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Fig. S2. Comparison of our approach with other methods in terms of
macro-AUROC. * indicates that our approach is statistically significant in
comparison with GeneMANIA. Performance is evaluated for different
subsets of GO labels with varying sparsity levels as shown on the x-axis.
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AUROC. * indicates that our approach is statistically significant in
comparison with GeneMANIA. Performance is evaluated for different
subsets of GO labels with varying sparsity levels as shown on the x-axis.
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g o I ' ' We show the comparison of performance in terms of AP@10 and
G macro-APRUC in Table S1 and Table S2. In human, our method
3-10 1130 31-100 101-300 achieved 0.1849 AUPRC on BP labels with 101-300 annotations,
Number of annotated genes which is higher than 0.1764 AUPRC for GeneMANIA. In mouse,
our method achieved 0.4238 AP@10 on MF labels with 31-100
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20 ‘”'3(? S 1‘?1’300 101-300 0.3139 0.4883 0.5541 *
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Table S2. Comparison of our approach with other methods in terms of
macro-AUPRC. * indicates that our approach is statistically significant in
comparison with GeneMANIA.

#annotated HC GeneMANIA clusDCA
genes
3-10 0.0153 0.0755 0.0818 *
Human MF 11-30 0.0486 0.1344 0.1574 *
31-100 0.0677 0.1670 0.1625
101-300 0.0637 0.2377 0.2151 3
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1 Introduction

Complex biological systems have been successfully modeled by biochemical and genetic interaction
networks, typically gathered from high-throughput (HTP) data. These networks can be used to
infer functional relationships between genes or proteins. Using the intuition that the topological
role of a gene in a network relates to its biological function, local or diffusion-based “guilt-by-
association” and graph-theoretic methods have had success in inferring gene functions [1, 2, 3].
Here we seek to improve function prediction by integrating diffusion-based methods with a novel
dimensionality reduction technique to overcome the incomplete and noisy nature of network data.

A type of diffusion algorithm, also known as random walk with restart (RWR), has been ex-
tensively studied in the context of biological networks and effectively applied to protein function
prediction (e.g., [1]). The key idea is to propagate information along the network, in order to
exploit both direct and indirect linkages between genes. Typically, a distribution of topological
similarity is computed for each gene, in relation to other genes in the network, so that researchers
can select the most related genes in the resulting distribution or, rather, select genes that share
the most similar distributions. Though successful, these approaches are susceptible to noise in the
input networks due to the high dimensionality of the computed distributions.

2 Methods

We propose Diffusion Component Analysis (DCA), a novel analytical framework that combines
diffusion-based methods and sophisticated dimensionality reduction to better extract topological
network information in order to facilitate more accurate functional annotation of genes or proteins.
The key idea behind DCA is to obtain informative, but low-dimensional features, which better
encode the inherent topological properties of each node in the network. We first run a diffusion
algorithm on a molecular network to obtain a distribution for each node that captures its relation
to all other nodes in the network. We then approximate each of these distributions by constructing
a multinomial logistic model, parameterized by low-dimensional feature vector(s), for each node.
Feature vectors of all nodes are jointly learned by minimizing the Kullback-Leibler (KL) divergence
(relative entropy) between the diffusion and parameterized-multinomial logistic distributions. A
key differentiating factor of our novel dimensionality reduction from a more conventional approach,
such as Principal Component Analysis (PCA), is the use of multinomial logistic models, which
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Figure 1: Protein function prediction performance on yeast STRING networks in terms
of both accuracy and F1 score—the harmonic mean of both precision and recall-with
different levels of functional categories from MIPS. Neighbor majority vote (NMV), Diffu-
sion state distance (DSD), DCA with kNN (DCA), DCA combined with novel network integration
with kNN (DCAi) or SVM (DCAi-SVM).

more naturally explain the input probability distributions from the diffusion. Moreover, DCA
can be naturally extended to integrate multiple heterogeneous networks by performing diffusion
on separate networks and jointly optimizing feature vectors. Given the low-dimensional vector
representations of nodes, k-nearest neighbor (kNN) voting schemes or support vector machines
(SVM) can be used for function prediction.

3 Results

We evaluated the ability of our DCA framework to uncover functional relationships in the interac-
tome of yeast. By combining noise reduction via dimensionality reduction, improved integration of
multiple heterogeneous networks (e.g., physical interaction, conserved co-expression), and the use
of support vector machines, our DCA framework is able to achieve 71.29% accuracy with five-fold
cross-validation on the STRING networks with third level functional annotations from MIPS, which
is remarkably 12.31% higher than the previous state-of-the-art diffusion state distance (DSD) [1]
method (Figure 1). We also observe improved performance over DSD in a different yeast PPI net-
work, constructed from only physical interactions in the BioGRID database. In addition, we found
that conventional approaches to dimensionality reduction, such as principal component analysis or
non-negative matrix factorization, fail to achieve similar performance improvements. Our results
demonstrate the potential of low-dimensional feature vectors learned by DCA to be plugged into
other existing machine learning algorithms to decipher functional properties of and obtain novel
insights into interactomes.
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