update states of I2

 I2num=[I2num,length(I2_state)]; % update the number of I2

 % here use ode15s to update other variables
 Y0=[V1,T,I1,R,F,B1,A1]';

 options = odeset('RelTol',1e-12,'AbsTol',1e-12);
 [Tnew,Ynew] = ode15s(@ODEmodel_part,[0 dt],Y0,options,V2num(end-1),I2num(end-1));

V1=Ynew(end,1);T=Ynew(end,2);I1=Ynew(end,3);R=Ynew(end,4);F=Ynew(end,5);B1=Ynew(end,6)
;A1=Ynew(end,7);

 time=[time,iter*dt]; % update time vector
 waitbar(iter/max)

end

close(wb)

The function ‘ODEmodel_part’ appearing in the above code is
provided below

function ynew=ODEmodel_part(~,y,V2num,I2num)

% y=[V1,T,I1,R,F,B1,A1]

% parameter values

phi=0.14;rho=0.05;d=2;
D=(7e+7-y(2)-y(3)-y(4)-I2num)/7e+7;
g=0.8;
xi=0.1;

q1=5e-6;p1=0.35;beta11=5e-7;beta21=2e-5;s1=0;kappa1=0;c1=20.0;delta1=3;
mu11=0.2;mu21=0.04;r1=0.2;m11=1e-4;m21=0.01;m31=12000;

q2=5e-6;beta12=5e-7;

ynew=zeros(7,1);
ynew(1)=p1/(1+s1*y(5))*y(3)-c1*y(1)-r1*y(1)*y(7)-beta11*y(1)*y(2);
ynew(2)=g*D*(y(2)+y(4))-beta21*y(1)*y(2)-beta12*V2num*y(2)+rho*y(4)-phi*y(2)*y(5);
ynew(3)=beta21*y(1)*y(2)-delta1*y(3)-kappa1*y(3)*y(5);
ynew(4)=phi*y(2)*y(5)-rho*y(4)-xi*y(4);
ynew(5)=(q1*y(3)+q2*I2num)-d*y(5);
ynew(6)=m11*y(1)*(1-y(6))-m21*y(6);
ynew(7)=mu11*m31/r1*y(6)-mu21*y(1)*y(7)-r1*y(7);	

