
Proc. Nati. Acad. Sci. USA
Vol. 91, pp. 12293-12297, December 1994
Evolution

Bootstrap hypothesis tests for evolutionary trees and
other dendrograms

(phylogeny/population structure/plant evolution/5S rRNA/eyespot)

JAMES K. M. BROWN
Cereals Research Department, John Innes Centre, Colney Lane, Norwich, NR4 7UH, England

Communicated by John Maynard Smith, August 22, 1994

ABSTRACT The bootstrap computer-intensive statistical
technique is frequently applied to statistical analyses of phy-
logenetic trees. The widely used rule that a group is supported
significantly if it appears in at least 95% of bootstrap trees is
conservative in most situations. This paper describes three
ways of using the bootstrap to carry out statistical inference on
phylogenies. The first method tests whether there is nonran-
dom support for a single group or tree. The second method
compares the support for two groups or trees. The third
method tests whether a single group or tree has better support
than the set of all possible alternatives; this may be a replace-
ment for the "95% rule." These tests generally require fewer
bootstrap trees to be estimated than do other methods of
bootstrapping phylogenies. A simple, sequential sta l
method can be used to increase the efficlency further. These
methods can be applied to tests of multiple hypotheses about a
single phylogeny. Parsimony analyses of5S rRNA sequences of
plants and cluster analyses of randomly amplified polymorphic
DNA bands in three pathotypes of the cereal eyespot fungus are
used as illustrative examples. The tests can be used to analyze
dendrograms in subjects other than taxonomy.

Phylogenetic trees classify organisms into groups of related
species. If such taxonomic classifications are to reflect the
course ofevolution, each group should consist of species that
have a common ancestor not shared by any species outside
that group.
A phylogeny is estimated from only part of the total data

that might possibly be sampled. How much confidence
should be placed in the appearance of a set of species as a
monophyletic group is therefore a statistical question (1, 2).
Many statistical tests for phylogenies have been proposed
(reviewed in refs. 2 and 3), but most of these methods do not
actually test the hypothesis that a group of species is mono-
phyletic. Of the few methods that do construct a confidence
set of phylogenies, most are only applicable or computation-
ally feasible for just a few taxa. Furthermore, most tests can
only be applied to trees estimated by a particular algorithm
from a particular kind of data (DNA or protein sequences,
isozyme variation, etc.).
A useful approach to statistical inference for phylogenies

employs the bootstrap, which is a computer-intensive statis-
tical technique with many applications (ref. 4; introductory
expositions in refs. 5 and 6). An application of the bootstrap
to phylogenies was described by Felsenstein (7). This test can
be used in conjunction with many kinds of data and many
algorithms and is applicable to any number of species.
Furthermore, it tests directly the hypothesis that a set of
species is a monophyletic group (G). These features have
made this test much the most widely used of all those
available at present. Felsenstein suggested that the evidence

for the existence of G should be considered to be significant
only if G appeared in 95% or more of a sample of bootstrap
trees (the "95% rule").

Simulation studies (8) and theory for small trees (9) indicate
that the 95% rule is conservative in that the null hypothesis that
G is not monophyletic is accepted more often than it should be.
One reason for this is because the use of the 95% rule as a
significance test confuses two different interpretations of the
proportion of bootstrap trees (0) in which G appears. 6
estimates the probability that G would appear in a second tree,
estimated from a data set similar to that actually studied. A
significance test calculates the probability that a second set of
data would deviate by at least as much as the observed data do
from the values expected from a particular null hypothesis.
These two probabilities are not the same (10).
The 95% rule is therefore inappropriate for two reasons.

First, it measures the support for G by the observed value of
Obut does not consider the distribution of 0 under a specified
null hypothesis. To carry out statistical inference, observed
and expected values of 0 should be compared. Second, the
bootstrap is generally applied to phylogenies to test if G is
better supported than the set of all possible alternatives to G.
This is equivalent to asking whether or not there is significant
evidence that G appears in more than 50% of all bootstrap
trees. However, the 95% confidence interval for 0 need not
include the value 0.95, even if the estimate of Ois greater than
0.5 (8, 10). Note that the 95% rule is least conservative when
the data are least informative (figure 9 in ref. 8). This is
presumably because the variance of 0 increases as the
information in the data decreases, so that the confidence
interval of 0 becomes broader.

