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SUMMARY

It has long been speculated that metabolites, pro-
duced by gut microbiota, influence host metabolism
in health and diseases. Here, we reveal that indole,
a metabolite produced from the dissimilation of
tryptophan, is able to modulate the secretion of
glucagon-like peptide-1 (GLP-1) from immortalized
and primary mouse colonic L cells. Indole increased
GLP-1 release during short exposures, but it reduced
secretion over longer periods. These effects were
attributed to the ability of indole to affect two key
molecular mechanisms in L cells. On the one
hand, indole inhibited voltage-gated K+ channels,
increased the temporal width of action potentials
fired by L cells, and led to enhanced Ca2+ entry,
thereby acutely stimulating GLP-1 secretion. On the
other hand, indole slowed ATP production by block-
ing NADH dehydrogenase, thus leading to a pro-
longed reduction of GLP-1 secretion. Our results
identify indole as a signaling molecule by which gut
microbiota communicate with L cells and influence
host metabolism.

INTRODUCTION

Obesity is one of the biggest health and socioeconomic issues of

the 21st century, with the number of obese individuals worldwide

almost doubling within the last 30 years. People suffering from

obesity are at high risk of developing other metabolic diseases

such as type 2 diabetesmellitus (T2DM), cardiovascular disease,

and nonalcoholic fatty liver disease (Nicholson et al., 2012).

Increasing physical activity and reducing food intake are recom-

mended when treating obesity and associated metabolic dis-

eases, but outcomes are only moderately successful as such

lifestyle changes are not sustained long-term by most patients.

Alternative strategies therefore need to be developed in order

to control body weight more effectively. Anorectic gut hormones

such as glucagon-like peptide 1 (GLP-1) and peptide YY are

secreted into the circulatory system by enteroendocrine L cells

in response to changes in the content of the gut lumen and are

at the frontline of the search for new therapies. Gut hormones

play essential roles in a wide range of metabolic functions such

as the regulation of food absorption, appetite, and glucose ho-

meostasis. As a consequence, drugs that enhance GLP-1 action

are now widely used in the treatment of T2DM (Garber et al.,

2009; Nauck et al., 2009; Zinman et al., 2009) and are under

investigation for the treatment of obesity (Marre et al., 2009).

Attention is also turning toward the enteroendocrine L cells

themselves andwhether they could be targeted for the treatment

of obesity and diabetes.

Enteroendocrine L cells are distributed along the length of the

intestinal epithelium and thus make direct contact with the gut

microbiota. The colon not only harbors the highest density of en-

teroendocrine L cells within the intestine, but it is also host to the

largest number of bacteria. Although it is widely believed that gut

microbiota can modulate the function of colonic L cells, our un-

derstanding of the molecular mechanisms underlying this poten-

tial crosstalk is limited (Cani et al., 2013; Devaraj et al., 2013).

Among the metabolites produced by bacteria in the gut, recent

attention has focused on short-chain fatty acids, produced by

the fermentation of unabsorbed starch and nonstarch polysac-

charides. Short chain fatty acids activate G protein coupled re-

ceptors (GPCRs) expressed on the plasma membrane of L cells,

enhancing L cell number and secretion (Cani et al., 2013; Pe-

tersen et al., 2014; Plaisancié et al., 1995; Psichas et al., 2014;

Tarini and Wolever, 2010; Tolhurst et al., 2012). Many other bac-

terial metabolites are also abundantly present within the luminal

contents of the colon (Nyangale et al., 2012). Here we focused on

ametabolite of tryptophan, indole, as it has recently been shown

that plasma tryptophan concentrations are decreased in mice

following Roux-en-Y gastric bypass surgery (Mutch et al.,

2009) and elevated in people with a high risk of developing

T2DM (Wang et al., 2011). Moreover, indole production has

been shown previously to vary with the dietary tryptophan con-

tent in human subjects (Bryan, 1966).

