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Summary of Analysis for the Microviscometric Method in Glass Tubes. Here, we summarize the

essential analytical elements of the microviscometric method in glass tubes. Full details are given in

ref. 1.

In all of our glass tube studies, the microparticle image velocimetry (µ-PIV) data were obtained

≈1.5 cm from the inlet of the glass tube. With a typical Reynolds number on the order of 10−2

for these experiments, it is reasonable to assume that entrance effects are negligible. We, therefore,

assume the flow to be fully developed and axisymmetric. In terms of the axial velocity component, vz,

and pressure, p, the momentum equation for an axisymmetric, fully developed, steady incompressible

flow of a spatially varying, linearly viscous fluid in a cylindrical tube of radius R is given in cylindrical

coordinates (r, θ, z) by
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and the local normalized dynamic viscosity of blood is given by
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Here, the viscosity evaluated at the tube wall, µR = µ(R), is determined by minimizing the least-

squares error in the difference from unity of the ratio of the measured to predicted values of dp/dz

for all of the in vitro data sets analyzed, excluding the saline-perfused tubes. From this calibration

we estimate µR as being very nearly equal to that of plasma viscosity, µp, obtained from a capillary

viscometer (µR ' 0.95 µp, where µp was found to have an average value of 1.20 ± 0.07 cP at 23◦C).

In terms of the viscosity distribution, the relative apparent viscosity, ηrel, defined as the ratio of

steady volume-flow rates per unit pressure drop of blood plasma relative to whole blood, is given by
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The tube hematocrit, defined as the mean instantaneous red-cell concentration in the vessel, and

the discharge hematocrit, defined as the mean red-cell flux fraction through the vessel, are given,

respectively, by
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1
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H(r) vz(r) dA, (5)

where A is the cross-sectional area of the tube lumen, Q is the volume flow rate in the tube, and

H(r) is the local hematocrit derived from Eq. 3 and a species-specific transport relationship, H(µ),

obtained from rotational viscometric data (2). The hematocrit distribution, H(r), reflects the time-

averaged hematocrit at any point in the tube cross section, and as such, it is predicted to vanish only

at the tube wall. Even in an approximately steady flow, experimental observations have shown (3–6)

that red cells transiently invade the plasma-rich region of microvessels, and contribute to the local

hematocrit and viscosity there. Thus, in a time-averaged sense, the local hematocrit is considered to

be nonvanishing throughout the vessel lumen.

In principle, the tube and discharge hematocrits are derivable from the viscosity distribution

given by Eq. 3 if H(µ) were known for a particular species. However, even without H(µ), one can

nevertheless estimate the fractional change in HT and HD by considering the fractional change in µ∗T

and µ∗D, which we define in glass tubes as
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It is evident from Eq. 6 that µ∗T corresponds to the mean instantaneous normalized viscosity over

the vessel cross section, and is therefore analogous to HT. Likewise, µ∗D is analogous to HD. Just as

the local temperature is determined by the energy content in a volume of fluid (and can be used to

predict energy flux if the material-specific equation of state for the heat capacity is known), so too is

the local value of µ(r) determined by the number of red cells in a volume of blood [and can be used

to predict red-cell flux if the species-specific transport relationship, H(µ), is known]. As such, µ∗D is

an indicator of the red-cell flux fraction through the vessel.

Summary of Analysis for the Microviscometric Method in Microvessels. In microvessels, we again

assume the flow to be axisymmetric and fully developed, the latter being reasonable in vivo for profiles



measured more than one vessel diameter away from bifurcations (7,8). In independent studies using

endogenous particle tracers (5, 8), a parameter used to quantitatively determine asymmetry in the

velocity profile was not significantly different from zero, suggesting that velocity profiles were nearly

axisymmetric in most microvessels. Other groups have reported significantly asymmetric red-cell

profiles in venules of the rabbit omentum (9) and hamster retractor muscle (10). However, in both

of these studies, velocity distributions were determined from a small number of endogenous red-

cell tracers that are likely to be too large to provide the necessary spatial resolution required to

draw conclusions about symmetry. It has also been reported that red blood cells exhibit erratic

deviations in radial position and velocity during transit through 400-µm-long sections of venules in

rat spinotrapezius muscle (6). Despite these deviations, erythrocytes from daughter branches of a

confluent venular bifurcation remained separated for up to 250 µm downstream of the bifurcation (11).