Despite these problems, the broad applicability of the
bootstrap makes it a particularly valuable technique in tax-
onomy. Bootstrap tests for phylogenies, based on conven-
tional statistical hypothesis tests, would therefore be desir-
able. This paper proposes some such tests, which are more
efficient and less conservative than existing methods.
The problem of defining distinct groups arises in other

natural and social sciences as well as taxonomy. Typically,
some form of cluster analysis is used to define nonoverlap-
ping categories of objects. For instance, a population genet-
icist may find that a species is subdivided into several races
and wish to test whether these subdivisions are truly distinct
entities or overlap to some extent. Statistical tests for the
existence of groups in a phylogeny may therefore have a
much wider range of applications.

DATA
Two sets ofdata are used as examples. One, an example from
taxonomy, is a set of SS rRNA sequences from plants (11). A
subset of 26 species was analyzed (12); 5 green algae were
used as an outgroup, while relationships were studied be-
tween 21 species. These were 1 charophyte, 4 bryophytes, 4

Abbreviation: RAPD, randomly amplified polymorphic DNA bands.
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pteridophytes, and 12 spermatophytes (seed plants), includ-
ing 3 gymnosperms and 9 angiosperms. The aligned 5S rRNA
sequence had 121 nucleotide positions. Maximum parsimony
phylogenies were estimated by the DNAPARS program in the
C version 3.52 of the PHYLIP package (7, 13), run on a VAX
4000-300 computer. The 5 algae were forced to be an out-
group by adding an additional, heavily weighted character.
Parsimony was used to estimate phylogenies, in preference to
maximum likelihood, to minimize the use of computer re-
sources while the methods described in this paper were being
developed. Species were added to the phylogeny in three
random orders, using the "Jumble" option of DNAPARS.
When more than one tree were equally the most parsimoni-
ous, the first tree printed was used in further analysis.
The second data set relates to the distinction of subspecific

races. It includes 23 isolates of the fungus Pseudocercos-
porella herpotrichoides, which causes the eyespot disease of
grasses. Of the 23 isolates, 11 were pathogenic on wheat only
(W-type), while 8 were pathogenic on rye (R-type) and 4 were
pathogenic on couch grass (C-type) as well as wheat (14). The
data are sizes of 74 randomly amplified polymorphic DNA
bands (RAPDs) generated by 18 primers (15). The similarity
of each pair of isolates was calculated by scoring 1 for each
band that they both possessed or both lacked and 0 for each
band that only one ofthe two isolates had. Dendrograms were
formed by average linkage cluster analysis using the GENSTAT
5 statistical package (16).

METHODS AND RESULTS
Three methods are described in this paper. As in Felsen-
stein's bootstrap test (7), these tests can be applied to the
question of whether a single group of species is monophyl-
etic. (Note that the tips of the tree are described as species,
but they could equally be other taxonomic units or even
individual organisms.) However, they are equally applicable
to testing the support for other features of a phylogeny, such
as the existence of several groups or of a particular sequence
of branching. G is therefore redefined as either a monophyl-
etic group or as a set of trees that share a common charac-
teristic, as appropriate to the question in hand.

Test 1: Support for a Single Group

The first method tests whether or not the data provide
significant support for the existence of a group or topology,
G. The method tests a null hypothesis, Ho, that G does not
exist, against H1, that it does. This is done by examining
whether the observed data give better support to G than
random data would.
These hypotheses can be tested by comparing the frequen-

cies of G in trees estimated from bootstrap and randomized
data sets. In summary (Fig. 1): (i) the data, D, are arranged
as a matrix of c characters x s species; (ii) a bootstrap data
set, D*, is obtained by sampling c characters, with replace-
ment from the c characters in D; each species retains its
original value of each character in D* (Fig. 1); (iii) a phylog-
eny, T*, is estimated, by applying an algorithm, A, toD*; and
(iv) steps ii and iii are repeated as many times as required.
For the bootstrap to be valid, the characters being resam-

pled should be independent of one another and identically
distributed (uid). The implications of this assumption for mo-
lecular sequences were described by Felsenstein (7). A sta-
tistical distribution based on bootstrap sampling is an approx-
imation to the distribution that would be obtained by drawing
repeated samples of characters from the population itself
(4-6). T* phylogenies are therefore estimates of the trees that
would be obtained by sampling a second set of c characters
from the same population as the c characters in D. D* can
therefore be used to represent repeated samples of data.