Indole, the most prevalent metabolite of tryptophan, is pro-

duced by a wide range of bacterial species, including those

belonging to the genera Escherichia, Bacteroides, and Clos-

tridium (DeMoss and Moser, 1969; Lee and Lee, 2010; Smith

and Macfarlane, 1996). These bacterial species use tryptopha-

nase to degrade tryptophan into indole, pyruvate, and ammonia,
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which leads to an average indole concentration ranging from

0.25 to 1.2 mM in human faeces (Karlin et al., 1985; Zuccato

et al., 1993). Indole has been previously identified as a beneficial

signaling molecule involved in crosstalk between the microbiota

and gut wall by increasing epithelial cell tight junctions and atten-

uating indicators of inflammation (Bansal et al., 2010). Here we

show that the bacterial signal indole modulates GLP-1 secretion

from enteroendocrine cells, and we identify the molecular mech-

anisms underlying this interaction.

RESULTS

Indole Modulates GLP-1 Secretion from GLUTag Cells
Cumulative GLP-1 secretion from GLUTag cells was measured

in the presence of saline buffer containing 1 mM glucose and

0.1% (wt/vol) BSA over 240 min (Figure 1A). The GLP-1 concen-

tration in the medium increased approximately linearly with time

under these conditions, reflecting a relatively constant GLP-1

secretory rate (Figure 1B). In the additional presence of 1 mM

indole, GLP-1 secretion was modified over both short and

long time periods. Very high GLP-1 concentrations were

measured in the medium of indole-treated cells after only

5 min, indicating a rapid initial stimulation of secretion (Figures

1A and 1B). Thereafter, GLP-1 concentrations continued to

rise, but the rate of release was slower than that observed in

the absence of indole (Figure 1B). At the end of the 240 min in-

cubation period, cumulative released GLP-1 was �35% less in

the presence of 1 mM indole than in its absence. These data

indicate that although indole acutely stimulates GLP-1 secre-

tion, it exerts a suppressive effect on the rate of hormone

release over prolonged time periods. We examined the dose

dependence of indole on both the short- and long-term actions

by measuring cumulative GLP-1 release after 6 and 240 min in-

cubations (Figures 1C and 1D). After 6 min, the acute stimula-

tory effect of indole was evident at concentrations above

1 mM. After 240 min, by contrast, the suppressive effect was

evident at indole concentrations as low as 0.3 mM. To clarify

the interaction between indole and GLUTag cells, we investi-

gated the molecular mechanisms that determine the modulation

of GLP-1 secretion by indole.

Indole Modifies the Action Potential Waveform
GLUTag cells fire action potentials, which are coupled to influx

of extracellular calcium and the exocytosis of GLP-1 loaded ves-

icles (Gribble et al., 2003). We investigated the effect of indole on

action potential firing using whole-cell current clamp recordings

of GLUTag cells stimulated by injection of a series of 20 ms cur-

rent pulses of increasing amplitude (Inset of Figure 2A). In the

presence of 1 mM indole, we observed that the temporal width

of the action potential was increased almost 2-fold (Figures 2A

and 2B). This was associated with a slower rate of membrane

repolarization (Figure 2A), but no apparent change in the rate

of membrane depolarization during the action potential upstroke

(Figure 2A).

Figure 1. Modulation of GLP-1 Secretion in

GLUTag Cells by Indole

(A) Cumulative GLP-1 secretion from GLUTag

cells stimulated with 1 mM glucose, measured at

different time points. Cells were incubated with

and without 1 mM indole, and secretion was

normalized to the 60 min, 1 mM glucose, time

point (average value of 15 pg/ml) from the same

experiment. Each data point was calculated by

averaging over eight or more independent mea-

surements. Significance was calculated at spe-

cific time points comparing the secretion at 1 mM

glucose and the secretion at 1mMglucose + 1mM

indole.

(B) Calculated rates of GLP-1 secretion over the

time periods indicated, calculated from the data

in (A). a.u., arbitrary units.

