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APPENDIX A THE HAMMING GRAPH BOUND
SELECTION

The important question is how to select the bound τ while
constructing the Bounded Hamming Graph HG(Strings, τ). The
input to IGREPERTOIRECONSTRUCTOR is overlapping paired-end
reads that are merged into single reads covering the variable region
of the antibody (about 400 nt). If sequencing errors in reads (the
error rate in Illumina reads is ≈ 1%) are not corrected by merging,
the merged read are expected to contain ≈ 4 errors on average.
Thus, unless the rate of sequencing errors is reduced by the merging
procedure, two merged reads are expected to have ≈ 4 + 4 = 8
mismatches on average. Unfortunately, the threshold τ = 8 will
not work for error-correction in immunosequencing since different
antibodies often differ by less than 8 mismatches (Figure A10).

However, it turns out that our algorithm benefits from the fact
that most errors are concentrated at the ends of reads resulting in
merged reads with significantly higher accuracy than the accuracy
of the original paired-end reads (see Appendix F). To estimate
the average number of errors in the merged reads, we extracted
reads corresponding to the known contaminant (Streptococcus
pneumoniae) in our Ig-seq dataset and aligned them to the
Streptococcus pneumoniae genome. It turned out that 96% of
merged reads differ from the reference genome by at most 1
mismatch (98% of merged reads differ from the reference genome
by at most 2 mismatches). Thus, we have selected the bound τ = 3
for constructing the Bounded Hamming Graph.

∗to whom correspondence should be addressed

APPENDIX B DENSE SUBGRAPHS AND
CLIQUES IN TRIANGULATED
GRAPH

Fig. A11a shows a triangulated graph G containing three dense
subgraphs, yellow, green, and violet. Fig. A11b shows a clique
overlap graph of G where vertices correspond to maximal cliques
inG and edges connect cliques that share vertices. The weight of an
edge is the number of vertices shared between two cliques. A clique
tree is defined as a maximum spanning tree of the clique overlap
graph (Fig. A11c). Fig. A11d show a perfect elimination order for
the graph from Fig. A11a. Fig. A11e shows the vertex elimination
process for the same graph.

Dense subgraphs are formed by mutliple cliques in the clique
tree. For example, vertices from the dense yellow subgraph can be
found among four nodes from the clique tree. To construct dense
subgraphs, we merge maximal cliques connected by many edges.
E.g., we merge two yellow cliques resulting in a subgraph on 5
vertices with a high edge fill-in.

Note that some of the resulting dense subgraphs may share
vertices forcing us to assign these shared vertices to one of the
dense subgraphs. To assign each vertex v to a single dense subgraph,
we select a the subgraph that has the maximum number of vertices
adjacent to v among all subgraphs containing v.

APPENDIX C SPLITTING DENSE SUBGRAPHS
USING SHM DETECTION

In practice, SHMs associate with various patterns (Dorner et al.
(1997)) making it difficult to apply the approach for breaking
dense subgraphs described in the main text. To bypass this
complication, we define the notion of a mutation-edge-set as
the set of all edges corresponding to a given mutation. We
further define an SHM as a mutation whose mutation-edge-set
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Fig. A10: (a) An alignment of reads corresponding to three similar antibodies (highlighted in blue, violet, and green). For the sake of
simplicity, we show error-free reads. For comparison, (b) shows the alignment of reads originating from the same antibody, that contain
randomly located errors in reads.

splits the subgraph (cluster of reads) into relatively large sub-
clusters. Thus, IGREPERTOIRECONSTRUCTOR attempts to split
each constructed dense subgraph by identifying SHMs. The split
subgraphs revealed by this final step define the reads contributing
to each antibody in the antibody repertoire. Below we explain
how IGREPERTOIRECONSTRUCTOR splits dense subgraphs by
identifying SHMs.