Original data

Base abcde fghij kimno pqrst uvwxy

Species
1 ATACC AGCAC TAGAG CACCG GATCT

2 ATACC AACAC TAGGG CACCG GATCT

3 ATACC GGGAT CGGGG CTTTG AGTCC

4 ATACC CGAAA CGGGA TTTGA GCTCC

Bootstrap data

abbdg jjjlm
1 ATTCG CCCAG

2 ATTCA CCCAG

3 ATTCG TTTGG

4 ATTCG AAAGG

mqstt
GACGG

GACGG

GTTGG
GTGAA

Randomised data

abbdg jijj nm mqstt
1 ATTCG ACCGG GTCGA

2 ATTCG CTTAG GACGG

3 ATTCA TCAAG GAGAG

4 ATTCG CACGG GTTGG

uuvvw
GGAAT
GGAAT
AAGGT
GGCCT

UUVVW

AGAAT
GGCAT
GAGGT
GGACT

wXyyy
TCTTT
TCTTT
TCCCC
TCCCC

WXyyy
TCCTC
TCTCC
TCTTT
TCCCT

FIG. 1. Sampling of bootstrap and randomized data from an
original data matrix.

Randomized data sets are constructed from bootstrap data
sets by the method of Archie (17): (i) the values of each of the
c characters in D* are permuted among the s species, to make
a new data set, Dt (Fig. 1), such that any residual taxonomic
information in Dt is randomized among the species; and (ii)
the same algorithm, A, as was applied to D*, is then used to
estimate a phylogeny, Tt, from Dt.

This method of randomization is used because it compares
each T* with a corresponding Tt. Any tendency of A to
estimate a tree with a particular topology, given certain
frequencies of characters in the data set, is thus consistent for
D* and Dt. For instance, the frequencies of nucleotides in a
sequence may influence the topology of an estimated phy-
logeny (18).
The frequencies of G in the sets of bootstrap and random

trees ({T*} and {Tt}, respectively) are 9* and Ot, respectively.
When a pair of trees, (T* and Tt) is examined for the
presence of G, there are four possible outcomes (Table 1). p
is the proportion of untied pairs that are Y*Nt:

0*(1- 6t)
P
=

0*(1 - ot) + (1 - 0*)Ot [1]

The difference between 6* and Ot can be analyzed by a sign
test (19) of the numbers of the two types of untied pair. Tied
pairs are ignored because they do not indicate whetherD* or
Dt provides more support for G.
The appropriate sign test is one-sided because the question

is whether or not 6* is greater than Ot. As explained in the next
paragraph, the number ofD* to be sampled, n, must be chosen
by the investigator. When n is fixed, the sign test compares the
support for G being equally frequent in {T*} and {Tt} so that
0* = Ot, with the support for 6* being greater than that for Ot
by a certain amount. Formally, the hypotheses are

Table 1. Appearance of a group of species or tree topology, G,
in bootstrap and randomized phylogenies (T* and
Tt, respectively)

G in
phylogenies
T* Tt Result Probability Type of pair
Yes Yes Y*Yt a*Ot Tied
Yes No Y*Nt 0*(1 - Ot) Untied
No Yes N*Yt (1 - 0*)Ot Untied
No No N*Nt (1 - 0*) (1 - Ot) Tied
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Ho: p C 0.5,

Hi:p'pi, [2]

where P1 is a value of p chosen by the investigator, as
described below.
n must be chosen because there is no upper limit on the

number ofD* data sets that can be sampled. As n increases,
the power, 1 - (3 (the probability of rejecting a false Ho),
tends to 1. However, the probability of rejecting a true Ho
also rises. Sampling more trees to increase 1 - 3 also reduces
the test's efficiency. Furthermore, as n rises, smaller differ-
ences between 0* and Et can be detected. For any value of
n, Ho is more likely to be rejected at larger true values of p.
P1 is therefore the smallest value of p that the investigator
wishes to declare as indicating a significant difference be-
tween 0* and Et; P1 must also be chosen.
The choice ofn therefore depends on the significance level,

a (i.e., the probability of rejecting a true Ho), 1 - 83, and P1.
From the formula for the power of the sign test (chapter 32
in ref. 20),

twpP"1(- P1)0 + 0.5wa
n= P0) , [3]