(C) GLP-1 secretion measured in response to

different indole concentrations for an incubation

time of 6 min in the presence of 1 mM glucose

(measured from three independent measure-

ments). To gain resolution the data weremeasured

on a plate with high cell density (45 pg/ml GLP-1

secreted after 6 min in 1 mM glucose).

(D) GLP-1 secretion measured in response to

different indole concentration for an incubation

time of 240 min on a plate with high cell density

(measured from three independent measure-

ments). Data are presented as mean ± SEM. *p <

0.05, **p < 0.01, ***p < 0.001 by paired Student’s

t test. The lines between points are drawn to guide

the eye.
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Indole Inhibits Voltage-Gated K+ Channels
To analyze which ionic currents underlie the slower rate of mem-

brane repolarization,we isolatedandmeasured the voltage-gated

K+ and Na+ currents, which are the key components involved in

action potential firing. Ionic currents through voltage-gated K+

channels were measured using whole-cell patch clamp electro-

physiology, in the presence of the voltage-gated Na+ channel in-

hibitor, tetrodotoxin (TTX; 0.3 mM) (Figures 2C–2F). We observed

that theK+ currentswere inhibitedmore than 50%by 1mM indole

(Figure 2F). Voltage-gated Na+ and Ca2+ currents, by contrast,

were not affected by the presence of indole (Figure S1 available

online). These data strongly suggest that indole widens the action

potentials by reducing the amplitude of the K+ current, thus slow-

ing membrane repolarization.

Indole Increases the Intracellular Concentration of Ca2+

Ions in GLUTag Cells
We next investigated whether the altered action potential wave-

form results in changes in the concentration of intracellular Ca2+

ions. Ca2+ was measured upon exposure of GLUTag cells to

1 mM indole, using the ratiometric dye Fura-2 AM. Indole was

found to result in a rapid and reversible elevation of intracellular

Ca2+ (Figures 2G and 2H). As the properties of voltage-gated

Ca2+ currents were not themselves influenced by indole, the

elevation of intracellular Ca2+ is likely to arise from the widened

action potentials, resulting in the cell spending more time in a

depolarized state.

Indole Reduces ATP Production
As indole was found to reduce the rate of GLP-1 secretion during

long-term exposures (30–240min; Figure 1B), we investigated its

effects on cellular metabolism. Indole is known to affect mito-

chondrial ATP production by blocking NADH dehydrogenase

and by facilitating proton permeation (‘‘uncoupling’’) through

the mitochondrial membrane (Chimerel et al., 2013). To monitor

NAD(P)H levels in GLUTag cells, we excited the intrinsic fluores-

cence of NAD(P)Hmolecules at 360 nm (±15 nm). In the presence

of indole, NAD(P)H autofluorescence was observed to increase

(Figure 3A), as would be expected when the oxidation of NADH

toNAD+ is blocked. As apositive control, we used 1mMrotenone,

which is an established blocker of NADH dehydrogenase. Rote-

none, like indole, resulted in an increase in NAD(P)H autofluores-

cence. We also assessed the ability of indole to block oxidative

phosphorylation, by monitoring the intracellular ATP/ADP ratio

using the genetically encoded sensor, Perceval, which was tran-

siently transfected into GLUTag cells (Berg et al., 2009; Tarasov

et al., 2012). Addition of indole to the extracellular medium

Figure 2. Reshaping of the Action Potential by Indole

(A) Representative traces of action potentials fired by GLUTag cells measured

in whole-cell patch current clamp recordings. Current was injected to maintain

the cell at ��55 mV, and the action potentials were stimulated by injection of

2 ms depolarizing currents of increasing magnitude (in steps of 2 pA) as shown

in the inset. Recordings were made in standard bath solution, before and

during perfusion with 1 mM indole, and after indole washout.

(B) The width of the action potential measured at the threshold of the steep

action potential upstroke (as indicated by the blue arrow in (A). Values are

means of 5 or more independent measurements. Inhibition of K+ currents in

GLUTag cells by indole.

