Supplemental Information

Title: Generation of clonal zebrafish line by androgenesis without egg irradiation

Jilun Hou^{a,}, Takafumi Fujimoto^{b,} *, Taiju Saito^c, Etsuro Yamaha^d, Katsutoshi Arai^b

Supplemental Figure

Figure S1. Histological sections of intact control eggs from zebrafish (*Danio rerio*). (a) Unfertilized eggs at metaphase of the second meiosis; (b) 10 min after fertilization (AF), second polar body was released, and the egg nucleus existed in the egg cytoplasm underneath the polar body; (c) 10 min AF, the condensed sperm nucleus and egg nucleus in the blastodisc; (d) 15 min AF, decondensed female and male pronuclei; (e) 25 min AF, metaphase of the first cleavage; (f) 30 min AF, anaphase of the first cleavage; (g) 35 min AF, prophase of the second cleavage; (h) 45 min AF, anaphase of the second cleavage. Scale bars denote 10 μ m. Abbreviation: 2MeS, 2nd meiotic spindle; 2PB, 2nd polar body; FPN, female pronucleus; MN, male nucleus; MPN, male pronucleus; MiS, mitotic spindle; CF, cleavage furrow; ZY, zygote; AS, anaphase spindle.

Supplemental Tables

Table S1

External appearance and ploidy status of progeny from groups subjected to different temperatures during cold-shock treatment (30 min) in zebrafish (*Danio rerio*).

Treatment	External	Number	Ploidy status					
	appearanc e	appearanc of larvae	1N	2N	3N	Hypo-2N	Hyper-2N	
Intact control	Normal	80	0	80	0	0	0	
	Abnormal	16	0	16	0	0	0	
1°C, cold-shock	Normal	2	0	0	2	0	0	
	Abnormal	3	1	0	0	0	2 ^a	
4°C, cold-shock	Normal	0	0	0	0	0	0	
	Abnormal	14	7	0	1	3 ^b	3c	
7°C, cold-shock	Normal	3	0	0	3	0	0	
	Abnormal	47	39	0	1	6 ^d	1 ^e	
10°C, cold-shock	Normal	30	0	6	23	0	1 ^f	
	Abnormal	44	8	8	17	7 g	4 ^h	

^a 2.3N and 2.8N

^b 1.2N, 1.3N and 1.6N

^c 2.4N, 2.5N and 3.4N

^d 1.2N (3), 1.3N (2), and 1.5N

e 2.6N

^f2.6N

^g 1.2N, 1.4N, 1.6N (3), and 1.7N (2)

^h 2.2N (2), 2.6N, and 2.7N

External appearance and ploidy status of progeny from groups subjected to different durations of cold-shock treatment (7°C) in zebrafish (*Danio rerio*).

Treatment		External	Numbor	Ploie	Ploidy status					
		appearance	of larvae	1N	2N	3N	Hypo-2N	Hyper-2 N		
Intact control		Normal	104	0	10 4	0	0	0		
		Abnormal	0	0	0	0	0	0		
20	min	Normal	6	0	1	5	0	0		
cold-shock		Abnormal	61	34	12	1	10 ^a	4 ^b		
30	min	Normal	7	0	0	7	0	0		
cold-shock		Abnormal	46	33	2	2	5°	4 ^d		
40 r cold-shock	min	Normal	6	0	0	6	0	0		
		Abnormal	43	29	3	4	2 ^e	$5^{\rm f}$		
50 cold-shock	min	Normal	4	0	0	4	0	0		
		Abnormal	19	16	0	1	2 ^g	0		
60	min	Normal	3	0	0	3	0	0		
cold-shock		Abnormal	21	16	0	2	0	3 ^h		

^a 1.2N (4), 1.3N (2), 1.5N, 1.6N (2), and 1.7N

^b 2.3N, 2.4N, 2.6N, and 2.8N

^c1.3N, 1.4N, 1.6N (2), and 1.8N

^d 2.4N (3) and 6N ^e 1.2N and 1.5N

^f2.3N, 2.6N (2), and 2.7N (2)

^g1.3N and 1.5N

^h 2.2N and 2.4N (2)

Microsatellite genotypes at four loci in haploid, diploid, and triploid progeny following cold-shock treatment (7°C, 30 min) in zebrafish (Danio rerio).

