1	ZnuA	and	zinc	homeostasis	in	Pseudomonas	aeruginosa
---	------	-----	------	-------------	----	-------------	------------

3	Victoria G. Pederick ^{1*} , Bart A. Eijkelkamp ^{1*} , Stephanie L. Begg ¹ , Miranda P. Ween ¹ , Lauren J.
4	McAllister ¹ , James C. Paton ¹ and Christopher A. McDevitt ¹

5

6 1. Research Centre for Infectious Diseases, School of Molecular and Biomedical S
--

7 University of Adelaide, Adelaide, South Australia, Australia.

- 9 Corresponding author: Christopher A. McDevitt, Research Centre for Infectious Diseases, School
- 10 of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, 5005, Australia.
- 11 Phone: +61 8 8313 0413; Fax: +61 8 8303 7532; Email: christopher.mcdevitt@adelaide.edu.au
- 12 * Contributed equally
- 13
- 14
- 15

16 Supplementary Data

- 17 Supplementary Tables S1-S2
- 18 Supplementary Figures S1-S4

20 SUPPLEMENTARY TABLES

22 Supplementary Table S1. PAO1 Zur binding site sequences

Locus tag	Putative Zur binding site
PA0781	AAGAAATAATATAACAT
PA1921/22	AAGTTATAACATAACAT
PA2911	ATGTTATACTATAACAA
PA3601	ATGTTATATAGTTACAT
PA4063	TCGTTATAACGTAACAA
PA4837/38	ATGATATACTATAACGC
PA5498/99	ACGTTATTATATTACCC
PA5536/37	ACGTTATACTATAACAA
PA5539	ACGTTATATTATAACAT

25 Supplementary Table S2. Oligonucleotide primers used in this study

Name	Target	Sequence $(5' \rightarrow 3')$	Source
Gm-F	Gm ^R	CGAATTAGCTTCAAAAGCGCTCTGA	(Choi & Schwei zer,
Gm-R	Gm ^R	CGAATTGGGGATCTTGAAGTTCCT	2005) (Choi & Schwei zer, 2005)
GW-attB1		GGGGACAAGTTTGTACAAAAAAGCAGGCT	(Choi & Schwei zer, 2005)
GW-attB2		GGGGACCACTTTGTACAAGAAAGCTGGGT	(Choi & Schwei zer, 2005)
PA5498-UpF-GWL	PA5498	TACAAAAAGCAGGCTCCCTGCGTCCCTTTGCCC	This study
PA5498-UpR-GW	PA5498	TCAGAGCGCTTTTGAAGCTAATTCGGAAATTGACGAACTTGCG	This study
PA5498-DnF-GW	PA5498	AGGAACTTCAAGATCCCCAATTCGCTTGCCGGCAAGCCTTTC	This study
PA5498-DnR-GWR	PA5498	TACAAGAAAGCTGGGTGCGTCCACGCTCACGTTC	This
qPA0576_F	rpoD	CGATATAGCCGCTGAGGA	(Pederi ck <i>et</i> <i>al.</i> , 2014)
qPA0576_R	rpoD	GAGATCGAAATCGCCAAG	(Pederi ck <i>et</i> <i>al.</i> , 2014)
qPA0781_F	znuD	GAACGCCGCTGTAGAGGTAT	This study
qPA0781_R	znuD	ACAGCCGCTTCTCCAACTAC	This study
qPA4063_F	PA4063	CTGTTAGCCCTCGTCTTGCT	This
qPA4063_R	PA4063	AGCTCCAGTTCGAGGGTCTT	This
qPA2435_F	hmtA	GATCAGCAACACCAGCAACA	This
qPA2435_R	hmtA	GCATCGAGATAACCCGTACC	This study

qPA0779_F	asrA	GTCCAGGTAGTGGTCGAGGA	This
DA0770 D			This
qPA0//9_R	asrA	GGAAGICGAGGIGAIGAACC	study
qPA1927 F	metE	ACCCAGATCCATACGCACAT	This
			study
qPA1927_R	metE	GTTCGGGTAGTCGAACTGCT	1 nis study
	~		This
qPA3527_F	pyrC	GTCTTCGAGCACATCACCAC	study
aPA3527 R	mvrC		This
q1 A3527_K	ругс		study
qPA3690 F	zntA	GAGTTGATCGAGGCGAAGTC	This
			study
qPA3690_R	zntA	GCTTCCAGTTCCACTTGCTT	I his
			This
qPA5230_F	PA5230	GCGACGATGTTCTGGATGTA	study
DA 5220 D	DA 5220		This
qPA5230_R	PA5230		study
aPA0277 F	PA0277	GTACGCCTTCGATCTCGTTG	This
<u>q1710277_1</u>	1/10/2//		study
qPA0277 R	PA0277	GTGCCGGTGAACTACAAGGT	This
			study
qPA5539_F	folE2	GGAAGACTGCATCGGACT	I N1S
			This
qPA5539_R	folE2	CCTCGCAGAACATCAGGT	study
DA 2011 E	DA 2011		This
qPA2911_F	PA2911	GCAACCIGAICACCUICA	study
aPA 2911 R	PA 2911		This
	1/12/11		study
aPA1544 F	anr	CGATGACCAGCAGATGAT	This
			study
qPA1544_R	anr	GACAGGTTGACCAGGAAG	I NIS study
			This
PA5498LIC1F	PA5498	TGGGTGGTGGATTTCCTGAGGTCAGCGTGCTGACC	study
DA 54001 IC1D	DA 5 400		This
rajayoliuik	PA3498		study