(C–E) Representative voltage clamp traces from GLUTag cells recorded using

the whole-cell patch clamp configuration in saline buffer containing 0.3 mM

TTX before (C), during (D), and after (E) the addition of 1 mM indole.

(F) Steady-state current voltage relationships averaged over five different ex-

periments. Cells were maintained at a holding potential of �70 mV, and a

series of square wave voltage pulses at 5 mV increments (between �50

and +40 mV) was applied at 0.2 s intervals. Currents were normalized to the

control measured at +40 mV. Increased intracellular Ca2+ concentration in the

presence of indole.

(G) Calcium concentrations measured in single GLUTag cells, recorded using

fura-2AM. The 1 mM indole was perfused as indicated by the horizontal bar.

Three representative traces are shown.

(H) Mean data from 77 cells recorded as in (G), before and during 1 mM indole

perfusion, and after indole washout.

All data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by

Student’s t test.
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resulted in a decrease in the Perceval fluorescence intensity,

indicative of a fall in the intracellular ATP/ADP ratio (Figure 3B).

Perceval fluorescence decreased with a rate of 1.5% ± 0.3%/

min in the presence of 1 mM indole and with a rate of 7.5 ±

1.5%/min in 1 mM rotenone. These data suggest that indole

affects intracellular ATP generation. In light of this result, we hy-

pothesize that the observed inhibitory effect of indole on GLP-1

secretion over longer time periods is a consequence of the low-

ered intracellular ATP concentration in GLUTag cells.

Influence of Indole on KCl-Triggered GLP-1 Secretion
from GLUTag Cells
We showed previously that GLP-1 secretion by GLUTag cells is

strongly stimulated by increasing the extracellular K+ concentra-

tion, which results in membrane depolarization and voltage-

gated Ca2+ entry (Friedlander et al., 2011; Reimann et al.,

2005). At the same time this is an ATP-demanding process, as

energy is required to sustain the high rate of GLP-1 release.

When GLUTag cells were incubated in the presence of 30 mM

KCl, GLP-1 secretion increased 13-fold compared with that

measured from cells in 4.5 mM KCl, as measured by cumulative

secretion over 60 min. As evident from Figure 4, 1 mM indole did

not affect cumulative GLP-1 secretion within the first 5 min of

exposure to KCl, but reduced cumulative release after 15 min

by 25% and after 60 min by �70%. When these data were rep-

resented as the rates of secretion during different time intervals,

it was evident that indole did not affect the GLP-1 secretory rate

during the first 5 min of exposure to 30 mM KCl, but drastically

reduced secretion in the 5–15 min interval and beyond.

Effects of Indole on Primary L Cells
To investigate whether the effects of indole on GLUTag cells are

relevant to native colonic L cells, we repeated some of the key

experiments in primary murine colonic cultures. The effect of

indole over short time periods was tested by analyzing its effect

on intracellular Ca2+ levels in L cells, measured using a geneti-

cally encoded calcium sensor GCaMP3 specifically targeted to

the L cell population in a transgenic mouse model. Intracellular

Ca2+ levels in primary L cells increased upon exposure to

1 mM indole (Figures 5A and 5B), confirming that the electro-

physiological effects of indole recorded inGLUTag cells are likely

also to be relevant in the native L cell population. To test for a

longer-term suppressive effect of indole on cellular metabolism,

we measured GLP-1 release from primary colonic cultures after

a 2 hr incubation period. This was reduced by�50% in the pres-

ence of 1 mM indole (Figure 5C), consistent with the similar

effects observed in GLUTag cells.

DISCUSSION

Our observations demonstrate that GLP-1 secretion from enter-

oendocrine cells is modified by exposure to indole at concentra-

tions similar to those found in the human large intestine. Interest-

ingly, indole enhanced the rate of GLP-1 release over short

exposure times but slowed secretion over longer time periods.

Our data suggest that the production of indole by the gut micro-

biota could have a major impact on host metabolism, presenting

indole as a bacteria-derived signaling molecule capable of

modulating enteroendocrine cell function.