Pi

where Wa and we are the standardized normal deviates for
upper-tail probabilities of a and P3. In practice, n is the next
integer above the value calculated by Eq. 3. This expression
is slightly conservative for small n, but only slightly improved
efficiency is gained by calculating n exactly. n is tabulated for
some values of a, /3, and P1 (Table 2).
When n samples are drawn, then for given a, the rejection

number, r, is the number ofY*Nt pairs that must be sampled
for Ho to be rejected. When at least (n - r) + 1 N*Yt pairs
are sampled, Ho is accepted. Some values of r are listed in
Table 2, and more extensive tables are available (19).
The efficiency of the test can be improved by a simple

sequential testing procedure. Once r Y*Nt pairs have been
sampled, the test can be stopped and Ho rejected, since Ho
cannot now possibly be accepted. Similarly, Ho can be
accepted as soon as (n - r) + 1 N*Yt pairs have been drawn.
This simple curtailment of the test does not affect its power
or significance level (21) and may produce savings in the use
of computing resources and the investigator's time.
To set pi, a value of 9* must be chosen by the investigator.

Ot must be estimated, either from theoretical models of
evolution (22, 23) or by examining the frequency of G and
similar groups or trees in {Tf}. The later method is generally
preferable and is used in this paper, since phylogeny estima-
tion programs may not produce trees in the frequencies
expected from theory.

If both Ot and 0* are very small, many D* data sets might
be sampled, but insufficient untied pairs might be obtained

Table 2. Number of samples (n) to achieve power 1 - ,B in sign
tests and rejection numbers (r) for several P1

Tails A = 0.05 P = 0.01 A= 0.001
P1 of test n (r) n (r) n (r)
0.75 1 38 (25) 76 (49) 134 (85)
0.75 2 46 (30) 85 (55) 143 (92)
0.90 1 11 (9) 22 (17) 39 (30)
0.90 2 14 (12) 25 (19) 42 (32)
0.95 1 7 (7) 14 (12) 25 (21)
0.95 2 9 (8) 16 (14) 27 (23)
0.99 1 5 (5) 9 (9) 15 (14)
0.99 2 6 (6) 10 (10) 16 (15)

Significance level a = ,B for one-tailed tests and a = (3/2 for
two-tailed tests.

for Ho to be accepted or rejected. In this case, it would be
reasonable to decide before starting the test that, should a
certain number, t, ofD* be sampled but neither r Y*Nt pairs
nor (n - r) + 1 N*Yt pairs be obtained, sampling should be
terminated. This inevitably results in a loss of power, but it
might reasonably be felt that, if 9* were so small that no
decision could be made before t trees were drawn, any
support for G would be too low to be of genuine interest.
Examples. For the plant 5S rRNA data, D* data sets were

drawn from the 121 positions in the aligned sequence. Ran-
dom numbers required for bootstrap sampling were gener-
ated by subroutine GO5FAF in the NAG Fortran Library,
version 15 (Numerical Algorithms Group, Oxford). One Dt
was drawn from each D* by permuting the bases in each
position in D* among the 21 species studied, using the NAG
G05EHF subroutine. (Randomization and permutation can
also be done by the SEQBOOT programme in PHYLIP.) The
same random number seed for the Jumble option in DNAPARS
was used for corresponding D* and Dt, so that the same input
order of species was used in both cases.
Four tests are used to illustrate features of the method. In

each case, a group or topology of interest, G, is defined, and
the null hypothesis, Ho, that G does not exist, is tested by
examining whether 9* < Ot.i.e., whether the observed data
give no better support to G than random data do.

(i) Spermatophytes as a group. Of the 21 plants in the data
set, 12 are spermatophytes (seed plants). G was any tree in
which these 12 were a monophyletic group. 9t was extremely
small; the probability that, if a Tt had a clade of 12 species
(which was not always the case), that clade would consist of
the 12 spermatophytes is (I -1 = 3.4 x 10-6. Even ifP1 were
as high as 0.99, 9* could be at least as low as 3.4 x 10-4 [Eq.
1]. Therefore, r = S for a = /3 = 0.05, 9 for a = 13 = 0.01, and
14 for a = / = 0.001 (Table 2). These r values were reached
after a total of 8, 13, and 20 samples respectively, with no
N*Yt pair being observed; the rem samples were N*Yt
tied pairs. Therefore, Ho was rejected for any reasonable value
of P*. The data are consistent therefore with the uncontro-
versial hypothesis that spermatophytes are a natural group.