			Progeny from cold shock treatment				
Locus (LG) ^a	Female	Male	Haploid	Diploid	Triploid		
Z7576	208/246	121/121	<i>121</i> : 10	208/121:3	208/246/121:10		
(LG 12)				247/121: 7			
Z6010	123/161	175/179	<i>175</i> : 7	<i>123/175</i> : 3	<i>123/161/175</i> : 6		
(LG 17)			179: 3	<i>123/179</i> : 3	<i>123/161/17</i> 9: 4		
				161/175: 2			
				161/179: 2			
Z9708	214/218	172/286	<i>172</i> : 5	<i>214/172</i> : 1	214/218/172: 4		
(LG 20)			<i>286</i> : 5	<i>218/172</i> : 1	<i>214/218/286</i> : 6		
				<i>214/286</i> : 5			
				218/286: 3			
Z11786	152/152	140/164	<i>140</i> : 7	<i>152/140</i> : 5	<i>152/140</i> : 4		
(LG 25)			164:3	<i>152/164</i> : 5	<i>152/164</i> : 6		

Abbreviation: LG, linkage group. ^a See Shimoda *et al.*¹⁵.

Microsatellite genotyping of putative androgenetic doubled haploids (DHs) with the golden phenotype in zebrafish (Danio rerio).

Locus (LG) ^a	DH1	DH2	DH3	DH4	DH5	DH6	DH7	DH8
Z1781 (LG 1)	200	200	200	200	200	200	200	200
Z8874 (LG 1)	150	150	150	150	150	150	150	150
Z644 (LG 2)	230	230	230	230	230	230	230	230
<i>Z9408</i> (LG 3)	186	238	280	238	280	280	280	238
Z7629 (LG 4)	238	186	188	188	186	282	188	188
Z896 (LG 5)	228	205	205	228	228	228	205	228
<i>Z3314</i> (LG 5)	126	126	126	126	126	126	126	126
<i>Z740</i> (LG 6)	232	235	235	232	232	235	235	235
<i>Z1050</i> (LG 6)	138	138	144	144	144	138	138	144
<i>Z8495</i> (LG 7)	240	240	240	240	240	240	240	240
<i>Z1402</i> (LG 8)	206	206	206	206	206	206	206	206
Z9637 (LG 8)	146	146	146	146	146	146	146	146
<i>Z106</i> (LG 9)	188	188	188	188	188	188	188	188
<i>Z1450</i> (LG 10)	238	238	258	238	238	238	238	238
<i>Z10215</i> (LG 11)	118	118	118	118	118	118	118	118
Z7576 (LG 12)	121	378	376	121	378	378	206	206
Z6622 (LG 13)	154	154	154	274	154	274	274	274
<i>Z1652</i> (LG 14)	140	<i>98</i>	98	98	140	140	<i>98</i>	140
<i>Z3309</i> (LG 15)	104	118	174	176	118	118	176	118
<i>Z992</i> (LG 16)	220	256	256	256	220	256	220	256
<i>Z3127</i> (LG17)	138	140	138	140	140	140	140	140
<i>Z1990</i> (LG17)	190	190	190	190	190	190	190	190
<i>Z1136</i> (LG 18)	116	116	116	116	184	116	116	116
<i>Z9331</i> (LG 19)	292	292	292	292	292	292	292	292
<i>Z9708</i> (LG 20)	218	218	218	218	218	218	218	218
<i>Z11113</i> (LG 21)	220	220	220	220	196	220	220	220
Z6613 (LG 22)	184	118	184	184	184	184	184	184
<i>Z5265</i> (LG 23)	196	216	216	200	152	216	196	216
<i>Z7349</i> (LG 24)	204	212	212	212	212	212	212	212
<i>Z11786</i> (LG 25)	164	164	164	152	152	164	164	164

Abbreviation: LG, linkage group. ^a See Shimoda *et al*. ¹⁵.