Figure 3. Effect of Indole on NAD(P)H and ATP/ADP Ratio

(A and B) Representative traces of NAD(P)H autofluorescence (A) and the ATP/

ADP ratio monitored by Perceval fluorescence (B), in three individual GLUTag

cells. The 1mM indole was added to the perfusion solution, as indicated by the

red bars, and 1 mM rotenone was perfused as indicated by the blue bars.

(C) Mean rates of change in the signals for NAD(P)H and ATP/ADP ratio

calculated during addition of either 1 mM indole or 1 mM rotenone. The rate

measured during the control (in the presence of saline plus 1 mM glucose)

is set to zero by subtracting it from the rates measured at 1 mM indole,

washout and 1 mM rotenone for each individual cell. In the graph the rates are

the means ± SEM for 27 cells.

Figure 4. Effect of Indole on KCl Stimulated GLP-1 Secretion

(A) Cumulative GLP-1 secretion fromGLUTag cells stimulatedwith 30mMKCl,

measured at different time points. Cells were incubated with and without 1 mM

indole, and secretion was normalized to the 60 min, 30 mM KCl time point

(average value 232 pg/ml) from the same experiment. Each data point was

calculated by averaging over six independent measurements.

(B) Calculated rates of GLP-1 secretion over the time periods indicated,

calculated from the measurements obtained in (A).

Data represent the mean ± SEM. **p < 0.01, ***p < 0.001 by Student’s t test.
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We identified distinct molecular mechanisms underlying the

stimulatory and inhibitory effects of indole on GLP-1 secretion.

Over short time periods, indole widened action potentials by

reducing the current passing through voltage-gated potassium

channels. This resulted in prolonged activation of voltage-gated

Ca2+ channels and translated into an enhanced rate of GLP-1

release. Consistent with the widened action potentials, intracel-

lular Ca2+ levels were approximately doubled in the presence of

1 mM indole. It is interesting to note that the effects of indole on

intracellular Ca2+ and action potential waveform were fully

reversed following indole washout. This is consistent with previ-

ous findings that indole diffuses freely through lipid membranes

(Piñero-Fernandez et al., 2011) and shows that indole does not

bind irreversibly to the cell membrane or ion channels. Support-

ing our observations, inhibition of voltage-gatedpotassiumchan-

nels bysimilar concentrationsof indolehasbeen reported inother

biological models (Avdonin and Hoshi, 2001), suggesting that

indole could affect a range of different excitable cell types even

if their complement of K+ channels is not identical. It is therefore

not surprising that the stimulatory effect of indole on Ca2+ con-

centrations in GLUTag cells was translatable to L cells in primary

colonic cultures. Although GLP-1 secretion from primary colonic

L cells over less than 30 min is difficult to measure by immuno-

assay because GLP-1 concentrations are at the lower end of

the assay range, increases in intracellular Ca2+ are an established

marker of L cell activity (Tolhurst et al., 2011) and are likely to

translate to an enhancement ofGLP-1 release over short timepe-

riods.WhenGLUTag cellswere activatedwith 30mMKCl,GLP-1

secretion increased �15-fold compared with saline buffer con-

taining only 4.5 mM KCl (42 pg/ml versus 2.5 pg/ml after 5 min),

but was not further enhanced by indole. This was not surprising,

as 30mMKCl depolarizes the cells considerably beyond the acti-

vation threshold of voltage-gated Ca2+ channels (��40mV), and

any widening of action potentials would become irrelevant.

Over longer time periods, indole acted as an inhibitor of NADH

dehydrogenase and an uncoupler of mitochondrial oxidative

phosphorylation, resulting in a lowered intracellular ATP concen-

tration in GLUTag cells. One action of reduced ATP levels would

be to open ATP-sensitive K+ (KATP) channels in GLUTag-cells,

thereby hyperpolarizing the plasma membrane and slowing

GLP-1 release (Reimann and Gribble, 2002). While this might

contribute to the inhibitory effect of indole on cells treated with

1 mM glucose, it cannot account for the suppression by indole

of GLP-1 secretion at high extracellular K+ concentrations,

because under these conditions a larger K+ current would rather

tend to promote K+-dependent membrane depolarization and

calcium entry. An alternative potential explanation is that when

mitochondrial ATP generation is suppressed by indole, there is

insufficient energy to support vesicle exocytosis and replenish-

ment, particularly when high secretory rates need to be sus-

tained over long periods.