28 SUPPLEMENTARY FIGURES

Supplementary Figure S1. The effect of Zn^{2+} limitation on *P. aeruginosa* growth. The growth phenotypes of *P. aeruginosa* PAO1 and the $\Delta znuA$ strain (shown in Figure 1) were compared by absorbance at 600 nm. CDM overnight seed cultures were supplemented with 0 μ M TPEN (control) or 10 μ M TPEN (all other treatments), prior to growth analyses in CDM supplemented with additional TPEN with concentrations as indicated. The control treatment involved no TPEN supplementation. (a) *P. aeruginosa* PAO1 (b) *P. aeruginosa* $\Delta znuA$. Cultures were grown as indicated and, in all experiments, data are the mean \pm s.e.m. with $n \ge 3$.

38

42 Supplementary Figure S2. Phylogenetic tree of metal binding SBPs. The phylogenetic 43 relationship between P. aeruginosa PA2913 and characterized cluster A-I, A-II and D-IV iron 44 binding SBPs was assessed. Amino acid sequences were aligned using ClustalW2 (Larkin et al., 45 2007) and a phylogenetic tree constructed in CLC Sequence Viewer (Version 6.7.1) using the Neighbor Joining method. Proteins clustered according to their SBP classification. All cluster A 46 47 SBPs feature a long α -helical region that joins the two domains of the protein. They are further 48 subdivided into cluster A-I SBPs (green) that bind their metal ligand directly, and cluster A-II SBPs 49 (red) that bind a chelated form of their metal ligand. The cluster D-IV SBPs (purple) are an iron-50 specific subset of cluster D proteins that bind iron (ferric or ferrous). BtuF Eco (GI: 215485321, E. coli); PA2913 Pae (GI: 15598109, P. aeruginosa PAO1) FitE Eco (GI: 190907145, E. coli); 51 Ceu Cje (GI: 112360670, C. jejuni); Feu Bsu (GI: 2632430, B. subtilis); FutA2 Syn (GI: 52 53 170785083, Synechocystis PCC6803); FutA1 Syn (GI: 152149369, Synechocystis PCC6803); nFBP_Ngo (GI: 28948320, Neiserria gonorrhoeae); hFBP Hin (GI: 157832046, H. influenzae); 54

55	SitA_Sen (GI: 16761638, S. enterica); SitA_Eco (GI: 84060846, E. coli); YfeA_Ype (GI:
56	51596671, Y. pestis); MntC_Syn (GI: 16330511, Synechocystis PCC6803); SitC_Sep (GI:
57	27467323, S. epidermis); MntC_Sau (GI: 88194402, S. aureus); MntA_Ban (GI: 30263122, B.
58	anthracis); ScaA_Sgo (GI: 1168357, Streptococcus gordonii); PsaA_Spn (GI: 182684593, S.
59	pneumoniae); MtsA_Spy (GI: 489075835, S. pyrogenes); TroA_Ssu (GI: 330832169, S. suis);
60	Lbp_Spy (GI: 15675794, S. pyrogenes); AdcAII_Spn (GI: 15902950, S. pneumoniae); YcdH_Bsu
61	(GI: 668752994, B. subtilis); AdcA_Spn (GI: 15904016, S. pneumoniae); ZnuA_Hin (GI:
62	491963406, <i>H. influenzae</i>); ZnuA_Yru (GI: 490857750, <i>Y. ruckeri</i>); ZnuA_Eco (GI: 635897169, <i>E.</i>
63	coli); ZnuA_Sen (GI: 541470409, S. enterica); ZnuA_Pae (GI: 15600691, P. aeruginosa PAO1);
64	ZnuA_Cje (GI: 504330062, C. jejuni), ZnuA_Syn (GI: 499174152, Synechocystis PCC6803).

- 67
- 68

69 Supplementary Figure S3. Validation of RNA sequencing results. The differential expression of 70 genes as determined by RNA sequencing was confirmed by RT-qPCR analysis of *P. aeruginosa* 71 PAO1 and $\Delta znuA$ samples grown in biological triplicate. Data are expressed as the mean log₂-fold 72 change.

- 73
- 74

Supplementary Figure S4. mRNA levels of putative Zn^{2+} acquisition clusters in *P. aeruginosa* PAO1. Expression levels of the putative inner membrane Zn^{2+} acquisition gene clusters in the wildtype (black) and $\Delta znuA$ strain (red) as determined by RNA-sequencing. Genes proposed to exhibit roles in Zn^{2+} acquisition appear as blue arrows, those with alternative functions appear as black arrows and Zur binding sites are represented as orange diamonds. Genes are drawn to scale.