However, redistribution of plasma over the vessel cross-section would likely lead to axisymmetric

velocity profiles even in these cases. The fluorescent microspheres used in the present study, being

much smaller and more regularly shaped than endogenous particle tracers, provided very high spatial

resolution for the velocity profiles we were able to extract. In most of the vessels that we examined,

distributions appeared nearly axisymmetric.

In order to extend the microviscometric method to blood flow in microvessels in vivo, a general-

ization is introduced (1) to account for the hemodynamic influence of the endothelial surface layer

(ESL) on the luminal vessel wall (12–14). In particular, we identify two distinct regions, which we

refer to as the free lumen, where 0 ≤ r ≤ a, and the annular porous layer (corresponding to the ESL),

where a ≤ r ≤ R. Here, a is the radial location of the effective hydrodynamic interface between

blood in the free lumen and the ESL (14). In terms of the axial velocity component, vz, in the free

lumen, and pressure, p, the momentum equation in the free lumen for axisymmetric, fully developed,

steady incompressible flow of a linearly viscous fluid having radially varying viscosity, µ(r), is given

by Eq. 1 if the tube radius, R, is replaced by a. Furthermore, expressions for dp/dz, µ(r), HT, and

HD, given by Eqs. 2, 3, and 5, also apply in microvessels if R is replaced by a in Eqs. 2 and 3.



Assuming that red cells cannot penetrate the ESL (12), we model flow in the porous layer with

the Brinkman equation (15). Under these flow conditions, the axial fluid velocity component, vf
z, in

the porous layer is governed by
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where µa = µ(a) is the viscosity at the interface between the ESL and blood in the free lumen, and

K is the spatially averaged effective hydraulic resistivity of the layer, which is inversely proportional

to its permeability.

A generalization of Eq. 4 for the relative apparent viscosity, ηrel, in microvessels is found to be
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where α = a/R and v̄f is related to the dimensionless mean velocity of plasma flow through the porous

layer (1). The function G(r) and the quantity v̄f are given in ref. 1 and depend parametrically only

upon the dimensionless ESL thickness, 1−α, and the dimensionless hydraulic resistivity of the ESL,

KR2/µa.

Procedure for Obtaining the Velocity Distribution from the µ-PIV Data. We accounted for the

hydrodynamic interaction, arising between the microsphere and the vessel or tube wall, that causes

the translational speed of the center of a microsphere very near the wall to lag the velocity a fluid

particle would have at the same radial distance from the wall if the microsphere were not present

in the flow. Following a previously described method (14), the three-dimensional analyses of the

free motion of a neutrally buoyant sphere in a uniform shear field adjacent to a planar confining

boundary (16) or a Brinkman half space (17) were used to infer, from the measured translational

speed of each microsphere, the true fluid particle velocity that would arise in the absence of the

particle tracer. The velocity profile over the vessel cross-section was extracted from the estimated

fluid particle velocities rather than directly from the measured microsphere velocities.

Because not all of the recorded beads travel in the midsagittal plane, we used a previously

described monotonic filter (1, 14) and considered only the fastest beads at a given measured radial



location, where it is understood that a bead in the midsagittal plane travels faster than any other

bead at that measured radial location. Only monotonically filtered data were included in the analysis.