Interestingly, indole exerted an inhibitory effect on GLP-1

releaseat slightly lower concentrations (0.3mM) than those found

to significantly enhance secretion (1mM).Which of these actions

of indole dominates in vivo is unclear, but it is possible that low

indole concentrations cause a tonic suppression of secretion

from colonic L cells, with the balance changing in favor of

GLP-1 stimulation after a high protein meal. An acute stimulatory

effect on GLP-1 secretion could contribute to the observed inhi-

bition of appetite when rats were fed on a high protein diet as

compared with carbohydrate and fat (Aziz and Anderson, 2003;

Peters et al., 2001). Expression of the tryptophanase enzyme in

most bacteria is induced in the presence of tryptophan and

repressed by glucose (Gong et al., 2001). High protein diets

would therefore tend to promote, and high sugar diets suppress,

indole production.Moreover, it has been shown that protein diets

with high tryptophan content are better at suppressing appetite,

and itwas speculated that this effectwasdue to the conversion of

tryptophan to serotonin, a neurotransmitter involved in the sup-

pression of appetite (Aziz and Anderson, 2003). Here we have

identified another possible mechanism for this inhibition,

involving the production of indole, which stimulatesGLP-1 secre-

tion over short time periods. On the other hand, our measure-

ments suggest that long-term feeding on a moderate to high

protein diet could have an inhibitory effect on GLP-1 production

as ATP levels in L cells could be affected. In the future the ampli-

tudes, timefluctuations, andspatial variation of indole production

should be investigated in the luminal content of the gut to better

understand the crosstalk between the microbiota and the host.

EXPERIMENTAL PROCEDURES

GLP-1 Secretion

All animal procedures were approved by the local ethics review committees

and conformed to UKHomeOffice regulations. GLP-1 secretion was assessed

by immunoassay frombothGLUTag (Drucker et al., 1994) andmouse colonic L

Figure 5. Effects of Indole on L Cells in Pri-

mary Murine Colonic Cultures

(A) Representative trace showing the GCaMP3

fluorescence, reporting the intracellular Ca2+ level,

in a primary colonic L cell perfused with 1 mM

indole and 30 mM KCl, as indicated by the hori-

zontal bars.

(B) Mean GCaMP3 fluorescence from L cells, re-

corded as in (A), before and during indole perfu-

sion, after indole washout, and during perfusion

with 30 mM KCl. Values are means ± SEM for nine

cells.

(C) GLP-1 release measured from primary colonic cultures incubated for 2 hr in the presence of 10 mM glucose, with and without 1 mM indole,

as indicated. Each data point is calculated by averaging over six independent measurements.

*p < 0.05, **p < 0.01 by Student’s t test.
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cells in mixed intestinal epithelial cultures plated as previously described (Re-

imann and Gribble, 2002). In brief, cells were plated in 24-well plates and

cultured overnight. On the day of the experiment, cells were washed twice

with 400 ml of standard saline buffer (4.5 mM KCl, 143.5 mM NaCl, 2.6 mM

CaCl2, 1.2 mM MgCl2, and 10 mM HEPES [pH 7.4 with NaOH]) supplemented

with 1 mM glucose and 0.1% (wt/vol) BSA. Experiments were performed by

incubating the cells with the saline buffer complemented with the correspond-

ing indole (analytical standard grade, Sigma Aldrich) amount diluted from a

500 mM stock in ethanol. For GLUTag cell secretion measurements, the

GLP-1 secreted into the supernatant was quantified. For primary cells, secre-

tion was expressed as a fraction of the total hormone content (secreted + ex-

tracted) measured from a well (Reimann et al., 2008). GLP-1 concentrations

were measured using a total GLP-1 assay (Mesoscale Discovery). For the

maximal stimulation of GLP-1 secretion from GLUTag cells, the KCl concen-

tration in the secretion media was raised to 30 mM while reducing the NaCl

to keep constant osmotic concentrations.

