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This document contains:
1.- The Supplementary Figures and Tables cited in the main text.
2.- A discussion on the characteristics of top-scoring pairs selected using covariation

methods in small datasets.
3.- Additional references.

1



2 DAVID TALAVERA, SIMON C LOVELL & SIMON WHELAN

Table S1. Pearson correlation between measures describing the evolution-
ary scenario and mutual information. All correlations are statistically sig-
nificant.

Trypsin Pepsin
MPind 0.74 0.72
MPdep 0.67 0.63
Number of single changes 0.55 0.48
Number of double changes 0.85 0.83
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Table S2. Evolutionary rate and percentage of volume accessible to solvent
for the top-30 covarying trypsin pairs predicted by Morcos and coworkers
using mfDCA [1]

Site 1 Site 2

Residue Rate Accessibility (%) Residue Rate Accessibility (%) DI Distance (Å)
136 0.35 4.3 201 0.24 2.2 0.52 2.0
32 0.16 0.0 40 0.26 20.6 0.47 2.8

191 0.25 8.2 220 0.15 5.7 0.37 2.2
57 0.17 41.9 195 0.17 14.9 0.34 2.7

189 0.21 3.4 226 0.33 3.4 0.34 3.3
42 0.17 5.0 58 0.17 1.9 0.28 2.0
30 0.19 2.8 139 0.17 0.4 0.25 2.7
44 0.32 0.0 52 0.17 0.0 0.25 4.3
72 1.01 18.4 77 0.38 36.3 0.24 3.0
59 1.00 47.3 104 0.24 0.0 0.23 3.9
72 1.01 18.4 78 0.96 79.2 0.23 8.0
51 0.18 3.3 105 0.18 0.0 0.22 3.8

190 0.52 9.4 213 0.17 5.6 0.2 3.7
34 0.52 6.7 40 0.26 20.6 0.19 3.4
45 0.53 0.9 209 0.58 0.2 0.18 3.8
26 0.50 46.6 157 0.54 2.6 0.18 4.9

116 2.30 86.8 127 N.A. 64.9 0.18 23.7
117 2.30 5.9 127 N.A. 64.9 0.17 23.9
46 0.18 0.0 112 0.99 7.4 0.16 4.0

161 0.98 20.7 184 0.46 2.3 0.15 3.1
71 0.87 8.2 79 1.78 49.1 0.15 6.9
71 0.87 8.2 78 0.96 79.2 0.15 8.5

117 2.30 5.9 122 2.30 53.6 0.15 13.3
53 1.02 0.5 209 0.58 0.2 0.14 3.5

138 0.53 0.4 213 0.17 5.6 0.14 4.2
116 2.30 86.8 122 2.30 53.6 0.14 13.1
100 1.02 25.5 179 0.71 21.1 0.13 2.3
27 1.00 4.1 157 0.54 2.6 0.13 3.8

189 0.21 3.4 228 0.17 0.6 0.13 3.9
102 0.16 0.7 195 0.16 14.9 0.13 6.1
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Figure S1. Causes of covariation in the PSICOV dataset. For each pair of
sites, we counted the number of branches where we found single or double
changes, assuming an MP scenario. Then, we tested if the top-scoring
pairs had an enrichment for double changes or a depletion of single changes
(Mann-Whitney test). The plot shows the FDR-adjusted p-values for these
tests. The vertical and horizontal dashed lines show the 0.05 cutoff for each
test.
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Figure S2. Covariation in the PSICOV datasets caused by independent
changes. The plot shows the median number of single and double changes
(in log-scale) occurring in the top-scoring pairs. Each point represents one
protein. The dashed line shows equal number of single and double changes.
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Figure S3. Rate distribution of the selected pairs. For each pair, we clas-
sified one site as fast evolving, and the other as having slower rate. Panels
show, from top to bottom, the median rate of the fast site; the median rate
of the slow site; and, the median rate difference between the sites. Lines
are as follows: black-dashed, MI; red, χ2; yellow, MI