(ii) Charophytes as a sister group of land plants. This
example is a situation in which Ot must be chosen more
judiciously than in example i. The Charophyta, a division of
freshwater algae, are thought to be the sister group of land
plants (11, 24). To test this hypothesis, G was defined as any
tree in which Nitellaflexilis, a charophyte, is an outgroup of
the 20 land plants in the data set. Fifteen of20 Tt phylogenies
had one species as an outgroup of the other 20, so 9T was
estimated to be 0.75/21 = 0.036. Forthe sake ofthis example,
letHobe rejected when 9* 2 0.25. With0.04 as a conservative
estimate of Ot, Pi = 0.89 (Eq. 1). By setting P1 = 0.9, then r
= 9 for a = 13 = 0.05, 17 for a = /3 = 0.01, and 30 for a = P
= 0.001 (Table 2). These numbers were reached after 13, 22,
and 45 samples, respectively. The hypothesis that N. flexilis
is a sister group of land plants was therefore supported.

(iii) Pteridophytes and spermatophytes as a group. In
addition to 12 spermatophytes, the data include 4 pterido-
phytes. Of 100 samples, these 16 species were never observed
as a group in either {T*} or {Tt}. The test might reasonably be
terminated at this point because any evidence that pterido-
phytes and spermatophytes togetherform agroup might be too
weak to be of interest. (Note that the choice of 100 samples is
arbitrary; a higher or lower number can be used.)

(iv) Wheat as an outgroup. To illustrate the acceptance of
an Ho, the unreasonable hypothesis that wheat is an outgroup
of the other 20 plants was tested. 9* and 9t had the same
values as in example ii. For a = /3 = 0.05, therefore, n = 11
and r = 9 (Table 2). Wheat was an outgroup in {Tt} in samples
5, 30, and 45 but in none ofthe first 45 T* phylogenies. Howas
therefore accepted.

Evolution: Brown
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For the eyespot RAPD data, D* data sets were sampled
from the set of 74 bands, and one Dt was drawn from each
D* by permuting the presence or absence of each band in D*
among the 23 isolates. Random numbers were generated by
the URAND function in the GENSTAT 5 package.
The purpose of this study was to test whether or not the C-,

R-, and W-type isolates were three distinct groups (15). G was
therefore any tree in which they were indeed distinct. Ot was
tiny; if Tt were to contain groups of 4, 8, and 11 isolates
(which is unlikely in itself), the probability that these would
consist of all C-types, all R-types, and all W-types, respec-
tively, is 4!8!11!/23! = 1.5 x 10-9. When using pi = 0.99, G
appeared in 14 of the first 20 T* bootstrap phylogenies but in
none of the corresponding Tt random phylogenies. Ho (null
hypothesis) that the C, R, and W pathotypes are not all
distinct groups was therefore rejected, with a = 3= 0.001 for
any reasonable value of 6*.

Test 2: Relative Support for Two Groups

If more than a few species are studied, the data may support
many different groups significantly. Usually, some of these
groups will be contradictory in that they cannot both be
possible. Therefore, a test of the relative support for two
alternative groups, G1 and G-1, would be useful.
A sign test can also be used here, to compare the frequen-

cies of two different groups in bootstrap trees. Although ax2
test of the goodness of fit of the frequencies to a 1:1
distribution would be more efficient, the calculation ofpower
is considerably simpler for a sign test.
The frequencies of G1 and G-1 in {T*} are O1 and O-1

respectively, such that 0 + 0-1 = 1. Only trees containing G1
or G-1 are included in the analysis, the remainder being
ignored. There are therefore no tied pairs, so p = O. n is
approximately

(wept5(1 - pl)0.5 + 0.5Wa/2 2
n= -1

-. [41
Pi/

(20). The hypotheses for a two-tailed sign test are

Ho: p = 0.5,

Hl:p>pl, [51

H-1: p <p-1,

with the assumption that G1 is more frequent than G-1 (i.e.,
61 > 6i). Therefore, Ho is that neither tree is supported
significantly over its alternative, H1 is that G1 is supported
over G-1, and H-1 is that G-1 is supported over G1. n and r
are given in Table 2 for some values of a, 83, and Pi. Ho is
rejected in favor ofH1 and ofH-1 when at least r G, or r G-1
are observed, respectively. Ho is accepted otherwise. As in
Test 1, curtailment can be used to improve efficiency without
reducing the power or significance level.

Examples. In the examples below, 6 = 0.9 and 0-1 = 0.1.
The tests are therefore of whether or not the data support G1
at least 9 times as well as G_1 or vice versa, with a = 3= 0.05,
n = 14 (Eq. 4), and r = 12 (Table 2).