To design our splitting rule, we aligned reads from each dense
subgraph. For each column i in the alignment, we define counti
and fractioni and the count and fraction of second most frequent
nucleotide in the i-th column. We define thresholds countmin (the
default value is 4) and fractionmin (the default value 0.01) and
limit our attention to all columns with surprisingly large fractions of
the second most frequent nucleotides (fractioni > fractionmin)
among columns where this nucleotide occurs more than countmin

times. We further refer to such columns as SHM columns and
split all dense subgraph that have SHM columns. While it may
appear that the default value fractionmin = 0.01 is too small to
distinguish SHMs from sequencing errors, we note that it applies to
stitched Ig-seq reads that feature rather small error rates (0.0022 on
average).

Overall, we detected 18, 097 such columns distributed over 4126
dense subgraphs constructed by IGREPERTOIRECONSTRUCTOR

(25.79% percent of all dense subgraphs). Figure A12a presents
the scatter plot of (counti, fractioni). Figure A12b shows the
histogram of the distribution of the counti values.

APPENDIX D EVALUATING THE CONSTRUCTED
REPERTOIRES

We evaluate the constructed repertoire by checking whether the
Ig-Seq reads from the same cluster exhibit variations typical for

errors in reads (as expected from correctly constructed clusters)
or variations typical for incorrectly constructed clusters formed by
multiple antibodies. In order to analyze the pattern of variations,
we align reads from each cluster and compute the distribution
of positions of mismatches along the length of the reads. If
this distribution is roughly uniform (as expected from sequencing
errors), we conclude that the cluster is constructed correctly.
However, if this distribution reveals some peaks (e.g., peaks in CDR
regions), we conclude that two different antibodies were merged
into a single cluster.

Fig. A13 shows a histogram of mismatch positions averaged
over all clusters. Since this distribution is rather uniform (except
for peaks in the beginning and end of reads typical for the
error profile of Illumina reads), we conclude that most clusters
correspond to a single antibody. In contrast, the distribution of
variations for antibody clones (groups of multiple antibodies with
the same CDR3) shows pronounced peaks in CDR1 and CDR2
regions indicating that the clones are formed by multiple antibodies
(Fig. A16).

APPENDIX E BENCHMARKING
IGREPERTOIRECONSTRUCTOR
ON SIMULATED
IMMUNOSEQUENCING DATA

In order to check accuracy of IGREPERTOIRECONSTRUCTOR,
we generated small simulated immunosequencing data set using
IGSIMULATOR (Safonova et al. (2015)) with the following
parameters: # base sequences = 10, 000, # mutated sequences =
100, 000 and expected repertoire size = 1, 000, 000. The simulated
repertoire contains 105, 438 clusters (size of the maximal cluster
is 112, number of singletons is 10, 025). Experiments showed that
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Fig. A11: A triangulated graph (a), its clique graph (b) and its clique tree (c). (d) perfect elimination order for the triangulated graph in (a).
(e) the vertex elimination process for the triangulated graph in (a).

IGREPERTOIRECONSTRUCTOR accurately recovers clusters in the
simulated repertoire except for several small clusters broken into
singletons in the constructed repertoire.

APPENDIX F IG-SEQ DATA PREPROCESSING
Read merging. IGREPERTOIRECONSTRUCTOR works with single
reads that cover the entire variable regions of antibodies. These
reads are generated by merging the paired-end Illumina reads.

Since paired reads in our dataset have average insert size 366 nt
(Figure A14a), they are expected to overlap by ≈ 250 + 250 −
366 = 134 nt. After finding the overlap, we merge the two reads
within a read-pair into a single merged read that is expected to
cover the entire variable region of antibody. This procedure results
in a significant reduction of error rates. Since the accuracy of
Illumina reads drops towards the end of reads, we take advantage
of the overlapping region and form its consensus by selecting
the nucleotide with maximal quality value at each position in the
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Fig. A12: (a) the scatter plot of pairs (counti, fractioni) for filtered alignment columns using thresholds countmin = 4 and
fractionmin = 0.01. The area of a circle is proportional to the value of counti. Colors of circles are individual for each alignment
column. (b) the histogram of the distribution of the counti values.

Fig. A13: Histogram of distribution of the relative mismatch
positions for the constructed antibody clusters.

overlap. Figure A14b shows the difference in error rates before and
after merging.