Electrophysiology

GLUTag cells were patch clamped and monitored as previously described

(Reimann et al., 2005). Voltage-gated K+, Na+, Ca2+ currents, and the firing

of action potentials were assessed. In brief, GLUTag cells were plated on

35 mm dishes 1–2 days prior to patching. Microelectrodes were pulled from

filamented borosilicate glass capillaries (GC150TF-15, Harvard Apparatus),

and the tips were coated with yellow beeswax melted at 90�C. The tip of the

microelectrode was fire polished using a microforge (MF-830, Narishige) and

had a resistance of 2–4 MU when filled with patch solution. Membrane poten-

tials and currents were measured with an Axopatch 200B amplifier (Molecular

Devices) through a Digidata 1440A digitiser (Molecular Devices) and

processed with pCLAMP 10.3 software (Molecular Devices). The acquisition

frequency was set to 10 kHz (low-pass Bessel filter), while the sampling fre-

quency was 25 kHz or higher. For Na+ and Ca2+ currents the standard

whole-cell currents were leak subtracted using pCLAMP 10.3 software proto-

col P/4.

The standard whole-cell patch pipette solution contained 107 mM KCl,

1 mM CaCl2, 7 mM MgCl2, 11 mM EGTA, 10 mM HEPES, and 5 mM Na2ATP

(pH 7.2 with KOH). The standard bath solution was the same as above. For

measurement of K+ currents, bath solution contained saline buffer + 0.3 mM

TTX and the pipette solution contained 107 mM KCl, 1 mM CaCl2, 7 mM

MgCl2, 11 mM EGTA, 10 mM HEPES, and 5 mM K2ATP (KOH to pH 7.2).

For measurement of Na+ currents, the bath solution contained 115 mM

NaCl, 2.6 mMCaCl2, 5mMCoCl2, 1.2 mMMgCl2, 5 mMCsCl, 20 mMTEA-Cl2,

and 10 mM HEPES (NaOH to pH 7.4) and the pipette solution contained

107 mM CsCl, 5 mM MgCl2, 11 mM EGTA, 10 mM HEPES, and 5 mM NaATP

(CsOH to pH 7.2). Similar solutions were used to measure Ca2+ currents, with

the exception that CoCl2 was omitted from, and 0.3 mMTTX was added to, the

bath solution.

Ca2+ Imaging

Imaging of Ca2+ levels in response to indole was performed in both GLUTag

and mouse colonic L cells. GLUTag cells were plated on matrigel-coated

35 mm glass bottom dishes, 1–2 days prior to use and loaded with fura-2-ace-

toxymethyl ester (fura-2-AM; Invitrogen). A standard saline buffer with 1 mM

glucose added was used as a control measurement. The dish was mounted

in a perfusion chamber on an Olympus IX71 microscope with 340 oil-immer-

sion objective and imaged using an Orca-ER CCD camera. A 75W Xenon arc

lamp and a monochromator (Cairn Research) controlled by MetaFluor soft-

ware (Universal Imaging) were used to alternately excite the dye at 340(10)

and 380(4) nm. The Fura-2-AM fluorescence was measured at >510 nm.

Free cytoplasmic Ca2+ concentrations were estimated for individual cells

from the ratio of 340/380 nm fluorescence intensities assuming a KD of

224 mM for fura-2-AM (Grynkiewicz et al., 1985). At the end of the experiment

5 mM ionomycin in 5 mM EGTA was used to calibrate for 0 mM Ca2+ and 5 mM

ionomycin in 5 mM Ca2+ used to calibrate for the maximal response to Ca2+.

