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S1 LEARNING THE MODELS IN PRACTICE
Now that we defined the FUSENET model, we explain how to
solve related optimization problems. Notice that exact optimization
problem one needs to solve depends on a particular data setting, i.e.,
the particular combination of exponential family distributions that
generated a collection of data sets.

There has been a strong line of work on developing fast
algorithms to solve sparse regression problems that are similar to
Eq. (8) and Eq. (11) including the work by Krishnapuram et al.
(2005), Meier et al. (2008), Jalali et al. (2011) and Allen and
Liu (2013). Existing algorithms for undirected graphical model
selection assume that model parameters are independent of each
other. This, however, is not true in FUSENET due to reasons
discussed in Sec. 3.7, which ensure data fusion. Consequently, this
also means that we cannot use off-the-shelf optimization solvers.

S1.1 Node neighborhood selection
We propose to fit our FUSENET by computing cyclical coordinate
descent along the path of regularization parameter λ. Taking
derivatives of Eq. (13) and with optimization techniques by
Friedman et al. (2007a); Yuan (2008); Friedman et al. (2010) we can
obtain solutions over a range of values for regularization parameter
with approximately the same speed as fitting a model at a single
value of λ. The technique uses current parameter estimates as warm
restarts.

FUSENET employs elastic net penalties (Zou and Hastie, 2005)
in their models. Elastic net is a compromise between the ridge
penalty (λ = 0) and the lasso penalty (λ = 1) and is useful in
situations where p � n or when many variables are correlated. As
λ increases from 0 to 1, for a given α the sparsity of the solution
(i.e. the number of latent components equal to zero) increases
monotonically from 0 to the sparsity of the lasso solution. In each
iteration of the coordinate descent we apply soft thresholding to
the current FUSENET estimates to care of the lasso contribution to
the penalty, and then apply a proportional shrinkage for the ridge
penalty (Meinshausen and Bühlmann, 2006; Friedman et al., 2007a;
Simon et al., 2013).

S1.2 Selecting regularization parameters (λ)
The choice of λ is critical since different λ’s can lead to different
network sparsity patterns, i.e. the number and position of edges
in the inferred network. We estimate λ in data-dependent way
via stability selection (Meinshausen and Bühlmann, 2010), a
technique which was shown to lead to better results for the network
inference than other parameter selection methods including cross

validation, Akaike’s information criterion and Bayesian information
criterion (Liu et al., 2010; Yu et al., 2012).

For now, we assume that the number of latent components r
is given. Here, we choose λ so as to use the least amount of
regularization that simultaneously makes the network sparse and
stable, i.e., replicable under random sampling. FUSENET employs
recently proposed stability selection technique called StARS (Liu
et al., 2010). Briefly, StARS repeatedly sub-samples data D to
obtain many data samplesDs. Here,Ds denotes s-th data sample. It
then estimates a separate network Ês(λ, r) for each Ds and each
λ from a vector of regularization parameters λ; the latter being
possible due to coordinate descent computed along a regularization
path. Selected value for regularization controls the average variance
over the edges of the networks inferred from sub-sampled data:
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where Ājk(λ, r) = 1
S

∑S
s=1 I((j, k) ∈ Ês(λ, r)). We set β and

the size of data samplesDs to the values recommended in Allen and
Liu (2013). We note that we obtain different optimal values of λ(r)

opt
for different choices of r. Next, we describe how we select r, which
in effect determines the exact value of regularization.

S1.3 Selecting the number of latent components (r)
Our FUSENET has another parameter, the number of latent
components r, which otherwise does not appear in current Markov
models. The latent dimensionality is selected from a set of
predefined candidate values {0.05n, 0.1n . . . , 0.5n}, where n is the
mean number of observations across all considered data sets. We
seek to use the fewest number of latent components that produce
stable and sparse network:

ropt = arg min
τ

λ
(τ)
opt .

As a consequence, the optimal regularization value is λopt =

λ
(ropt)
opt . Notice that the entire set of computations including path-

wise coordinate descent and selection of regularization via stability
selection can be performed in parallel for each candidate value of r.