Contamination clean-up. We used IgBlast (Ye et al. (2013)) to
align merged reads to Ig germline database and removed reads that
have alignment with E-value exceeding 0.001. We further filtered
reads and assembled them with SPAdes assembler (Bankevich et al.
(2012)) resulting in 10 contigs (Table A1). Blast alignments of

ID Length (nt) Coverage Blast alignment
1 1512 1.2 Escherichia coli genome assembly FHI92
2 1195 25.4 Homo sapiens major histocompatibility complex
3 959 1.9 Escherichia coli genome assembly FHI89
4 929 1.0 Homo sapiens protein tyrosine phosphatase
5 827 29.0 Homo sapiens O-sialoglycoprotein endopeptidase
6 868 1.3 Escherichia coli genome assembly FHI89
7 780 1.3 Homo sapiens immunoglobulin heavy locus (IGH)
8 734 1.0 Homo sapiens B lymphoid tyrosine kinase (BLK)
9 722 31.0 Homo sapiens uncharacterized LOC102725417
10 240 14.7 Homo sapiens long non-coding RNA

Table A1. Contigs assembled from reads filtered as contaminants. The table
shows length, coverage and the best Blast alignment for each contig from
assembly.

constructed contigs show that filtered reads were correctly classified
as contamination and can be safely removed from the Ig-seq library.

APPENDIX G CONTAMINATED READS ANALYSIS
We used the fact that some our Ig-seq libraries contain contaminants
to estimate the average error rate of the paired-end and merged
Ig-seq reads. We identified reads corresponding to the genome of
Streptococcus sp. VT 162 and aligned both paired-end, and merged,
reads to the reference genome. The average number of mismatches
per read is 0.85 and 0.22 for the paired-end and merged reads,
respectively. Figure A15 shows that the overlapping parts of the
merged reads contain fewer errors as compared to paired-end reads.
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Fig. A14: (a) shows histogram of merged read length distribution. (b) shows the average quality of reads before (red) and after (blue) merging,
and illustrates that merging of overlapping reads significantly improves their quality.

(a) (b)

Fig. A15: Analysis of the error rate of Ig-seq libraries using reads from contaminants. (a) shows the histogram of mismatches number per
read distribution. (b) shows the histogram of mismatches position distribution. Since the length of merged reads is not fixed, we compute the
position of the mismatch as the distance to the nearest start from the overlapping reads. Thus, positions of mismatches are normalized from
1 to 250.

APPENDIX H VALIDATING ANTIBODY
REPERTOIRES

The effect from IGREPERTOIRECONSTRUCTOR is evident when
comparing the peptides identified from the unique reads database
and the antibody repertoire. Only 0.6% of peptides identified from
the unique reads database do not appear in the antibody repertoire.

This demonstrates that IGREPERTOIRECONSTRUCTOR rarely over-
corrects reads implying that hardly any information is lost as the
result of error correction and that the antibody repertoire is a better
option for immunoproteogenomics searches than the previously
used the unique reads database.

To further evaluate the constructed repertoires, we performed
additional analysis of CDR3 regions. Differing antibody clusters
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with shared CDR3 sequence (and V region labeling) partition all
antibodies into clones. We refer to the capacity of the clone as the
number of antibodies composing it.

Since coincidence of CDR3 region of two unrelated antibodies is
an unlikely event, there are two possible explanations for non-trivial
clones: (i) erroneous partitioning of reads from the same antibody
into multiple clusters due to insufficient error correction, and (ii)
correct clustering of multiple differing antibodies into multiple
clusters with the same CDR3. In the latter case, since these multiple
antibodies were not exposed to diversity mechanisms (such as SHM)
in their CDR3 region, we expect that variations in these antibodies
dominate in CDR1 and CDR2 regions.

To test whether the case (ii) holds, we used CLUSTAL W, version
2.0 (Larkin et al. (2007)) to align all antibodies within a clone, and
to identify the variable positions in all non-trivial clones. Figure A16
shows the histogram of the variable positions for the constructed
heavy chain repertoire. Since the peaks in the histograms are located
at approximate positions of CDR1 and CDR2 regions, we conclude
that most non-trivial clones indeed were formed by related and
diversified antibodies (rather than by errors in clustering). See
Appendix J for the peptide coverage over the CDR3 region.

