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S2 Appendix: MCMC algorithm used to fit multispecies

N-mixture models

In this supplement we describe the MCMC algorithm that was used to compute sum-

maries of the posterior distribution of model parameters. We use bracket notation [1] to

specify probability density functions; thus, [x, y] denotes the joint density of random vari-

ables X and Y , [x|y] denotes the conditional density of X given Y = y, and [x] denotes the

unconditional (marginal) density of X.

We used the MCMC algorithm to generate a Markov chain whose stationary distribution

is equivalent to a posterior with density function proportional to

[β,α,Σ−1, b, ε,n|y] = [β][α][b][Σ−1|b]
I∏
i=1

[εi|Σ−1]
K∏
k=1

[nik|λik][yik|nik, pik]

where β = (β1, . . . ,βK), α = (α1, . . . ,αK), ε = (ε1, . . . , εI), and n = (n1, . . . ,nI) are

parameters of the multispecies N-mixture model. The vector b = (b1, . . . , bK)′ contains

auxiliary parameters that were used to specify the prior distribution of Σ hierarchically [2]

as described below. The vector yik = (yik1, . . . , yikJi)
′ contains the detection frequencies of

birds of species k observed during the ith survey, and y = {yik,∀ik} denotes the entire set

of observations.
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The MCMC algorithm uses either a Gibbs or a Metropolis-Hastings (M-H) sampler de-

pending on the parameter. Each of the following full-conditional distributions is sampled in

one iteration of the algorithm:

1. The full conditional for Nik has a familiar form: Nik − yik·|· ∼ Poisson(λik(1 − pik)Ji)

where yik· =
∑Ji

j=1 yikj is the total number of birds of species k detected during the ith

survey. In other words, this is the conditional distribution of the number of birds that

were present but not detected during the survey.

2. We assumed a hierarchical prior distribution for Σ [2] that allowed us to specify

marginally noninformative priors for its elements. Specifically, the hyperparameters

of this prior can be chosen so that each standard deviation parameter σk has a Half-

t prior of arbitrarily high noninformity [3] and each correlation parameter ρkl has

a uniform prior on (-1,1). The hierarchical prior distribution for Σ is a mixture of

Inverse-Wishart and Inverse-Gamma distributions:

Σ−1|b1, . . . , bK ∼ Wishart(ν +K − 1, (2νB)−1)

bk ∼ Gamma(1/2, 1/s2k)

where B = diag(b1, . . . , bK). [2] showed that the marginal prior density for ρkl is pro-

portional to (1−ρkl)ν/2−1; therefore, we let ν = 2 to specify a marginally uniform prior

for each correlation parameter. [2] also showed that the marginal prior distribution for

σk is a Half-t distribution with ν degrees of freedom and scale parameter sk; therefore,

we specified a noninformative prior for σk by choosing sk to be arbitrarily high.

The conditional conjugacy of this prior for Σ leads to full conditional distributions of

familiar form that are relatively easy to sample. Specifically,

Σ−1|· ∼Wishart(ν + I +K − 1, (2νB +E′E)−1)
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where the I ×K matrix E = (ε1, ε2, . . . , εI)
′, and

bk ∼ Gamma((ν +K)/2, 1/s2k + ν(Σ−1)kk)

where (Σ−1)kk is the kth diagonal element of Σ−1. Once Σ−1 is drawn from its full

conditional, it is a simple matter to compute the matrix of correlation parameters as

follows: {diag(Σ)}−1/2Σ{diag(Σ)}−1/2.

3. The full conditional density of ε factors into a product of I independent terms. To

sample the ith target density, which is proportional to

[εi|·] = [εi|Σ−1]
K∏
k=1

[nik|λik]

= exp

[
−ε′iΣ−1εi +

K∑
k=1

nik log(λik)− λik

]

we used the M-H algorithm. Following [4], we used a multivariate-t distribution

as a proposal and selected its parameters to approximate the target distribution.

Specifically, let f(εi) = log([εi|·]). We assigned the mean of the proposal distribu-

tion to equal ε̂i, the value of εi that maximized f(εi). This maximimization was

done numerically using an analytical gradient g(εi) = −Σ−1εi + ni − λi and hessian

H(εi) = −Σ−1− diag(λi). The covariance of the proposal distribution was then com-

puted by inverting the negative of the hessian matrix {−H(ε̂i)}−1. The degrees of

freedom parameter of the proposal may be used as a tuning parameter; however, in

practice we simply assigned this parameter to be constant (2.0).

4. The full conditional density of β factors into a product of K independent terms. For

each term we assumed a normal prior distribution with mean zero and diagonal co-

variance matrix V βk , using an arbitrarily high value for the nonzero elements of V βk
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to specify prior ignorance. To sample the kth target density, which is proportional to

[βk|·] = [βk]
I∏
i=1

[nik|λik]

= exp

[
−β′kV −1βk βk +

I∑
i=1

nik log(λik)− λik

]

we used the M-H algorithm. Following [4], we used a multivariate-t distribution as a

proposal and selected its parameters to approximate the target distribution. Specif-

ically, let f(βk) = log([βk|·]). We assigned the mean of the proposal distribution

to equal β̂k, the value of βk that maximized f(βk). This maximimization was done

numerically, and the covariance of the proposal distribution was then computed by

inverting the negative of the hessian matrix {−H(β̂k)}−1. The degrees of freedom

parameter of the proposal may be used as a tuning parameter; however, in practice we

simply assigned this parameter to be constant (2.0).

5. The full conditional density of α factors into a product of K independent terms. Let Qk

equal the number of parameters in αk. We assumed a noninformative prior for αk that

comprises Qk independent t-distributions, each with mean zero, scale parameter σα =

1.566, and degrees of freedom parameter να = 7.763. This distribution approximates

a Uniform(0, 1) prior on the inverse-logit scale and assigns low probabilities to values

outside the interval (-5,5) [5]. To sample the kth target density, which is proportional

to

[αk|·] = [αk]
I∏
i=1

[yik|nik, pik]

= exp

[
Qk∑
q=1

−να + 1

2
log

{
1 +

α2
kp

νασ2
α

}
+

I∑
i=1

(nik − yik·) log(πik0) +

Ji∑
j=1

yikj log(πikj)

]

we used the M-H algorithm. We used a multivariate-t distribution as a proposal and

selected its parameters to approximate the target distribution. Specifically, let f(αk) =
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log([αk|·]). We assigned the mean of the proposal distribution to equal α̂k, the value

of αk that maximized f(αk). This maximimization was done numerically, and the

covariance of the proposal distribution was then computed by inverting the negative of

the hessian matrix {−H(α̂k)}−1. The degrees of freedom parameter of the proposal

may be used as a tuning parameter; however, in practice we simply assigned this

parameter to be constant (2.0).

We used M = 150000 iterations of the MCMC algorithm to estimate summaries (means,

standard deviations, quantiles) of the posterior distribution and other ecologically relevant

functionals of the Markov chain. The estimates were computed using ergodic averages,

which are simulation consistent (that is, the averages converge to posterior expectations as

the number of iterations increases) according to the strong law of large numbers for Markov

chains [6]. (The first 20000 elements of the Markov chain were not used because this part

of the chain appeared to be transient.) Monte Carlo standard errors of the estimates were

computed using the subsampling bootstrap method [7, 6] with overlapping batch means of

size b
√
Mc.
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