S2 MULTIVARIATE DATA SIMULATION
Four network structures are simulated: (1) the Erdős Rényi random
network, where an edge between each pair of nodes is set with equal
probability and independently of other edges; (2) a hub network,
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where each node is connected to one of three hub nodes; (3) a scale-
free network, in which node degree distribution follows a power-
law; and (4) a small-world network, in which most nodes are not
neighbors of each other but most nodes can be reached from every
other by a small number of hops.

In simulations involving the Poisson model we closely follow the
approach described by Karlis (2003) and Allen and Liu (2013).
We generate n independent observations with p nodes, D =
{x(1),x(2), . . . ,x(n)}, where x(i) is a p-dimensional count data
vector, x(i) ∈ {0, 1, . . . ,∞}p. A matrix of observations X =
[x(1),x(2), . . . ,x(n)]T is obtained from the model X = YB + E.

Here, Y is a n × (p + p(p − 1)/2) matrix with each entry Yij
iid∼

Poisson(λtrue) and E is a n×pmatrix with E
iid∼ Poisson(λnoise). Let

A∗ denote the adjacency matrix of a given true network structure
E∗. The adjacency matrix is encoded by matrix B as B = [Ip;P�
(1ptri(A∗)T )]T . Here, P is a p × (p(p − 1)/2) permutation
matrix, � represents the entry-wise product and tri(A∗) is the
(p(p−1)/2)×1 vectorized upper triangular part of A∗. As done by
Allen and Liu (2013) we simulate data at two signal-to-noise ratio
(SNR) levels. We set λtrue = 1 with λnoise = 0.5 for the high SNR
level and λnoise = 5 for the low SNR level.

In simulations involving the multinomial model we fix the
alphabet size to m = 3. For a given true network structure E∗,
we pick the parameter set θst;jk ∈ {θst;jk : s, t ∈ V ; (s, t) ∈
E∗; j, k ∈ {1, 2}} as follows. If (s, t) ∈ E∗ then each nonzero
entry θst;jk for j, k ∈ {1, 2} is set to θst;jk ∈ [−0.5, 0.5]
uniformly at random; there are 4 = (3 − 1)2 such entries. We
then generate n observations to construct a data set according to
the probability distribution corresponding to θst;jk. We solve the
problem in Eq. (12) and compare the inferred network Ê with the
true network E∗.

S3 CANCER GENOMIC DATA
We apply network inference algorithms to two examples of non-
Gaussian high-throughput genomic data to learn (1) an mRNA
expression network, (2) a somatic mutation network and (3) a
collectively inferred gene network from both data types.

We download breast cancer (BRCA-US) gene expression data
measured by next generation sequencing and breast cancer (BRCA-
US) simple somatic mutation data from the International Cancer
Genome Consortium (ICGC) (Hudson et al., 2010) portal (release
17). We follow the steps in Allen and Liu (2013) and process the
data to be approximately Poisson as is shown in Suppl. Fig. 1.
Genes with little variation across samples, the bottom 50%, are
filtered out, and the data is adjusted for possible overdispersion
by transforming them via a power α ∈ (0, 1] where α is chosen
to yield approximately Poisson data as assessed via Kolmogorov-
Smirnov tests (Li et al., 2011). The power transformation has
another advantage. When neighboring genes have extremely large
counts, the exponential in Eq. (6) causes the conditional Poisson
mean to become large. The transformation limits the extreme counts
and subsequently improves the fit of the model. Data preprocessing
results in a matrix with rows as the subjects (nexp = 1,012) and
columns as genes (pexp = 657). These genes form the nodes of our
Poisson breast cancer mRNA network.