Following methods described in ref. 1, an axisymmetric velocity profile, vz(r), was extracted from

each µ-PIV data set. All velocity profiles in vitro and in vivo were obtained using the function defined

in ref. 1, which identically satisfies the momentum equation and boundary conditions, and is given

by
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Here, f(σ) = σ(1−c1 sinh c2 α)+α c1 sinh c2 σ is the fitting function and c1 and c2 are found by means

of nonlinear-regression analysis that uses Eq. 9 to minimize the least-squares error in the fit to the

monotonically filtered data points identified above. The parameter vmax, corresponding to the axial

centerline velocity, is found by solving Eq. 9 for vmax, substituting for r and vfit, the measured radial

position and velocity of each microsphere (from the monotonically filtered data set after correcting

for fluid drag), and then taking the average of those values. It should be noted that the first term

on the right side of Eq. 9 represents the slip velocity at r = α. For flow in a glass tube, α = 1, and

because G(1) = 0 (1), the slip velocity in Eq. 9 vanishes and Eq. 9 satisfies the no-slip condition at

the tube wall. The function vfit and its derivatives are continuous on 0 ≤ r∗ ≤ α.

The primary error source in our prediction of dp/dz is attributable to the uncertainty in our

estimate of wall shear rate in vitro, because this quantity depends on the first derivative of our fit

to the data. We have found that this quantity can be accurately estimated from the data used to

extract the velocity distribution as long as (i) the true radial position of at least one particle tracer is

within a distance of ≈0.1R from the tube wall, (ii) at least one particle tracer is within a distance of

≈0.2R from the tube centerline, and (iii) no two adjacent particle tracers are more than a distance of

≈0.4R apart if either one of the two tracers has a radial position, r, of more than ≈0.5R. Any data

set that did not meet all three of these criteria (after the optical correction procedure) was excluded

from our analysis. Furthermore, in order to achieve sufficient spatial resolution to accurately predict

the velocity distribution near the tube wall, we have found that the microsphere-to-vessel diameter



ratio should be less than ≈2%.

Materials and Methods for Glass-Tube Experiments. Perfusion experiments were performed at room

temperature (23–24◦C), which was continuously monitored at the microscope stage. Capillary tubes

were pretreated with 1% Tween 20 in PBS for 2 hours to prevent cell adhesion to the tube wall. The

downstream reservoir and silastic tubing were prefilled with degassed saline, and all air bubbles were

removed. The fluids were perfused through each glass tube in the following order: saline, plasma,

and red-cell suspensions. A high perfusion pressure (≈100 cm H20) was applied for 1 minute at

the start of each new perfusate. The perfusion pressure was quickly reduced to establish the target

perfusion pressure. The velocity was measured ≈1.5 cm from the inlet of the glass tube, and the

flow was measured for 1–2 minutes at each perfusion pressure.

Transillumination was maintained to keep the luminal glass capillary wall clearly visible. The

midsagittal plane was defined as corresponding to the focal plane at which the contrast of the edge

of the intraluminal wall reversed (14). The diameters of the upstream and downstream ends of the

glass tube were determined by end-on microscopy. Capillary tubes were immersed in phthalic acid

dibutyl ester (ND = 1.48, Sigma), which has an index of refraction that effectively eliminates optical

refraction at the outer tube wall. Optical refraction at the inner tube wall, which arises from the

mismatch in the refractive indices of the perfusate and the glass, introduces an optical artifact, as

manifested by the disparity between the measured and actual radial positions of the microsphere.

This disparity increases with increasing radial position. Applying Snell’s law, the disparity, δx,

between the measured radial position, dm (open symbols in Figs. 1 and 5–14), and actual radial

position, da (closed symbols in Figs. 1 and 5–14), of a microsphere in the midsagittal plane of the

glass capillary tube is given by (14)
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where Ng and Np are the indices of refraction of the glass tube wall and perfusate, respectively, and
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The refractive indices of plasma and saline were determined by using a hand-held refractometer

(Atago, Kirkland, WA), and the viscosity of plasma was determined by using a capillary viscometer

(Cannon-Manning Semimicro Viscometer, Cannon Instrument, State College, PA).
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