H(XY ) ; green, MIp; cyan,

MIadj ; blue, PSICOV; purple, DI. Shadow area shows the expected result
for a specific number of random predictions.
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Figure S4. Accessibility distribution of the selected pairs. For each pair,
we classified one site as exposed, and the other as being less accessible.
Panels show, from top to bottom, the median accessibility of the most
accessible site; the median rate of the most buried site; and, the median
accessibility difference between the sites. Lines are as follows: black-dashed,
MI; red, χ2; yellow, MI

H(XY ) ; green, MIp; cyan, MIadj ; blue, PSICOV; purple,

DI. Shadow area shows the expected result for a specific number of random
predictions.
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1. Representativeness of covariation predictions with small-size
evolutionary datasets

As mentioned in the article, covariation methods work optimally with large sequence
alignments [2, 3]. Therefore, we explored the effect of limited information on covariation
methods before analysing the evolutionary basis of the covariation-based predictions. Co-
variation methods analysed were MI, χ2 [4], MIp [5], MIadj [6], DI [2] and PSICOV [3].
These methods were chosen because they represent a selection of widely-used methods,
some recent corrections to MI and some of the more recently-developed methods that have
demonstrated a marked improvement in the prediction of residue contacts.

1.1. Precision of covariation metrics. We first determined the ability of covariation
measures to identify residues in close proximity using our datasets. In most covariation
measures, there is an assumption that a higher score for a pair of residues is associated
with an increase chance that those sites are coevolving due to functional and/or structural
selective constraints [7, 2, 8]. Although larger sequence alignments have more predictive
power, we nevertheless expect that the precision of predictions should be better than
randomly selected pairs of residues, even when using our smaller alignments.

The separation between residues was measured as the shortest distance between non-
hydrogen atoms. For instance, 6% of pairs of residues in the trypsin structure (PDB code:
3tgi) are found within 5.0 Å of each other, and hence in physical contact. An additional 13%
of pairs are within 10.0 Å. For each method we selected the pairs with the greatest evidence
of covariation (that is, with the greatest score according to that method), and calculated
the precision of that prediction strategy. We compared those precision figures with the
random distribution (shown as a grey shade in the Figures), determined by selecting the
same number of pairs at random. In Figure S5 we show the precision in selecting pairs
of residues within 8.0 Å. This cutoff includes all the pairs of residues in the covariation
peaks found by Morcos and coworkers [1]. Panels in Figure S5 show as some covariation
metrics perform better than random in some of our “well-defined” phylogenetic datasets.
As previously reported, metrics that do not correct for site variation, such as MI and χ2,
generally have worse performance. We found similar results (data not shown) when using
other distance cutoffs: 5.0 Å, which represents a stringent definition of physical contact;
and, 10.0 Å, which is a very generous distance threshold.

1.2. Features of the selected pairs. In order to further confirm that the predicted
covarying pairs within the phylogeny-based datasets were an appropriate sample of the kind
of covariation that each approach attempts to detect, we analysed the entropic features of
the sites each method selected (see Figure S6). As previously observed [9], MI and χ2 tend
to select pairs of highly entropic sites. The corrections in the other measures ensured that
the first pairs to be selected had lower entropies.
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Figure S5. Precision of covariation-metrics when used in the analysis of
“well-defined” phylogenetic datasets. We present precision results for 8.0 Å
distance cutoff. Similar results are observed with other distance cutoffs:
5.0 Å, and 10.0 Å. For each method, we scored the pairs in our dataset.
Then, selected increasing sets of top-scoring pairs. For each set, we calcu-
lated precision as the proportion of predictions within a particular distance
cutoff. Lines are as follows: black-dashed, MI; red, χ2; yellow, MI

H(XY ) ;

green, MIp; cyan, MIadj ; blue, PSICOV; purple, DI. Shadow area shows the
expected result for a specific number of random predictions.
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Figure S6. Entropy distribution of the selected pairs. For each pair, we
classified one site as having high entropy, and the other as having low en-
tropy. Panels show, from top to bottom, the median entropy of the most
entropic site; the median entropy of the least entropic site; and, the median
entropy difference between the sites forming the pair. Lines are as follows:
black-dashed, MI; red, χ2; yellow, MI

H(XY ) ; green, MIp; cyan, MIadj ; blue,

PSICOV; purple, DI. Shadow area shows the expected result for a specific
number of random predictionst
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