Fig. A16: Histogram of the mutated positions among non-trivial
clones. Mutated positions are computed as relative positions of
columns in multiple alignment of antibodies from each clone
corresponding to a mismatch or an indel. The histogram was cut off
at the right border of the CDR3 region. Red vertical bars correspond
to positions of CDRs as specified in Murphy (2012).

APPENDIX I BLIND MODIFICATION SEARCH
RESULTS

Figure A17 shows the prevalence of modifications over different
peptide sets; those observed only with a modification Figure A17a
and A17b, and those observed both with and without the
modification Figure A17c and A17d.

MODa identified many PTMs with offsets -17/-18, +16, and
+42Da. The 17Da and 18Da losses can be explained as pyroglutamic
acid, occurring on Q and E, particularly on the N-terminus. The
16Da gains are nearly all located on methionine and tryptophan,
consistent with oxidation. While some of the 42Da gains occur
on serines consistent with acetylation, the majority occur on
cystines. These are likely the result of N-isopropyl iodoacetamide
(NIPCAM), since cystines are searched with a fixed +57Da offset.

The PTMs with offset +1Da identified by MODa are largely
attributed to asparagine (N), which could signify a mutation to
isoleucene/leucine (I/L). MODa found many modifications on
tryptophan (W) centered around offsets of +32Da, +16Da, and
+5Da, all of which can be attributed to oxidations of tryptophan.
Additional prominent offsets were +12Da gain on glycine (G), and
-9Da loss on arginine (R), both seen in Figure A17b. A 9Da loss
on R can be explained as a mutation to phenylalanine (F). However,
the addition to G cannot be explained with common modifications
or mutations.

APPENDIX J COVERAGE OF CDR3 REGION BY
PEPTIDES

Peptide coverage of antibodies and clones is of interest since
it can provide us with direct proteomic evidence of which
antibodies/clones are specific to the introduced antigen. Of
particular interest is the peptide coverage over the region which
defines clonality; the CDR3 region. Figure A18a shows the coverage
distribution for each clone over the CDR3 region and reveals
that often very few residues are being covered at the junction of
CDR3 region. However, few clones have high coverage over the
entire region (99 clones with 90% or more coverage). Additional
representations of clone coverage are shown in Figure A19.

0

2000

4000

6000

0.00 0.25 0.50 0.75 1.00
Coverage (%)

C
lo

ne
 c

ou
nt

(a)

Fig. A18: (a) Peptide coverage distribution of CDR3.

6



IgRepertoireConstructor: Appendix

−
10

0

−
80

−
60

−
40

−
20

0 20 40 60 80 10
0

0

50

100

Mass offset (Da)

P
ep

ti
d

e
co

u
n
t

(a)

−40

−30

−20

−10

0

10

20

30

40

50

A C D E F G H I K L M N P Q R S T V W Y
Amino acid

O
ffs

et
 (

D
a)

Peptides
(0,1]
(1,2]
(2,5]
(5,10]
(10,15]
(15,20]
(20,40]
(40,120]

(b)

−
10

0

−
80

−
60

−
4
0

−
20

0 20 40 60 80 10
0

0

50

100

Mass offset (Da)

P
ep

ti
d

e
co

u
n
t

(c)

−40

−30

−20

−10

0

10

20

30

40

50

A C D E F G H I K L M N P Q R S T V W Y
Amino acid

O
ffs

et
 (

D
a)

Peptides
(0,1]
(1,2]
(2,5]
(5,10]
(10,15]
(15,20]
(20,40]

(d)

Fig. A17: Modifications of peptides identified only with that modification, or with and without the modification. (a) Histogram of offsets
over 1099 peptides with only modifications, (b) and their breakdown by residue. (c). 1051 out of these 1497 peptides were not identified
in restrictive MS/MS searches. Computed on 544 peptides with observed non-modified and modified versions, (d) along with residue
breakdown.
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Fig. A19: (a) Clones sorted by percent coverage of the CDR3 region by peptides. (b) Peptide coverage over positions of each antibody. No
normalization of coverage is performed.
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