For mouse colonic L cells, the calcium levels were measured using a mouse

line obtained by crossing GLU-Cremice (Parker et al., 2012) with commercially

available Rosa26-GCamp3 reporter mice (Jax strain 014538) (Zariwala et al.,

2012), resulting in expression of the genetically encoded Ca2+-sensor in L

cells. The fluorescence of the Ca2+-sensor was excited with 488(10) nm and

the emission was measured at 535(35) nm. A total of 36 colonic L cells were

imaged, of which 9 responded to indole and 13 to KCl. From the nine cells re-

sponding to indole, five did respond to KCl.

NADH and Perceval Imaging

Imaging of NAD(P)H levels in GLUTag cells was performed by monitoring the

intrinsic fluorescence emission of the cell at >510 nm when excited at

360(15) nm. For determining the cytoplasmic ATP/ADP ratio Perceval plasmid

(Berg et al., 2009; Tarasov et al., 2012) was transfected into GLUTag cells. Its

fluorescence was excited with 490(2) nm and measured at >510 nm. The

NAD(P)H and Perceval weremonitored in parallel by alternatively switching be-

tween the excitation wavelengths. The same optical setup and experimental

settings as for Ca2+ imaging was used. A standard saline buffer with 1 mM

glucose added was used as a control measurement.

Data Analysis

The average values are calculated as means ± SEM. The paired Student’s

t test was used in Figure 1 (only) because of a large variance in the basal

GLP-1 secretion in the absence of indole as a consequence of different plating

densities used when plating GLUtag cells on the secretion plate. Otherwise,

significance was tested by two-sample equal variance Student’s t test, and

the significance intervals were considered as follows: *0.05 > p > 0.01,

**0.01 > p > 0.001, ***0.001 > p.
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Supplementary Figure 1. Effect of indole on sodium and calcium currents in GLUTag cells, 

related to Figure 2.  A. Current responses to 50 ms voltage steps of 5 mV increments were 
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applied from a holding potential of -100 mV (shown in the inset) applied in a whole cell 

voltage clamp recording in saline buffer containing inhibitors of voltage gated K+ channels 

(see material and methods). Recordings were done in a whole cell voltage clamp recording 

where 50 ms voltage steps of 10 mV increments were applied from a holding potential of -

100 mV. The raw data shown in panel A were down-sampled from 10 kHz to 1 kHz with a 

digital low pass filter (Clampfit 10.3.1.4). B. Current voltage relationship of the peak currents 

obtained when activating voltage gated Na+ channels as in A.  Each individual experiment 

was normalized to the maximum peak current at + 15 mV control. Data show are mean ± 

SEM of n=3 cells.  C. Steady-state inactivation of Na+ currents measured by holding the 

membrane at -100 mV  for 500 ms at conditioning voltages between -120 and 0 mV (at 5 mV 

increments) before stepping to -10 mV for 50 ms and then to -100 mV. The inset shows the 

voltage pulse protocol. Only the current reponse to the test pulse to -10 mV is shown. The 

raw data shown in panel A were down-sampled from 10 kHz to 1 kHz with a digital low pass 

filter (Clampfit 10.3.1.4). An electrical interference Filter (Clampfit 10.3.1.4) was applied to 

remove the power line interference at 50 Hz. D. Mean peak currents from cells recorded as 

in C, normalized to the maximum peak current at -120 mV control for each individual 

experiment (H∞), and plotted against the holding potential applied during the conditioning 

pules. Data show are mean ± SEM of N=3 cells. E. Current responses to 25 ms voltage steps 

of 5 mV increments, applied from a holding potential of -70 mV (shown in the inset), in a 

whole cell voltage clamp recording. Voltage gated Na+ and K+ current were blocked with 

specific inhibitors (see material and methods). The raw data shown in panel A were down-

sampled from 10 kHz to 1 kHz with a digital low pass filter (Clampfit 10.3.1.4) . An electrical 

interference Filter (Clampfit 10.3.1.4) was applied to remove the power line interference at 

50 Hz. F. Current voltage relationship of the peak currents obtained from cells recorded as in 

A (N=3).  
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