Breast cancer simple somatic mutation data from the ICGC portal
include single base substitutions, multiple base substitutions and
short indels. Mutation data are converted into a matrix with rows as

subjects (nmut = 954) and columns as genes containing mutations
or variations (25,834 genes). Each matrix entry is categorized
into one of three groups based on the type of mutation: no
mutation, single base substitution, insertion/deletion of < 200 base
pairs. Differentially mutated genes, i.e. genes containing mutations
relative to the corresponding normal sample data, are ordered by
their percentage of mutations across all samples and the top p = 500
genes were used in our analysis. These genes form the nodes of our
multinomial breast cancer somatic mutation network.

For the collectively inferred network, we consider both gene
expression profiles and somatic mutation data provided by the
ICGC assuming the Poisson model for the RNA-seq data and the
multinomial model for the mutation data. The genes that form
the nodes of this network are taken as the union of sets of genes
from the respective gene expression and somatic mutation matrices
(p = |Vexp ∪ Vmut|). Mutational and expression profiles from both
matrices are matched by the subjects.
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Fig. S1. A histogram of the overall breast cancer RNA-seq data from the
ICGC (Hudson et al., 2010) (left) and a comparison of these data to the
quantiles of the Poisson distribution via a q-q plot (right). A q-q plot
shows that breast cancer RNA-seq data approximately follow the Poisson
distribution. The multivariate count data arising from the measurements of
gene expression with the next generation sequencing technology is only an
example of recent high-throughput technologies that produce non-Gaussian
distributed data.

S4 QUANTIFYING THE FUNCTIONAL CONTENT
OF INFERRED NETWORKS

We employ two approaches to evaluate “functional correctness” of
the networks inferred from cancer data.

First, we use SANTA (Cornish and Markowetz, 2014) to quantify
the strength of association between sets of functionally related genes
and the inferred network. The input to SANTA are a gene network
and a gene set and the output is a score representing statistical
significance of their association. We obtain gene sets from the Gene
Ontology (GO) (Ashburner et al., 2000) and test only GO terms
associated with between 20 and 100 network genes to ensure that
the functional sets are not too thinly or thickly spread.

Second, we overlay the inferred network with gene information
from the GO and for every GO term assess how community-like
a subnetwork of genes that belong to a particular GO term is.
Four different structural notions of network communities exist in
networks and we report the values of their representative scoring
functions (Yang and Leskovec, 2012). Given is the inferred network
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G(V, Ê), where p = |V |. Let T ⊆ V be genes that belong to a
specific GO term and let pT be their number, pT = |T |. We also
need mT , which is the number of edges in G whose both endpoints
are annotated with a given GO term, mT = |{(s, t) ∈ Ê : s ∈
T, t ∈ T}|, and cT , which counts how many edges are on the
boundary of set T , cT = |{(s, t) ∈ Ê : s ∈ T, t 6∈ T}|. We denote
degree of gene s with d(s). Scoring functions build on the intuition
that communities are sets of genes with many connections between
the members and few connections to the rest of the network. We
consider the following four scoring functions:

• triangle participation ratio (TPR) is the fraction of genes in
T that belong to a triad, |{s : s ∈ T, {(t, u) : t, u ∈ T, (s, t) ∈
Ê, (s, u) ∈ Ê, (t, u) ∈ Ê} 6= ∅}|/pT ;

• cut ratio is the fraction of all possible edges in T that connect
T to the remainder of the network, cT

pT (p−pT )
;

• conductance is the fraction of total edge volume that points
outside the GO term T , cT

2mT+cT
;

• flake-over-median-degree (flake-ODF) is the fraction of
genes in T with fewer edges linking inside than outside of T ,
|{s : s ∈ T, |{(s, t) ∈ Ê : t ∈ T}| < d(s)/2}|/pT .

The functions take values from [0, 1] interval. To make the higher
the better, we report (1 − Conductance), (1 − Cut ratio) and (1 −
flake-ODF) for conductance, cut ratio and flake-ODF, respectively.