	No. of fish	No. of primer sets	No. of bands	Frequency of polymorphisms (%)	BSIª
Clonal line	8	64	34-94	0.00	1
Intact control	8	31	52-103	50.00-92.42	0.76 ± 0.13

Summary of amplified fragment length polymorphism (AFLP) data.

Abbreviation: BSI: band sharing index

^a The data are shown as total means \pm SDs for all primers. See Arai *et al.*³².

Adaptors and primers used for amplified fragment length polymorphism (AFLP).

Adaptor or primer	Sequences $(5' \rightarrow 3')$
EcoRI adaptor-1	CTCGTAGACTGCGTACC
<i>Eco</i> RI adaptor-2	AATTGGTACGCAGTCTAC
MseI adaptor-1	GACGATGAGTCCTGAG
Msel adaptor-2	TACTCAGGACTCAT
EcoRI preselective primer	GACTGCGTACCAATTC <u>A</u>
Msel preselective primer	GATGAGTCCTGAGTAA <u>C</u>
Selective primer:	
E-AAC	GACTGCGTACCAATTC <u>AAC</u>
E-AAG	GACTGCGTACCAATTC <u>AAG</u>
E-ACA	GACTGCGTACCAATTC <u>ACA</u>
E-ACC	GACTGCGTACCAATTC <u>ACC</u>
E-ACG	GACTGCGTACCAATTC <u>ACG</u>
E-ACT	GACTGCGTACCAATTC <u>ACT</u>
E-AGC	GACTGCGTACCAATTC <u>AGC</u>
E-AGG	GACTGCGTACCAATTC <u>AGG</u>
M-CAA	GATGAGTCCTGAGTAA <u>CAA</u>
M-CAC	GATGAGTCCTGAGTAA <u>CAC</u>
M-CAG	GATGAGTCCTGAGTAA <u>CAG</u>
M-CAT	GATGAGTCCTGAGTAA <u>CAT</u>
M-CTA	GATGAGTCCTGAGTAA <u>CTA</u>
M-CTC	GATGAGTCCTGAGTAA <u>CTC</u>
M-CTG	GATGAGTCCTGAGTAA <u>CTG</u>
M-CTT	GATGAGTCCTGAGTAA <u>CTT</u>

		-						
	M1 M-CAA	M2 M-CAC	M3 M-CAG	M4 M-CAT	M5 M-CTA	M6 M-CTC	M7 M-CTG	M8 M-CTT
E1 E-AAC	E1/M1*	E1/M2*	E1/M3*	E1/M4*	E1/M5*	E1/M6*	E1/M7*	E1/M8*
E2 E-AAG	E2/M1*	E2/M2*	E2/M3*	E2/M4*	E2/M5*	E2/M6*	E2/M7*	E2/M8*
E3 E-ACA	E3/M1	E3/M2	E3/M3	E3/M4	E3/M5	E3/M6	E3/M7	E3/M8
E4 E-ACC	E4/M1	E4/M2	E4/M3	E4/M4	E4/M5	E4/M6	E4/M7	E4/M8
E5 E-ACG	E5/M1	E5/M2	E5/M3	E5/M4	E5/M5	E5/M6	E5/M7	E5/M8
E6 E-ACT	E6/M1	E6/M2	E6/M3	E6/M4	E6/M5	E6/M6	E6/M7	E6/M8
E7 E-AGC	E7/M1	E7/M2*	E7/M3*	E7/M4*	E7/M5*	E7/M6*	E7/M7*	E7/M8*
E8 E-AGG	E8/M1*	E8/M2*	E8/M3*	E8/M4*	E8/M5*	E8/M6*	E8/M7*	E8/M8*

Primer combinations for selective amplification using amplified fragment length polymorphism (AFLP)^a.

^a For the clonal line, all of the combinations were used; for the intact control, the combinations with asterisk in the table were used.