(i) Test oftwo hypotheses about the relationships between
angiosperms and gymnosperms. G1 is any tree in which
angiosperms are a monophyletic group descended from gym-
nosperms in such a way that gymnosperms are not mono-
phyletic. In G-1, angiosperms and gymnosperms are sister
groups. Trees in which spermatophytes are not monophyletic
or which do not fit the criteria for G1 or G-1 are ignored. Of
the first 21 T* bootstrap phylogenies sampled, 8 contained G1
while 3 had G-1. Ho was accepted, since neither alternative
hypothesis could be accepted. Therefore, there is insufficient

information in the 5S rRNA sequence for at least 9 times more
support to be given to one tree than to the other.

(ii) Comparison of two hypotheses about the C-, R-, and
W-types ofeyespot. Considering only trees in which all three
are distinct groups, G1 is any tree in which R-types are a sister
group of C- and W-types, while in G-1, W-types are a sister
group of C- and R-types. Hypothesis H1, that G1 is at least 9
times better supported than G-1, was accepted after 12 T*
bootstrap phylogenies with G1 but none with G-1 had been
drawn. A total of 21 samples were drawn, 9 of which had
neither G1 nor G-1. This result is consistent with the repro-
ductive biology of P. herpotrichoides, since C- and W-type
isolates can be crossed with one another, but attempts to
cross either with R-types have not been successful (25, 26).

Test 3: Support for a Group over AR Possible Alternatives

The aim of most taxomonists who use the 95% rule is to test
whether or not a group of species is supported over all
possible alternatives. A possible alternative to this rule uses
a similar method to Test 2. In this case, G1 is the group of
interest, while G-1 is any group that includes G1 and other
species so that G1 is not monophyletic. Alternatively, G1
might be a tree that has certain characteristics, and G-1 be
any other tree. The only difference between this test and Test
2 is that a one-tailed test should be used, since the question
is whether or not G1 is better supported than G-1. All T*
bootstrap phylogenies are used in the analysis, since all
contain either G1 or G-1.
As in Test 2, p = Oi. n is given by Eq. 3, and the hypotheses

are given by Eq. 2, since the test is one-sided. Any value of
6i between 0.5 and 1 can be chosen. A smaller 6 allows Ho
to be rejected when the true frequency of G1 is closer to 0.5,
but lower values of 61 require more samples. The two tests
shown here use a = 3 = 0.05 and 6 = 0.75, so n = 38 (Eq.
3) and r = 25 (Table 2).

In the first example, G1 was seed plants. The hypothesis
that G1, being monophyletic, was supported over all alter-
natives was accepted after 32 samples had been drawn. At
that point, 25 T* phylogenies had G1 and 7 did not. In the
second example, G1 was any tree in which C-, R-, and W-type
eyespot isolates were distinct groups. The hypothesis that G1
was supported over all alternatives was rejected after 35
samples because at that point 13 T* phylogenies did not
contain G1. This does not mean that there is no evidence for
this tree (see Test 1) but merely that the data are insufficiently
informative for the support for this tree to be significantly
greater than the total support for all other trees, given the
chosen value of 61.

DISCUSSION
This paper describes ways in which the bootstrap can be used
to construct statistical tests for phylogenies. By comparing
specified null and alternative hypotheses, they permit infer-
ences about whether or not groups of species are significantly
supported. The methods allow tests for tree topologies as
well as groups of species and can be applied to other
dendrograms as well as phylogenies.

Hypothesis Tests. Test 1 examines the question posed by
Felsenstein (7), whether the data give significant support to
a group of species being monophyletic. This is done by testing
whether the observations provide more support to a group or
topology (G) than random data would. This test, of whether
or not the observations are consistent with a particular
distribution of the data, is akin to a conventional hypothesis
test, such as whether or not a sample could have been drawn
from a population with a particular mean value of a variable.

Since this method only tests whether or not the data
support a single G, it may indicate better-than-random sup-
port for a number of trees that differ somewhat from the one

122% Evolution: Brown



Proc. Natl. Acad. Sci. USA 91 (1994) 12297

that is best supported. In itself, therefore, Test 1 is not
sufficient to indicate that a group or tree is supported to the
exclusion of all other groups or trees.