S5 NETWORK RECOVERY WITH
SIMULATED DATA
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Fig. S2. Application of gene network inference algorithms to multinomial-
distributed simulated data. Simulation studies on four network types were
performed. Shown are results for Erdős Rényi random network, see main
text for other network types. We generated n = 300 observations at a high
signal-to-noise ratio (SNR) with p = 50 variables (nodes) taking values
from an alphabet of size m = 3. Receiver operating curves and boxplots are
shown for the multinomial FUSENET (proposed here) and the multinomial
graphical model (Mult-GM) (Jalali et al., 2011).
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Fig. S4. Application of gene network inference algorithms to Poisson-
distributed simulated data. Simulation studies on four network types were
performed. Shown are results for Erdős Rényi random network, see main text
for other network types. We generated data with n = 200 observations with
p = 100 variables (nodes) at a low (first row; left) and high (first row; right
and second row) signal-to-noise ratio (SNR). Receiver operating curves,
precision-recall curves and boxplots are shown for the Poisson FUSENET

(proposed here), the Local Poisson Graphical Model (LPGM) (Allen and
Liu, 2013), the Graphical Lasso (GLASSO) (Friedman et al., 2007b),
the GLASSO on log-transformed data (Log-GLASSO) (e.g. cf. Gallopin
et al., 2013) and the GLASSO on data transformed through nonparanormal
Gaussian copula (NPN-Copula) (Liu et al., 2009)
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Fig. S3. Application of gene network inference algorithms to multinomial-distributed simulated data. Simulation studies on four network types were
performed: random (See Suppl. Fig. 2), hub, scale-free and small-world. These graph structures appear in many real biological networks. For each graph
type, we generated data with n = 300 observations at a high signal-to-noise ratio (SNR) with p = 50 variables (nodes) taking values from an alphabet of
size m = 3. Precision-recall curves are shown for the multinomial FUSENET (proposed here) and the multinomial graphical model (Mult-GM) (Jalali et al.,
2011).
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Fig. S5. Application of gene network inference algorithms to Poisson-distributed simulated data. Simulation studies on four network types were performed:
random (see Suppl. Fig. 3), hub, scale-free and small-world. These graph structures appear in many real biological networks. For each graph type, we
generated data with n = 200 observations with p = 100 variables (nodes) at a high signal-to-noise ratio (SNR). Precision-recall curves are shown for the
Poisson FUSENET (proposed here), the Local Poisson Graphical Model (LPGM) (Allen and Liu, 2013), the Graphical Lasso (GLASSO) (Friedman et al.,
2007b), the GLASSO on log-transformed data (Log-GLASSO) (e.g. cf. Gallopin et al., 2013) and the GLASSO on data transformed through nonparanormal
Gaussian copula (NPN-Copula) (Liu et al., 2009)
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S6 FUNCTIONAL CONTENT OF THE
INFERRED NETWORKS

Fig. S6. The strength of association between gene sets from the Gene
Ontology (GO) and networks inferred with Poisson FUSENET (proposed
here) and LPGM (Allen and Liu, 2013). Inferred networks were overlaid
with GO terms and subnetworks induced by each GO term were assessed
for how well they corresponded to network communities. Four different
scoring functions were used to quantify the presence of different structural
notions of communities (Yang and Leskovec, 2012) that can appear
in biological networks: flake-over-median-degree (flake-ODF), cut ratio,
triangle participation ratio (TPR) and conductance. Results are shown for
breast cancer RNA-sequencing data because LPGM method was designed
for Poisson distributed data.
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Fig. S7. The strength of association between gene sets from the Gene
Ontology (GO) and networks inferred with multinomial FUSENET

(proposed here) and multinomial graphical model (Mult-GM) (Jalali et al.,
2011). Inferred networks were overlaid with GO terms and subnetworks
induced by each GO term were assessed for how well they corresponded
to network communities. Four different scoring functions were used to
quantify the presence of different structural notions of communities (Yang
and Leskovec, 2012) that can appear in biological networks: flake-over-
median-degree (flake-ODF), cut ratio, triangle participation ratio (TPR) and
conductance. Results are shown for breast cancer somatic mutation data
because Mult-GM method was designed for multinomial distributed data.
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