Test 3 is more ambitious in testing the support for G over
all possible alternatives. Summarizing the evidence for G by
its observed frequency in {T*} alone and declaring support to
be significant when this frequency is at least 95% are inap-
propriate (refs. 8-10; also see the Introduction). Test 3 takes
a different approach to analyzing the evidence for G-
namely, by testing statistically whether or not its frequency
in {T*} exceeds 0.5. This hypothesis-testing method is con-
siderably more efficient than attempting to calibrate the
bootstrap to relate the frequency of G in {T*} to the proba-
bility that G is true (27).
The hypothesis examined by Test 3 is more restrictive than

that of Test 1. The eyespot example shows that Test 3 may
not reject all possible alternatives to G, even if Test 1
indicates better-than-random support for G. This may occur
when the data are insufficiently informative to give significant
support to one single group over all alternatives.

Test 2 examines whether one of two different, possibly
contradictory groups or topologies is significantly better sup-
ported than the other. This method may be particularly useful
when Test 1 shows that both groups have significant support,
but Test 3 supports neither over all ofthe possible alternatives.
A sequential form of the sign test, using curtailment, may

improve the tests' efficiency. The examples given above
show that a curtailed test is little more efficient than the
noncurtailed version when H1 is true and a and 3 are high, but
the saving in the number of trees estimated can be high when
Ho is true or a or /3 is low. More sophisticated sequential tests
are available (28), but their implementation is generally rather
more complex than that of simple curtailment.

In many papers on evolution, a phylogeny is shown, and the
frequency with which every group in that tree appeared in {T*}
is given. This procedure is equivalent to simultaneously car-
rying out tests of numerous different hypotheses. Further-
more, since bootstrap frequencies are shown only for groups
that appear in the phylogeny, the hypotheses tested are, in
effect, only chosen after the data have been inspected. The
statistical problems of multiple hypothesis tests and of testing
hypotheses suggested by the data are well known. To avoid the
latter problem, it would be more satisfactory if the hypotheses
to be tested were chosen before the data were analyzed.
The former problem, of multiple hypothesis tests, is a

long-standing difficulty in the analysis ofphylogenies (7). The
main problem is that, given a finite set of species, no two
groups are completely independent of one another. Although
the hypotheses cannot be independent, they can still be
tested independently by drawing a different set of bootstrap
samples to test each hypothesis. In this paper, the six tests
using the plant 5S rRNA data used six different bootstrap
samples; a similar approach was taken with the eyespot
RAPD data. When several hypotheses are tested, the true
significance level-i.e., the probability of a Type I error-will
be higher than the quoted value of a. As with other cases of
multiple, independent tests, this can be corrected either by
using a lower a or, more rigorously, by using sequential
Bonferroni tests (e.g., ref. 29, which describes a less con-
servative test than that in ref. 30).

Validity of the Bootstrap. Although I have described hy-
pothesis tests based on Felsenstein's method of bootstrap-
ping phylogenies (7), the use of the bootstrap in phylogeny
estimation lacks rigorous justification. In particular, three
areas require further study if the validity of bootstrapping is
to be established.

First, phylogeny estimation is only reliable when the
algorithm used is consistent and unbiased (1, 2). The fre-
quency of a group in {T*} is therefore only meaningful when
such an algorithm is used. The base composition of the

sequence may also affect the bootstrap frequency of a group
produced by some algorithms (31).

Secondly, the bootstrap relies on the assumption that the
resampled units are independent and identically distributed.
This assumption is unlikely to be wholly valid for bases in the
sequence of a functional gene. Clearly, some pairs of bases
in 5S rRNA cannot be independent of one another because
compensatory double mutations can occur in stem-and-loop
structures (12). However, there are similar problems with
other genes, since the function of the protein product de-
pends on its tertiary structure, which in turn depends on the
primary sequence. Similarly, RAPD bands, isozymes, and
other molecular markers are only independent if they are
linked neither to each other nor to genes that are under
selection. This assumption is rarely tested. The effects of
correlation of resampled units on the outcome of bootstrap
methods requires analysis (7).
More generally, the bootstrap assumes that the statistic to

be analyzed is a smooth function of the distribution of the
variable that is resampled (4, 5). This is true for real-valued
statistics such as the mean and correlation coefficient, but in
a phylogeny, the group or topology Gcan have only one oftwo
states, being present or absent. Making inferences about
phylogenies by bootstrapping, by methods described here or
elsewhere (7, 8, 27, 32), requires the theory ofthe bootstrap to
be extended to binary-valued statistics. This has yet to be
done.
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